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Background and Purpose. AngongNiuhuangWan (ANW) is a traditional Chinese herbal formula that has been widely used for the
treatment of ischemic stroke, whereas its underlying therapeutic mechanism remains unclear. ,e objective of the study is to
explore the main bioactive ingredients and interaction mechanism of ANW on ischemic stroke based on the network phar-
macology method. Methods. ,e chemical ingredients of ANW were retrieved from TCMSP, TCMID, and literature. We
predicted the potential targets of active ingredients by PubChem, Swiss Target Prediction, and STITCH databases. ,e targets
related to ischemic stroke were retrieved using GeneCards, DisGeNET, DrugBank, TTD, and GEO databases. Subsequently, Venn
diagrams were used to identify common targets of active ingredients and ischemic stroke. Protein-protein interaction (PPI)
network was structured with STRING platform and Cytoscape 3.8.2. Gene ontology (GO) enrichment and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analyses of key targets were performed in the Metascape database. Finally, molecular
docking was conducted by AutoDock Tools and PyMOL software. Results. A total of 2391 targets were identified for 230 active
ingredients of ANW, and 1386 of them overlapped with ischemic stroke targets.,e key active ingredients were mainly quercetin,
β-estradiol, berberine, wogonin, and β-sitosterol, and the key targets were also identified, including IL-6, AKT1,MAPK3, PIK3CA,
and TNF. ,e biological process (BP) results indicated that ANWmay have therapeutic effects through response oxidative stress,
inflammatory response, cellular response to lipid, and response to nutrient levels. Furthermore, the ingredients of ANW were
predicted to have therapeutic effects on ischemic stroke via the HIF-1 signaling pathway, FoxO signaling pathway, chemokine
signaling pathway, fluid shear stress and atherosclerosis, and neurotrophin signaling pathway. ,e molecular docking results all
showed that the core ingredients were strong binding activity with the core targets. Conclusion. In conclusion, the bioinformatics
and pharmacological results reveal that counteracting oxidative stress, suppressing inflammation, inhibiting the development of
AS, and even protecting neurological function are critical pathways for ANW in the treatment of ischemic stroke. ,ese results
may help to elucidate the mechanism of ANW on ischemic stroke for experimental studies and clinical applications.

1. Introduction

Ischemic stroke is a common cerebrovascular event due to an
abrupt cerebral artery occlusion, resulting in insufficient
perfusion, which then causes edema, inflammation, and
necrosis of the affected tissue and severely damages to neu-
rological function. ,e World Health Organization reports
that ischemic stroke is the main cause of death and long-term
disability in the world, which causes a tremendous

psychological and financial burden on patients [1]. However,
the pathological process of ischemic stroke involves multiple
aspects, including energy metabolism disorder, oxidative
stress, inflammation, and neuronal damage, and there is no
sovereign remedy [2, 3]. ,erefore, it is significantly im-
portant to explore drugs or active ingredients with multiple
targets for the treatment of cerebral ischemia.

Notably, many of the Chinese herbs have been proven to
produce therapeutic effects on ischemic stroke in clinical
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research [4]. As a famous Chinese herbal formula, Angong
NiuhuangWan (ANW) is widely used in clinical practice for
the treatment of ischemic stroke, which contains 11 herbs,
including Moschus, Realgar, Curcumae Radix, Borneolum,
Scutellariae Radix, Coptidis Rhizoma, Gardeniae Fructus,
Bovis Calculus, Bubali Cornu, Margarita, and Cinnabaris.
Studies indicated that ANW had effect on reducing infarct
size, protecting the integrity of the blood-brain barrier
(BBB), improving antioxidant capacity, and inhibiting in-
flammation injury to produce neuroprotection; further-
more, it may improve the development of early
atherosclerosis (AS) by suppressing inflammation [5–7].
However, the pharmacological effects of ANW on ischemic
stroke have still not been elucidated.

In this study, we aim to elucidate the possible mecha-
nism of ANW on ischemic stroke and reveal the interaction
between ANW, target, and ischemic stroke from a holistic
perspective through a network pharmacology approach. ,e
workflow diagram of the study is presented in Figure 1.

2. Material and Methods

2.1. Screening of Active Ingredients in ANW. ,e effective
ingredients of ANW were searched through TCMSP
(https://tcmspw.com/tcmsp.php) [8], TCMID (http://www.
megabionet.org/tcmia/), and literature. ,e active com-
pounds were screened for oral bioavailability (OB), drug-
likeness (DL), and blood-brain barrier permeability (BBB)
prediction. ,e selection of OB, DL, and BBB referred to the
recommendations of the TCMSP database. ,erefore, we
finally screened the compounds with OB≥ 0.2, DL≥ 0.1, and
BBB≥ -0.3, which were considered as parameters for
selecting potentially pharmacological ingredients [9–11], in
addition, the ingredients with high content or pharmaco-
logical effects searched from literature and TCMID that did
not contain the above parameters, which were also included
in the further analysis. Besides, the threshold values were
considered based on the following points: firstly, extracting
more useful information from fewer compounds; secondly,
maintaining concordance with the proven pharmacological
data.

2.2. Prediction of Potential Targets of ANW. We retrieved
SMILES number or 3D structure of each ingredient from the
PubChem database (https://pubchem.ncbi.nlm.nih.gov/)
and TCMID and inputted them into the PubChem, Swiss
Target Prediction (http://www.swisstargetprediction.ch/)
[12], and STITCH (http://stitch.embl.de/) database to obtain
potential targets of bioactive ingredients. ,e target was
further standardized in UniProtKB database (http://www.
uniprot.org) [13].

2.3. Candidate Targets Collection of Ischemic Stroke. ,e
disease targets correlated with “cerebral ischemic stroke”
and “cerebral infarction” were identified through GeneCards
(https://www.genecards.org/), DisGeNET (http://disgenet.
org/), DrugBank (https://go.drugbank.com/), GEO
(https://www.ncbi.nlm.nih.gov/geo/), and TTD (http://db.

idrblab.net/ttd/) [14]. After deleting the duplicate targets of
ischemic stroke, Venny 2.1 (http://bioinfogp.cnb.csic.Es/
tools/venny/index.html) was used to identify common po-
tential targets between ischemic stroke and the active in-
gredients of ANW.

2.4. Protein-Protein Interaction Network Construction and
Analysis. Protein-protein interaction (PPI) network was
constructed through the STRING database (https://string-
db.org/) [15] with a confidence score >0.7. And topology
analysis was performed by Cytoscape software. ,e key
targets were sorted and screened according to the value of
degree, betweenness centrality, and closeness centrality of
the topological analysis results [16]. In addition, we screened
important functional modules in PPI networks with the
Cytoscape plugin MCODE.

2.5. Functional Enrichment and Pathways Analysis. ,e
Gene ontology (GO) including biological process (BP),
molecular function (MF), and cellular component (CC), and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses were conducted using the
Metascape database (https://metascape.org) [17]. ,e sta-
tistical significance threshold was set at the cutoff values of
P< 0.01. In addition, the bioinformatics platform (http://
www.bioinformatics.com.cn/) was used to visualize GO and
KEGG enrichment analysis with the bubble charts.

2.6. Construction of Active Ingredients-Targets-Pathway
Network. An ingredients-targets-network was constructed
by Cytoscape software. ,e key active ingredients of ANW
were sorted and screened according to the value of degree,
betweenness centrality, and closeness centrality based on
topological analysis.

2.7. Molecular Docking. ,e 3D structures of candidate
ingredients were obtained from PubChem, which were
transformed by Open Babel Toolkit (version 2.4.1) into a
mol2 file format. ,e 3D structures of the core target were
downloaded from the PDB database (http://www.rcsb.org/).
,e AutoDockTool 1.5.6 was used to add hydrogen and
optimize protein structure for molecular docking after re-
moving water and original ligands.

3. Results

3.1. Active Ingredients of ANW. A total of 230 active in-
gredients were obtained through the database after elimi-
nating duplicates. ,ese active ingredients were mainly
derived from Borneolum (16 ingredients), Bovis Calculus (19
ingredients), Coptidis Rhizoma (17 ingredients), Moschus
(32 ingredients), Bubali Cornu (22 ingredients), Realgar (3
ingredients), Curcumae Radix (44 ingredients), Margarita
(16 ingredients), Gardeniae Fructus (22 ingredients), Cin-
nabaris (2 ingredients), and Scutellariae Radix (37 ingre-
dients). Detailed active ingredients of ANW are shown in
Table 1.
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Figure 1: ,e workflow diagram of the study.
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3.2. Protein-Protein Interaction Network Analysis. A total of
4963 potential targets were obtained of ischemic stroke, and
1386 common targets were obtained after intersecting with
2391 potential targets of the active ingredients (Figure 2).
,e topological results of 1386 targets were obtained 130
significant targets according to the degree, betweenness
centrality, and closeness centrality. ,e PPI network

included 130 nodes and 2946 edges, among which 25 genes
were more relevant to the ischemic stroke according to the
MalaCards database (https://www.malacards.org/) [18], so
they were identified as key targets (Figure 3, Table 2).
MCODE has screened 5 functional modules according to the
130 targets (Figure 4). ,e biological functions of the
subnetwork are shown in Table 3. ,e BP analysis revealed

Table 1: Information of the candidate active ingredients of ANW.

Herb Active ingredients

Bovis Calculus

Oleanolic acid, cherianoine, CLR, bilirubin, methyl(4R)-4-[(3R,5S,7S,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-
10,13-dimethyl- 2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoate,
methyl desoxycholate, chenodeoxycholic acid, deoxycholic acid, ZINC01280365, biliverdin, cholic acid, choline,

deoxycorticosterone, ergosterol, ergotamine, glycocholic acid, lithocholic acid, ursodeoxycholic acid, hyodeoxycholic
acid

Coptidis
Rhizoma

Berberine, columbamine, fagarine, berberrubine, DPEC(5,8-dihydroxy-2-(2-phenylethyl)chromone), epiberberine,
groenlandicine, (R)-canadine, berlambine, magnograndiolide, palmatine, coptisine, tetrandrine, Worenine,

Pycnamine, jatrorrhizine, quercetin

Scutellariae
Radix

Acacetin, wogonin, (2R)-7-hydroxy-5-methoxy-2-phenylchroman-4-one, β-patchoulene, baicalein, 5,8,2′-Trihydroxy-
7-methoxyflavone, dihydrobaicalin_qt

Salvigenin, 5,2′,6′-Trihydroxy-7,8-dimethoxyflavone, dihydrooroxylin A, skullcapflavone II, oroxylin a, panicolin,
DIHYDROOROXYLIN(2beta-Phenyl-2,3- dihydro-5,7-dihydroxy-6-methoxy-4h-1-benzopyran-4-one), beta-
sitosterol, sitosterol, norwogonin, 5,2′-dihydroxy-6,7,8-trimethoxyflavone, (-)-alpha-cedrene, linoleic acid,

stigmasterol, dibutyl phthalate, coptisine, bis[(2S)-2-ethylhexyl] benzene-1,2-dicarboxylate, supraene, methyl
palmitelaidate, methyl linolelaidate, Diop, epiberberine, patchoulene, 13-tetradecenyl acetate, moslosooflavone, 11,13-

eicosadienoic acid, methyl ester, linolenic acid methyl ester, rivularin, neobaicalein, baicalin

Bubali Cornu
Calcium carbonate, eukeratin, ssulfocysteine, serine, isoleucine, glutamic acid, phenylalanine, histidine, cholesterol,

cysteine, proline, lysine, tyrosine, arginine
Ethanolamine, aspartic acid, glycine, alanine, methionine, threonine, guanidine derivatives, guanidine

Moschus

β-Estradiol, 3,5-dihydroxybenzoic acid, 3alpha,17-dihydroxy-5beta-androstane, 3alpha-hydroxy-5alpha-androstan-17-
one, 3beta,17alpha-dihydroxy-5alpha-androstane, 3beta-hydroxy-5alpha-androstan-17-one, 3beta-hydroxy-androst-5-

ene-17-one, 3α-hydroxy-5β-androstan-17-one, testosterone, allantoin, serine
3β-Hydroxy-5α-androstan-17-one, 3β-hydroxy-androst-5-ene-17-one, 5 alpha-androstan-3,17-dione, 5beta-

androstan-3 alpha,17beta-diol, 5α-androstan- 3,17-dione, 5α-androstane-3β,17α-diol, 5β-androstan-3,17-dione, 5β-
androstan-3α,17α-diol, 5β-androstan-3α,17β-diol, alpha-estradiol, androst-4,6-diene-3,17-dione, androst-4-ene-3,17-
dione, androsterone, cholesterol, decamine, estragole, morin, n-nornuciferine, normuscone, s-methyl cysteine, aspartic

acid
Cinnabaris Mercuric sulfide, HgCl2

Gardeniae
Fructus

(4aS,6aR,6aS,6bR,8aR,10R,12aR,14bS)-10-Hydroxy-2,2,6a,6 b,9,9,12a-heptamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-
tetradecahydropicene-4a-carboxylic acid

Ammidin, sudan III, linoleic acid, oleanolic acid, beta-sitosterol, stigmasterol, oleic acid, mandenol, supraene, methyl
linoleate, methyl vaccinate, isoimperatorin

Exceparl M-OL, chrysin, ethyl oleate (NF), 5-hydroxy-7-methoxy-2-(3,4,5-trimethoxyphenyl)chromone, PANA(N-
Phenyl-1-naphthylamine), gardenoside_qt, quercetin, shanzhiside_qt, kaempferol

Margarita Aluminium, calcium carbonate, cuprum, iron, manganese, silicon, zinc, magnesium, strontium, alanine, aspartic acid,
leucine, serine, taurine, selenium, valine

Borneolum
Oleanolic acid, caryophyllene oxide, dipterocarpol, asiatic acid, bornyl acetate, beta-caryophyllene, borneol, isocembrol,

D-borneol, erythrodiol, beta-humulene
Oleanolic acid-28-O-beta-D-glucopyranoside, dryocrassin, camphor, elemicin, alphitolic acid

Realgar Realgar, as2s3, As4S4

Curcumae Radix

Furanodienon, linoleic acid, beta-sitosterol, sitosterol, dibutyl phthalate, oleic acid, calarene, copaene,
()-aromadendrene, aromadendrene oxide 2, alnusone

(1Ar,4aS,7R,7aR,7bR)-1,1,7-Trimethyl-4-methylidene decahydro-1h-cyclopropa(e)azulen-7-olTrans-1,7-diphenyl-1-
hepten-5-ol, Junipene, ()-ledene, (4aR,5R,8 R, 8aR)-5,8-dihydroxy-3,5,8a-trimethyl-6,7,8,9-tetrahydro-4ah-benzo[f]

benzofuran-4-one, curcumol, epicurzerenone, germacrone-4,5-epoxide, glechomanolide, furanodienone,
isospathulenol, patchoulene, 1-phenylnaphthalene, pyrocurzerenone, trans,trans-1,7-diphenyl-1,3-heptadien-5-ol,

zederone, bisdemethoxycurcumin, 1,7-diphenyl-6(E)-hepten-3one, calarenepoxide, caryophyllene oxide,
(1S,3aR,4R,8aS)-7-isopropyl-1,4-dimethyl- 2,3,3a,5,6,8a- hexahydroazulene-1,4-diol, Isocurcumenol, (1S,6R,7R)-4-

isopropylidene-1-methyl-7-(3-oxobutyl)norcaran-3-one, (5R,6 R)-5-isopropenyl-3,6-dimethyl-6-vinyl- 5,7-
dihydrobenzofuran-4-one, (-)-isoledene, gweicurculactone, curcumenol, (3S,3aS,8aR)-3-hydroxy-5-isopropylidene-3-
methyl-8-methylene-2,3a,4,8a- tetrahydro-1h-azulen-6-one, zedoarondiol, procurcumadiol, (3S,3aS,8aR)-3-hydroxy-
5-isopropylidene-3,8-dimethyl-2,3a,4,8a-tetrahydro- 1h-azulen-6-one, 3-octadecenoic acid, demethoxycurcumin
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that the subnetworks were mainly associated with inflam-
matory response, response to lipid, neuroapoptosis, and
development.

3.3. Construction of Active Ingredients-Targets Network.
As shown in Figure 5, we constructed a network of active
ingredients-targets using Cytoscape software (version 3.8.0).
,e active ingredients-targets network contained 310 nodes
(including 180 ingredients and 130 genes) and 2110 edges.
,e top 20 active ingredients were screened by topology
analysis (Table 4).

3.4. GO Enrichment Analysis. GO enrichment results in-
clude 296 BP terms, 99MF terms, and 92 CC terms. ,e key
items of BP mainly included response to oxidative stress,
inflammatory response, cellular response to lipid, and re-
sponse to nutrient levels. ,e main results of MF included
oxidoreductase activity, cytokine receptor binding, lipid

binding, and neurotransmitter receptor activity, and CC
mainly included neuronal cell body, dendritic tree, axon, and
postsynapse. We individually selected top 20 remarkably
enriched terms in BP, MF, and CC classification as presented
in Figure 6.

3.5. KEGG Pathway Enrichment Analysis and Ingredients-
Targets Pathway Network Construction. KEGG pathway
enrichment analysis may elaborate the mechanism of ANW
on ischemic stroke. 139 signal pathways were obtained based
on the 130 core targets. After removing pathways associated
with cancer and unrelated to disease, the main results of
KEGG pathways included the HIF-1 signaling pathway,
FoxO signaling pathway, chemokine signaling pathway,
fluid shear stress and atherosclerosis, and neurotrophin
signaling pathway. 20 significantly enriched pathways were
selected as shown in Figure 7. An ingredients-targets
pathway network was built involving pathways, targets, and
corresponding ingredients to further elucidate the molecular

3577 1386

Ischemic stroke targets

ANW targets

1005

Figure 2: Venn diagram of ANW and ischemic stroke common targets.

Figure 3: Protein-protein interaction network of core targets.
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Table. 2: ,e information of the core targets.

Gene Degree Betweenness centrality
IL-6 91 0.030325537
AKT1 81 0.018339264
CXCL12 73 0.018125697
MAPK3 68 0.009734912
CXCR4 66 0.015168905
PIK3CA 65 0.012205642
TNF 61 0.00919471
AGT 59 0.008882338
MMP9 53 0.006325729
IL1B 51 0.0066625
ALB 51 0.007447992
PPBP 45 0.003930831
PF4 42 0.002706756
BDNF 40 0.003798139
NOS3 39 0.003217693
TLR4 38 0.002216187
AGTR1 37 0.004279922
CREB1 33 0.0019083
F2 32 0.002232586
CASP3 31 0.000874129
APOB 29 0.002920764
SIRT1 28 0.000753076
APOE 25 0.001338523
VWF 25 0.001087882
AVP 22 0.000773649

cluster A

cluster C cluster D cluster E

cluster B

Figure 4: Subnetwork of targets PPI network.
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biological process of ANW for cerebral ischemic stroke
(Figure 8). A total of 292 nodes (163 ingredients, 109 targets,
and 20 pathways) and 2285 edges were obtained.

3.6. Docking Results Analysis. We selected the core targets,
including IL-6, AKT1, MAPK3, PIK3CA, and TNF for
molecular docking with the quercetin, β-estradiol, berberine,
wogonin, and β-sitosterol. ,e results suggested that the 5
key ingredients all had a strong affinity with IL-6, AKT1,
MAPK3, PIK3CA, and TNF, and the results of the docking
were visualized by PyMOL software (Table 5, Figure 9).

4. Discussion

Stroke is classified as ischemic or hemorrhagic. Cerebral
hemorrhage and cerebral ischemia have the possibility to
cause serious inflammatory response, cerebral edema, and
neurological deficits [19, 20]. ,e studies found that ANW
reduced brain edema and intracranial pressure in cerebral
ischemia and cerebral hemorrhage by regulating the ex-
pression of MMP-9 and AQP4 which were closely related to
the formation of brain edema and the disruption of the BBB
[21, 22]; in addition, it was able to exert neuroprotective
function by reducing the inflammatory response and

Table 3: ,e biological functions of subnetworks.

MCODE GO Description
A GO:0006954 Inflammatory response
A GO:0070098 Chemokine-mediated signaling pathway
A GO:0006874 Cellular calcium ion homeostasis
B GO:0070997 Neuron death
B GO:0050900 Leukocyte migration
B GO:0001568 Blood vessel development
C GO:0007169 Transmembrane receptor protein tyrosine kinase signaling pathway
C GO:0022407 Regulation of cell-cell adhesion
C GO:0061564 Axon development
D GO:1901652 Response to peptide
D GO:0071396 Cellular response to lipid
D GO:0002521 Leukocyte differentiation
E GO:0008277 Regulation of G protein-coupled receptor signaling pathway
E GO:0033674 Positive regulation of kinase activity
E GO:0051347 Positive regulation of transferase activity

Figure 5: ,e active ingredients-targets network. Green represents active ingredients, and red represents the potential targets.
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inhibiting oxidative stress and neurotoxicity in brain tissue
of cerebral ischemia and cerebral hemorrhage [23, 24]. At
present, the incidence of cerebral ischemia is far higher than
cerebral hemorrhage; therefore, the paper is focused on the

mechanism of Angong Niuhuang Wan in the treatment of
cerebral ischemia. Network analysis increases the under-
standing of multiple mechanisms of drug action. Systems
pharmacology may provide new avenues for drug discovery
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Figure 6: ,e GO enrichment analysis of 130 targets.

Table 4: List of core ingredients in the top 20.

Active components Herbs Degree Betweenness centrality
Quercetin Coptidis Rhizoma, Gardeniae Fructus 54 0.056874662
β-estradiol Moschus 51 0.078777286
Tyrosine Bubali Cornu 44 0.045643145
Berberine Coptidis Rhizoma 40 0.018811059
Wogonin Scutellariae Radix 39 0.021360805
Beta-sitosterol Scutellariae Radix, Gardeniae Fructus, Curcumae Radix 37 0.019391773
Baicalein Scutellariae Radix 36 0.016063119
Tetrandrine Coptidis Rhizoma 35 0.013666927
chrysin Gardeniae Fructus 34 0.013739355
Baicalin Scutellariae Radix 32 0.008324522
Acacetin Scutellariae Radix 31 0.013057
Oroxylin a Scutellariae Radix 31 0.022607
Kaempferol Gardeniae Fructus 31 0.009087
Demethoxycurcumin Curcumae Radix 30 0.014592
Stigmasterol Scutellariae Radix, Gardeniae Fructus 29 0.017506
Oleanolic acid Bovis Calculus, Gardeniae Fructus, Borneolum 28 0.008257
Serine Bubali Cornu, Moschus, Margarita 28 0.006694
Linoleic acid Scutellariae Radix, Gardeniae Fructus, Curcumae Radix 27 0.010942
Oleic acid Gardeniae Fructus, Curcumae Radix 26 0.012292
Ammidin Gardeniae Fructus 26 0.011124
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in complex diseases. ,us, network pharmacology may be
helpful in excavating the potential mechanism of ANW for
ischemic stroke.

,e results of pharmaceutical ingredient analyses and
molecular docking showed that the main ingredients
quercetin, β-estradiol, berberine, and β-sitosterol showed
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Figure 7: ,e KEGG enrichment analysis of 130 targets.

Figure 8: An ingredients-targets pathway network (green represents active ingredients, red represents potential targets, and blue represents
the pathway).
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strong binding activity to the IL-6, AKT1, MAPK3, PIK3CA
of the core targets. IL-6 is a pleiotropic cytokine that plays a
crucial role in host defense [25]. However, trans-signaling of
IL-6 induces vascular endothelial cells to express and release
the pro-inflammatory chemokineMCP-1, which is mediated
through the JAK/STAT3 and PI3K/AKTpathways [26]. ,e
studies found that administration of β-estradiol from
Moschus reversed neuronal damage by regulating the JAK-
STAT3 pathway and protected neurons from acidosis-

mediated neurotoxicity and ischemic cerebral injury, thus
promoting remodel and repair after brain injury [27, 28].
Liao et al. [29] demonstrated that β-sitosterol inhibited the
secretion of inflammatory factors such as TNF-α, IL-1β, IL-6
to suppress the inflammatory response. TNF is a versatile
pro-inflammatory cytokine involved in all stages of ischemic
stroke. ,e study confirmed that quercetin from Coptidis
Rhizoma and Gardeniae Fructus attenuated TNF-induced
inflammation by suppressing the NF-κB pathway [30].

Table 5: Docking results of core active ingredients with core targets (kcal/mol).

Ingredients IL-6 AKT1 MAPK3 PIK3CA TNF
Quercetin −5.68 −7.41 −6.39 −5.96 −6.39
β-Estradiol −6.18 −9.05 −8.44 −8.28 −7.28
Berberine −7.02 −8.69 −7.83 −8.8 −6.27
Wogonin −5.37 −7.82 −6.79 −7.4 −6.62
β-Sitosterol −6.54 −10.34 −8.54 −8.38 −7.65

(a) (b)

(c) (d)

(e)

Figure 9: (a) Actionmode of quercetin with target IL-6. (b) Actionmode of β-estradiol with target AKT1. (c) Actionmode of berberine with
target MAPK3. (d) Action mode of wogonin with target PIK3CA. (e) Action mode of β-sitosterol with target TNF.
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MAPK is involved in inflammatory and apoptotic processes
in cerebral ischemia-reperfusion injury. Studies had shown
that quercetin inhibited inflammation and regulated JNK
and ERK signaling pathways to produce antiapoptosis,
thereby improving ischemic brain injury [31, 32].

AKT1, as a threonine protein kinases, is an important
regulator of the AKT-mTOR signaling pathway that controls
the tempo of newborn neurons during adult neurogenesis.
PIK3CA is involved in the cell signaling of various growth
factors. Yan et al. [33] demonstrated that activation of the
PI3K/Akt/mTOR pathway inhibited oxidative stress-related
neuronal autophagy and exerted neuroprotective functions.
,e research showed that berberine can reduce the apoptosis
of striatum and mitochondrial through regulating PI3K/Akt
signaling pathway and reducing intracellular ROS levels to
exert neuroprotective effects [34, 35].

According to the results of KEGG enrichment analysis,
ANW is considered to affect important pathways that are
closely related to the pathogenesis of ischemic stroke, in-
cluding HIF-1 signaling pathway, FoxO signaling pathway,
chemokine signaling pathway, fluid shear stress and ath-
erosclerosis, and neurotrophin signaling pathway. ,e re-
sults of GO enrichment were also closely related to response
to oxidative stress, inflammatory response, cellular response
to lipid, and response to nutrient levels. Furthermore, the BP
analysis revealed that the subnetworks were mainly asso-
ciated with inflammatory response, response to lipid, neu-
roapoptosis, and development.

HIF-1α is a primary modulator of cellular and systemic
homeostatic reactions to hypoxia. Evidence showed that
HIF-1 facilitated the transcription of various prosurvival
proteins engaged in energy metabolism, angiogenesis, and
neurogenesis, exerting a neuroprotective effect against is-
chemic stroke in ischemic conditions [36]. Research showed
that estradiol facilitated neurogenesis in rats after stroke,
possibly via increasing HIF-1α andVEGF protein expression
[37]. ,e FoxO family of transcription factors is a critical
regulator of cellular stress responses and facilitated the
antioxidant defense of cells. Akt and p38MAPK are known
stress-responsive kinases targeted to FoxO and are involved
in the regulation of FoxO activity [38]. Zhang et al. [39]
found that regulation of PI3K/Akt/FoxO-3a signaling
pathway facilitated the proliferation of neural stem/pro-
genitor cells and reduced ischemia-reperfusion injury. ,e
inflammatory immune reaction needs leukocytes to be
recruited to the site of inflammation. Chemokines are
critical in protecting the host response by providing di-
rectional cues for cellular transport. Research confirmed that
ANWdownregulated the expression of chemokine receptors
CCR2, CXCR3, and cell adhesion molecules in the arterial
vasculature and alleviated the development of atheroscle-
rosis by suppressing inflammation [7].

Atherosclerosis is a major cause of stroke onset or re-
currence, and blood flow-induced shear stress has become
an essential characteristic of atherosclerosis. ,e fluid re-
sistance exerted on the vessel wall is mechanically translated
into biochemical signals that lead to alter vascular behavior.
,erefore, the maintenance of physiological laminar shear
stress is essential for normal vascular function [40].

Quercetin alleviates vascular calcification by suppressing
oxidative stress and mitochondrial division [41]. Moreover,
Fan et al. [42] stated that ANW suppressed the development
of atherosclerosis by regulating immune homeostasis and
suppressing chronic inflammation. Neurotrophins have
been proved to control survival, development, and function
of neurons in the central nervous system. Studies asserted
that quercetin and berberine alleviated neuronal apoptosis of
ischemic stroke in the rat by activating the BDNF-TrkB-
PI3K/Akt signaling pathway to increase the expression of
BDNF [34, 43]. ,is suggests a potential application of
neurotrophins in the therapy of ischemic stroke.

,is research based on a pharmacological network ex-
plored the potential mechanisms of ANW for the treatment of
ischemic stroke.,e findings highlighted the improvement of
the inflammatory response, immune defense, and neuro-
protection of ANW against ischemic stroke. Our results were
consistent with published studies that upregulation of HIF-1
signaling pathway, FoxO signaling pathway, and neuro-
trophin signaling pathway and downregulation of chemokine
signaling pathway had positive effects on cerebral ischemia
[42, 44–47]. In addition, we also provided some potential
targets for treating ischemic stroke, which would contribute
to the exploitation of new therapeutic strategies.

5. Conclusion

In conclusion, the bioinformatics and pharmacological re-
sults reveal that counteracting oxidative stress, suppressing
inflammation, inhibiting the development of AS, and even
protecting neurological function are critical pathways for
ANW in the treatment of ischemic stroke. ,ese results may
help to elucidate the mechanism of ANW on ischemic stroke
for experimental studies and clinical applications.
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