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Te survival rate of lung cancer patients remains low largely due to chemotherapy resistance during treatment, and cancer stem
cells (CSCs) may hold the key to targeting this resistance. Cisplatin is a chemotherapy drug commonly used in cancer treatment,
yet the mechanisms of intrinsic cisplatin resistance have not yet been determined because lung CSCs are hard to identify. In this
paper, we proposed a mechanism relating to the function of ursolic acid (UA), a new drug, in reversing the cisplatin resistance of
lung cancer cells regulated by CSCs. Human lung cancer cell line A549 was selected as the model cell and treated to become
a cisplatin-resistant lung cancer cell line (A549-CisR), which was less sensitive to cisplatin and showed an enhanced capability of
tumor sphere formation. Furthermore, in the A549-CisR cell line expression, levels of pluripotent stem cell transcription factors
Oct-4, Sox-2, and c-Myc were increased, and activation of the Jak2/Stat3 signaling pathway was promoted. When UA was applied
to the cisplatin-resistant cells, levels of the pluripotent stem cell transcription factors were restrained by the inhibition of the Jak2/
Stat3 signaling pathway, which reduced the enrichment of tumor stem cells, and in turn, reversed cisplatin resistance in lung
cancer cells. Hence, as a potential antitumor drug, UA may be able to inhibit the enrichment of the lung CSC population by
inhibiting the activation of the Jak2-Stat3 pathway and preventing the resistance of lung cancer cells to cisplatin.

1. Introduction

Lung cancer is the leading cause of cancer-related deaths
worldwide [1, 2] and is classifed into two main types:
nonsmall-cell lung cancer (NSCLC) and small-cell lung
cancer (SCLC). Histologically, NSCLC is further divided
into three subtypes: adenocarcinoma, squamous-cell carci-
noma, and large cell carcinoma [3]. Chemotherapy, radio-
therapy, surgery, and targeted therapy are the main methods
used to treat lung cancer [4–10]. At the terminal stage of lung
cancer, chemotherapy and targeted therapy play important

roles in disease management. Although the treatment
methods for lung cancer have improved over the years, the
fve-year survival rate of lung cancer patients remains low,
largely due to drug resistance prior to and during the course
of chemotherapy [11]. Te mechanism of chemotherapeutic
drug resistance in lung cancer remains unclear.

At present, accumulating evidence indicates that chemo-
drug resistance in lung cancer is relevant to the formation of
cancer stem cells (CSCs) [12–14]. Well-established evidence
shows that a unique subset of CSCs is distinct from the bulk
of tumor cells because of their ability to perpetuate the
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growth of a malignant population of cells indefnitely
[15–17]. In addition, CSCs exhibit drug resistance due to the
activation of antiapoptotic pathways [18]. Terefore, CSCs
are commonly found in chemo-resistant and metastatic
cancers, which correlate with poor prognoses and tumor
recurrences [12, 19–21].

Increasing evidence also indicates that ATP-binding
cassette subfamily G member 2 (ABCG2), which contrib-
utes to the drug resistance of cancer cells [22, 23], is
overexpressed in many tumor types [24]. Furthermore,
a study has shown that ABCG2 is not only associated with
drug resistance but also with a possible lung CSC marker,
CD133 [1]. CD133 is a well-documented CSC marker in
breast, colon, prostate, liver, and ovarian solid tumors [3],
and ABCG2 was found to be expressed in CD133-positive
CSCs. Te development and enrichment of CSCs may rely
on the orchestration of multiple critical transcription factors.
Pluripotent transcription factors, including octamer-
binding transcription factor 4 (Oct-4), sex-determining
region Y-box 2 (Sox-2), and c-Myc, contribute to the pro-
cess of transforming and reprogramming somatic cells into
an embryonic stem cell (ESC)-like state [25]. Using ABCG2,
CD133, and other transcription factors, we identifed the
CSCs derived from a lung cancer cell line.

Ursolic acid (UA) is a pentacyclic triterpenoid com-
pound which exists in the form of free acid or aglycone of
saponins [26–29]. It is known that UA may decrease the
proliferation of cancer cells and induce apoptosis by sup-
pressing the epidermal growth factor receptor (EGFR)/
MAPK pathway [30, 31], and it also suppresses cancer
metastasis via the integrin αVβ5/MMPs pathway [2, 31–38].
UA inhibits the proliferation and reverses drug resistance of
several CSCs, including ovarian cancer stem-like cells and
breast cancer stem-like cells [39, 40]. In addition, UA
hinders the angiogenesis, migration invasion, and tumor
sphere formation of lung cancer by binding EGFR, reducing
the level of phosphor-EGFR, and inhibiting the JAK/STA3
pathway [30, 41, 42]. EGFR mutation or overexpression are
the common oncogenic drivers in NSCLC [30], indicating
that by regulating the EGFR signaling pathway, UA exhibits
antitumor properties. UA was also reported to enhance the
therapeutic efects of oxaliplatin in colorectal cancer by
ROS-mediated inhibition of drug resistance [43]. However,
the exact mechanisms through which the anticancer activity
and reversal of multidrug resistance occur in NSCLC remain
unclear. In this study, we demonstrated that UA targets lung
CSCs through the Jak2/Stat3 signaling pathway.

2. Materials and Methods

2.1. Reagents. UA was purchased from Pureone Bio-
technology, (Shanghai, China). Fedratinib and cryptotan-
shinone were purchased from Selleck Chemicals (Shanghai,
China).

2.2. Cell Culture. Human lung adenocarcinoma cell line
A549 was obtained from American Type Culture Collection
(Rockville, MD, USA). Te cells were cultured in growth

medium (RPMI-1640 medium (Hyclone, Utah, USA) sup-
plemented with 15% fetal bovine serum (FBS; Hyclone,
USA), 100U/mL penicillin, and 100 μg/mL streptomycin
(Sigma-Aldrich, St. Louis, MO, USA)) at 37°C under a hu-
midifed 5%CO2 atmosphere.Mediumwas changed every 2-
3 days, and cells were passaged when they were 80–90%
confuent.

2.3. MTTAssay and Cell Sensitivity Assay. Cells were seeded
into 96-well plates at a density of 2×103 cells/well in growth
medium and exposed to indicate concentrations of cisplatin.
After a 24 h exposure period, the cells were washed twice
with PBS (Hyclone, Utah, USA) and 20 μL MTT reagents
(5mg/mL in PBS) were added to each well. Te plates were
incubated at 37°C for an additional 4 h. Te supernatant was
discarded, and the formazan crystals were dissolved in
DMSO (150 μL/well). Te optical density of the formazan
solution was measured using an Apollo LB912 photometer
(Berthold Technologies, Oak Ridge, TN, USA) at a wave-
length of 570 nm. Cytotoxic efects were expressed as IC50
(compound concentrations that produced 50% of cell
growth inhibition), which was calculated from curves
constructed by plotting cell survival (%) versus drug con-
centration (μM). Te reading values were converted to the
percentage of the control (percentage cell survival). Con-
centrations of treated complexes in medium during treat-
ment were verifed by fame atomic absorption
spectrophotometry.

2.4. Cisplatin-Resistance Induction. A549 cells were exposed
to cisplatin (Hansoh, Jiangsu, China) (0.1 μM–20 μM) over
72 h, after which MTT assay was used to obtain IC50 values.
Cisplatin-resistant cells (A549-CisR) were derived from the
parental A549 line by continuous exposure to cisplatin
(IC25) for up to four weeks.

2.5. Immunofuorescent Staining. Cells growing in four-well
culture slides (BD Falcon, Bedford, MA) were fxed in 4%
paraformaldehyde for 10min. For permeabilization, 0.1%
Triton X-100 was added to the cells for 10min, then, they
were incubated in 5% goat serum in PBS for 30min at RT to
block nonspecifc antibody binding. Next, the cells were
incubated with Sox-2 (Abcam, Cambridge, MA), Oct-4
(Abcam, Cambridge, MA), c-Myc (Abcam, Cambridge,
MA), CD133 (Proteintech, USA), and ABCG2 (Abcam,
Cambridge, MA) primary antibodies overnight at 4°C.
Secondary antibody staining was performed with either IgG/
TRITC goat antirabbit or IgG/TRITC goat antimouse an-
tibody at a 1 : 300 dilution for 2 h at room temperature.
Images were captured under a fuorescence microscope
(Zeiss Axiovert 200M).

2.6. Western Blot Assay. Total protein was extracted from
A549-CisR and parental cells. Briefy, the cells were lysed in
radioimmunoprecipitation assay (RIPA) bufer (10mM
Tris·HCl (pH 7.2), 1mM EDTA, 1% Triton X-100, 0.1% SDS,
0.1% sodium deoxycholate, and 100mMNaCl), 1x complete
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protease inhibitor cocktail (Roche Diagnostics GmbH,
Mannheim, Germany), and 1mM phenylmethylsulfonyl
fuoride (PMSF) (Solarbio, Beijing, China). Samples (30 μg)
were separated using sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred to a polyvinylidene fuoride (PVDF) membrane
(Millipore, Billerica, MA) using a transfer apparatus
according to the manufacturer’s instructions (Bio-Rad).
After incubation with 5% nonfat milk in Tris-bufered saline/
Tween 20 (TBST; 10mM Tris, pH 8.0, 150mM NaCl, 0.5%
Tween 20) for 60min, the membrane was washed once with
TBST, and target proteins were detected by incubation with
GAPDH goat polyclonal antibody at 4°C for 12 h. Te
membranes were then incubated with an HRP-conjugated
antirabbit immunoglobulin G (1 : 6,000 dilution; Sigma-
Aldrich) secondary antibody for 1 h. Between each antibody
incubation, the membranes were washed three times with
PBS-Tween®. Te protein bands were visualized using an
enhanced Chemiluminescence Western blot analysis system
(Pierce Biotechnology, Inc., Rockford, IL, USA), and
quantifed by densitometry using Quantity One Image
Analysis Software (Bio-Rad Laboratories).

2.7. Tumorsphere Formation Assay. A549-CisR and parental
cells were dissociated into single-cell suspensions, and
8,000 cells from each cell line were transferred to a 24-well
ultralow attachment well plate (Corning, USA). Cells were
cultured in growth medium supplemented with B27 (Gibco,
USA), N-2 (Gibco, USA), 20 ng/mL EGF (PeproTech, USA),
20 ng/mL IGF (PeproTech, USA), 10 ng/mL FGF-basic
(PeproTech, USA), and 5 g/mL heparin (Solarbio, Beijing,
China) in 5%CO2 at 37°C for two weeks, and themedia were
replaced twice a week. Te entire well was photographed
using inverted microscopy (Olympus CKX41). All images
were analyzed using Axio Vision software. Te total number
of spheres was counted, and sphere areas were manually
measured at diferent time points.

2.8. Statistical Analysis. Each experiment was performed at
least in triplicate. Data were presented as the mean-
± standard deviation. Te comparison between subgroups
was performed via one-way analysis of variance (ANOVA).
Te analyses were performed using SPSS version 16.0 (SPSS,
Inc., Chicago, IL, USA). For the MTT assay, the diferences
in IC50 between the groups were considered statistically
signifcant at p< 0.05.

3. Results

3.1.Parental andCisplatin-ResistantCell Lines. To determine
the IC50 value necessary to generate cisplatin-resistant cell
lines from parental cells, A549 cells were treated with a series
of concentrations of cisplatin (0.1–20 μM) for 72 h. Next, an
MTT assay was employed to observe the proliferation of
A549. A dose-dependent efect was clearly observed, and the
proliferation rate decreased as the dosage increased
(Figure 1(a)). Te cytotoxic activity of cisplatin was evalu-
ated by calculating the IC50 value based on the dose-response

curve. Te results revealed that the IC50 of A549 was 5 μM
(Figure 1(b)).

To establish the A549-CisR cell line, cells were treated
with IC25 concentrations for 14 d prior to the selection of
a cisplatin-resistant subline at the IC50 concentration. Fol-
lowing these two weeks, obvious morphological diferences
were observed between the parental cells and the A549-CisR
cells. Te A549-CisR cells were predominantly bigger, dis-
played a spindle shape, and were separated from one another
(Figure 1(c)). To determine whether changes in sensitivity to
cisplatin were present, IC50 values were re-evaluated and
deduced from the dose-response curves between A549 and
A549-CisR cell lines. A signifcant-fold increase was ob-
served in the concentration of cisplatin required to inhibit
cells by 50% in A549-CisR cells relative to their corre-
sponding parental cells (Figure 1(d)). Te A549-CisR cells
also seemed to grow more rapidly than parental cells, as
confrmed by cell growth experiments. Te parental
A549 cells grew relatively slowly whereas the A549-CisR cells
proliferated with cisplatin treatment at concentrations
ranging from 0.1 μM to 20 μM (Figure 1(d)).

3.2. CSC-Like Characteristics of A549-CisR Cells. Since
cancer cells that are resistant to chemotherapy may have
CSC characteristics [44], we tested whether A549-CisR cells
possessed properties of the CSC phenotype by examining
specifc CSC markers expressed on their surface. Te
transcripts of CD133 and ABCG2 were increased in A549-
cisplatin cells (Figure 2(a)). Western blot analysis was used
to determine the expression levels of CD133 and ATP-
binding cassette subfamily G member 2 (ABCG2) in the
A549-CisR group, where they were observed to be higher
compared to levels in the parental control cells (Figure 3(b)).
Tese data suggested that A549-CisR cells exhibited typical
CSC molecular properties with highly expressed CD133 and
ABCG2 levels.

Mammosphere formation assays were performed to
evaluate the sphere-forming ability of the cells. As shown in
Figure 2(c), A549-CisR cells formed a signifcantly larger
volume of spheres compared with cells in the A549 control
group, indicating that cisplatin treatment contributed to the
enhancement of the self-renewal capability of A549 cells. In
addition, western blot analysis was conducted to compare
the CSC markers on cell spheres. Te result demonstrated
that A549-CisR cells expressed higher levels of CD133 and
ABCG2 on the cell sphere compared with parental control
group levels (Figure 2(d)). Tese results indicated that
continuous stimulation of cisplatin at a low-dose induced
the enrichment of CSCs in A549 cells.

3.3. Pluripotent Transcription FactorsWere Elevated in A549-
CisR Cells. A high expression of the pluripotent transcrip-
tion factors Oct-4, Sox-2, and c-Myc have been reported in
CSCs, which may promote stem cell self-renewal and dif-
ferentiation [45–48]. Tose factors play crucial roles in
initiating and maintaining the stemness of CSCs. Western
blot and qPCR analyses were used to identify the expressions
of Oct-4, Sox-2, and c-Myc in A549-CisR cells. As shown in
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Figure 3(a), the transcript levels of Oct-4, Sox-2, and c-Myc
were increased in A549-CisR cells and A549-CisR spheres
when compared with levels in A549 control cells and control
spheres, respectively (Figures 3(a) and 3(c)). Moreover, the
protein levels of Oct-4, Sox-2, and c-Myc were increased in
A549-CisR cells and A549-CisR spheres, which was con-
sistent with the elevated levels of the transcripts (Figures 3(b)
and 3(d)).

In sum, these results supported the presence of a high
expression of pluripotent transcription factors in A549-CisR
cells. Te expression levels of Oct-4, Sox-2, and c-Myc were
increased in A549-CisR cells compared with levels in A549
control cells.

3.4. JAK2 and STAT3WereOverexpressed inCSCEnrichment
of Cisplatin-Resistant Cell Lines. Te Jak2/Stat3 pathway is
reported to be a key mediator for CSC functions in many
kinds of cancers [7, 49–52]. To investigate whether the
Jak2/Stat3 pathway was involved in CSC enrichment
induced by cisplatin, we used Western blot analysis to
reveal the expression and activation of Stat3 and Jak2 in
A549, A549-CisR, A549 spheroids, and A549-CisR
spheroids. Te phosphorylation of Stat3 and Jak2 was
clearly elevated in A549-CisR cells and A549-CisR
spheroids, whereas there were Figures 4(a) and 4(b),
suggesting that the activated Stat3 and Jak2 also

participated in the regulation of CSC formation induced
by cisplatin in lung cancer cells.

Next, the Stat3 inhibitor cryptotanshinone (Cry) was
used to verify whether Stat3 inactivation afected the in-
teraction between Stat3 and specifc CSC markers. To begin,
Cry-induced Stat3 inactivation and its efect on Oct-4, Sox-2,
and c-Myc in cisplatin-induced CSCs were investigated.
Western blot analysis revealed that the expressions of
CD133, ABCG2, Oct-4, Sox-2, and c-Myc were signifcantly
downregulated after treatment with Cry (Figure 4(c)).
Moreover, Cry-inhibited A549 had a noticeably weakened
ability to form mammospheres (Figure 4(e)). Tese data
further suggested that continuous cisplatin stimulation
promoted the enrichment of CSCs through the activation of
Stat3, which in turn increased the expression of pluripotency
transcriptional factors.

Fedratinib (Fed), a Jak2-selective inhibitor, was applied
to examine whether Jak2 inhibition afected the interaction
between Jak2 and specifc CSC markers, and Western blot
analysis was used to confrm the expression of CSC surface
markers. As shown in Figure 4(d), the expressions of CD133
and ABCG2 were remarkably downregulated due to the
inhibitory efect of Fed. Mammosphere formation was also
limited after Fed treatment (Figure 4(f )). In addition, the
phosphorylation of Stat3, as well as Oct-4, Sox-2, and c-Myc,
decreased signifcantly after Fed treatment, indicating that
Jak2 inhibition afected the interaction between p-Stat3 and
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Figure 1: Cisplatin inhibited proliferation of A549 in a dose-dependent manner. (a) A549 cells were treated with increasing concentrations
of cisplatin (0.1 μM–20 μM) for 72 h. Cell survival was measured usingMTTassay. (b) Dose-response curves were generated, fromwhich the
IC50 value was deduced. (c) A549 cells displayed epithelial morphology while A549-CisR exhibited fbroblastic morphology (original
magnifcation, ×200). (d) A549 and A549-CisR cell lines were treated with increasing concentrations of cisplatin for 72 h proliferation and
measured using MTT assay. Cisplatin inhibited the growth of both A549 and A549-CisR cells, and the inhibitory efect of A549-CisR was
greatly reduced when compared to the A549 cell line. ∗p< 0.05.
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Figure 2:Te stem phenotype of A549 and A549-CisR cells. (a) Relative mRNA expressions of CD133 and ABCG2 in A549 and A549-CisR
cell lines as determined by qPCR analysis. (b) Te protein levels of CD133 and ABCG2 in A549 and A549-CisR cell lines as determined by
Western blot analysis. (c) Spheroid formation efciencies of A549 and A549-CisR. Scale bar, 200 μm. (d) Relative mRNA expressions of
CD133 and ABCG2 in A549-derived spheroids and A549-CisR-derived spheroids as detected by qPCR analysis. (e) Te protein levels of
CD133 and ABCG2 in A549-derived spheroids and A549-CisR-derived spheroids as determined byWestern blot analysis. Bars indicate the
mean± SD (n≥ 2). ∗P< 0.05.
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Oct-4, Sox-2, and c-Myc in the process of cisplatin-induced
CSC enrichment (Figure 4(d)).

3.5. UA-Cisplatin Combination Increased Low-Dose
Cisplatin-Induced Inhibition. We hypothesized that UA
could alter cisplatin-induced inhibition. To investigate the
involvement of UA in the CisR-A549 cell line, an MTTassay
was used to quantitatively analyze the efect of UA on cell
proliferation 48 h after treatment on parental and CisR-
A549 cell lines. Treatment with UA doses of 10–40 μM
signifcantly inhibited cell viability in a concentration-
dependent manner, resulting in 30–60% inhibition in the
parental A549 cell line and a 20–50% inhibition in the A549-
CisR cell line, respectively (Figure 5(a)). Te cytotoxicity of
UA in the A549 cell line was also examined by MTT assay.
A549 cells were cultured in diferent concentrations of UA

for 48 h, after which the IC50 of UA was determined to be
about 30 μM (Figure 5(b)). Next, A549 cells were cultured in
medium with 2.5 μM cisplatin and either 10 μM UA or
40 μM UA. After four weeks, both A549-CisR/10 μM UA
and A549-CisR/40 μM UA displayed similar morphological
patterns compared to parental A549 cells: a marked re-
duction of cell-to-cell contact, lower spreading with fewer
formation of flopodia in both parental and A549-CisR cells,
and reduction of induced membrane blebbing (Figures 1(b)
and 5(c)). Tese results suggested that UA had the capability
to reverse morphological changes from A549-CisR cells to
A549 cells.

3.6. UA-Cisplatin Combination Downregulated CSCMarkers
and Inactivated the Jak2/STAT3 Pathway in the A549-CisR
Cell Line. To investigate the regulation mechanism of the
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Figure 3: Te pluripotent transcription factors of A549 and A549-CisR cells. (a) Relative mRNA expressions of Oct-4, Sox2, and c-Myc in
A549 and A549-CisR cell lines as determined by qPCR analysis. (b)Te protein levels of Oct-4, Sox2, and c-Myc in A549 and A549-CisR cell
lines as determined by Western blot analysis. (c) Relative mRNA expressions of Oct-4, Sox2, and c-Myc in A549-derived spheroids and
A549-CisR-derived spheroids as determined by qPCR analysis. (d) Te protein levels of Oct-4, Sox2, and c-Myc in A549-derived spheroids
and A549-CisR-derived spheroids as determined by Western blot analysis. Bars indicate the mean± SD (n≥ 2). ∗P < 0.05.
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sensibilization of UA on A549 cells to low-dose cisplatin, the
expressions of the CSC surface markers and pluripotency
transcription factors were detected by Western blot analysis.
Te expressions of CD133 and ABCG2 in the UA-treated
cisplatin-resistant cells were remarkably decreased com-
pared to expression levels in the A549-CisR cells
(Figures 6(a) and 6(b)) at both the mRNA and protein levels.

Te transcripts and protein levels of Oct-4, Sox-2, and c-Myc
also gradually decreased in UA-treated cisplatin-resistant
cells (Figures 6(d) and 6(e)), and these changes were en-
hanced with the elevation of UA concentration. Immuno-
fuorescence staining was used to confrm that A549 cells
exposed to cisplatin expressed higher cell surface CD133 and
ABCG2 levels and higher intracellular Oct-4, Sox-2, and c-
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Figure 4: JAK2 and STAT3 pathway mediated stemness in A549-CisR. (a) Western blot analysis of phosphorylated JAK2 and STAT3in
A549 and A549-CisR and (b) A549-derived spheroids and A549-CisR-derived spheroids. (c) Efects of cryptotanshinone and (d) fedratinib
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mean± SEM. Scale bar, 200 μm. ∗P< 0.05.
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Myc levels, which was consistent with the Western blot and
qPCR results (Figures 2(a), 2(b), 3(a), and 3(b)), while the
UA-cisplatin combination diminished the increase of those
CSC markers. Likewise, analysis of mammosphere forma-
tion illustrated that with UA exposure, the A549-CisR
sphere-forming ability was decreased (Figure 6(c)).

Finally, Western blot and qPCR analyses confrmed both
the phosphorylation of Jak2-Stat3 and the signifcant de-
crease of expression levels in the A549-CisR/40 μM UA
group (Figures 7(a) and 7(b)). Tese data further demon-
strated that UA induced the inhibition of Jak2-Stat3 and
reduced the expression of pluripotency transcriptional
factors, which in turn reduced the enrichment of CSCs.
Tese results revealed the capability of UA to reduce drug
resistance during lung cancer treatment.

4. Discussion

Previous studies have shown preclinical evidence supporting
the induction of acquired resistance by exposure to sublethal
concentrations of chemotherapeutics [53]. In the present
study, we demonstrated the ideal sublethal exposure to

cisplatin was about 2.5 μM, and after being cultured with
2.5 μM cisplatin for four weeks, A549-CisR cells were less
sensitive to cisplatin. Tis may be because subtherapeutic
microdoses of cisplatin or other chemotherapeutic agents
could trigger early changes in the tumor cells which even-
tually lead to the development of acquired resistance
[53, 54].

Various theories have been used to explain the phe-
nomenon of drug resistance caused by subtherapeutic doses
of cisplatin, and one is referred to as the CSC theory. It has
long been recognized that only a fraction of tumor cells is
tumorigenic [55–58]. Te CSC theory assumes that a subset
of cancer cells, namely, CSCs, share diferent characteristics
from other cells. Furthermore, the CSC’s own increasing
tumor-initiating capacity and metastasis-forming potential
[57] displays overlapping phenotypes with patients of ac-
quired chemotherapy resistance, such as local regional re-
currence distant relapse [59]. CSCs have become a major
target in cancer treatment because they are suggested to be
responsible for drug resistance, they have the capacity for
self-renewal, and they possess strong invasion and meta-
static abilities [45, 60, 61].
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CD133 is a well-documented CSC marker that repre-
sents a tumor-initiating cell subset in breast, colon, prostate,
liver, and ovarian solid tumors [46, 48]. It has been proven
that low-dose cisplatin treatment causes mild DNA damage
in cancer cell lines, which can be subsequently expanded to
the CD133+ CSC population [62]. It has also been proven
that several types of proteins are considered CSCs markers,
including Sox-2, Oct-4, ABCG2, CD133, and c-Myc [39, 63].
Tese markers are highly expressed on tumor tissue, espe-
cially CSCs, compared to amounts found on normal mature
tissue [47, 64–71]. Oct-4 has been reported to be closely
related to lung cancer [72] and was demonstrated to induce
CSC-like properties and enhance the epithelial-
mesenchymal transition, contributing to tumorigenesis

and metastasis in lung cancer cells [55]. Studies have also
shown that Oct-4 is involved in primary lung cancer de-
velopment and the process of metastasis [55]. Sox genes are
essential in the maintenance of stem cell status [55], and the
overexpression of Sox-2 has been found in samples of all
types of lung cancer. Oct-4 works synergistically with Sox-2
in regulating transcription, and they interact directly to
activate target gene transcription [36]. c-Myc, a transcrip-
tion factor, plays a signifcant role in cell transformation and
cell proliferation regulation, diferentiation, and apoptosis
[73, 74], and it has also been identifed to play a critical role
in promoting the metastasis of NSCLC [75]. Te ATP-
binding cassette (ABC) superfamily, of which ABCG2 is
a part, is a powerful resistance mechanism which greatly

A549-cis A549-cis/10 μM UA A549-cis/40 μM UA

(g)

Figure 6: UA reversed the stem phenotype and downregulated the pluripotent transcription factors of A549-CisR. (a) Relative mRNA
expressions of CD133 and ABCG2 in A549-CisR cell line with or without UA as determined by qPCR analysis. (b) Te protein levels of
CD133 and ABCG2 in A549-CisR cell line with or without UA as determined by Western blot analysis and (c) immunofuorescence. (d)
Relative mRNA expression of Oct-4, Sox2, and c-Myc in A549-CisR cell line with or without UA as determined by qPCR analysis. Te
protein level of Oct-4, Sox2, and c-Myc in A549-CisR cell line with or without UA as determined by (e) Western blot analysis and (f)
immunofuorescence. (g) Spheroid formation efciencies of A549-cis with or without UA treatment.
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A549-CisR cell line with or without UA as determined by qPCR analysis. (b)Te protein level of Jak2, pJak2, STAT3, and p-STAT3 in A549-
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contributes to the chemoresistance of CSCs [39, 63, 76]. Te
CSC markers discussed previously are implicated in drug
resistance to cancer treatments [55]. In our study, we
confrmed lung CSCs, which highly expressed CD133, were
able to be derived from low-dose cisplatin treatment. After
four weeks of culture with low doses of cisplatin, CSC
markers, including Oct-4, Sox-2, c-Myc, and ABCG2, had
higher expressions on A549-CisR cells compared with ex-
pression levels on the parental cells (Figure 8).

Signaling pathways are associated with stem cell prop-
erties such as diferentiation and the capacity for self-
renewal, and ofer potential targets for novel anticancer
strategies [77–81]. Stat3 is often constitutively active inmany
human cancer cells, including multiple myeloma, leukemia,
lymphoma, and solid tumors [82]. On activation, Stat3
undergoes phosphorylation-induced homodimerization
which leads to nuclear translocation, DNA binding, and
subsequent gene transcription [50]. Te phosphorylation is
mediated through the activation of Jak, a family of non-
receptor protein tyrosine kinases [81]. Although the in-
volvement of Jak-Stat signaling in normal lung stem cells is
not well known, Stat3 has been reported to contribute to the

self-renewal of lung CSCs [81]. In addition, Jak2 takes part in
the activation of Stat3 [83, 84].Tus, agents that suppress the
activation of Jak2 or Stat3 have potential in the prevention
and treatment of cancer. Our experiments revealed the
stimulation of a Jak2 or Stat3 inhibitor on the A549-CisR
cells, which indicated the inhibition of the activation of Jak2
and infuenced the activation of Stat3. When cultured with
the Jak2 inhibitor, the expressions of Sox-2, Oct-4, ABCG2,
CD133, c-Myc, and Stat3 were decreased, and similarly,
when cultured with the Stat3 inhibitor, the expressions of
Sox-2, Oct-4, ABCG2, CD133, and c-Myc were also reduced.

Studies have shown that CSCs can be identifed in tu-
mors by their mammosphere formation capacity [47]. CSCs
from epithelial organs can be expanded as sphere-like cel-
lular aggregates in a serum-free medium containing epi-
dermal growth factor and basic fbroblast growth factor
[85–87]. In the present study, the spheres of A549-CisR cells
were more numerous and larger than those of the parental
cells after being cultured with the previous medium,
meaning the ability to form spheres was increased after
a low-dose cisplatin induction, which illustrates a more
observable characteristic of CSCs. Furthermore, the
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Figure 8: A schematic of the molecular mechanism underlying UA anticancer activity in NSCLC cells. UA treatment inhibited the EGFR/
JAK2/STAT3 signaling pathway, leading to the diminishment of Sox-2, Oct-4, ABCG2, CD133, and C-Myc.
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expression of CSC markers on sphere cells, which were
cultured with low-dose cisplatin, was higher than that of the
parental cells.

UA has been shown to inhibit tumors by inducing ap-
optosis and cell cycle arrest, antimetastatic efects, anti-
angiogenesis, and the induction of cancer stem-like cells
[32, 36, 88, 89]. Te benefcial efects of UA can be mea-
surably increased by using synergistic approaches with other
chemo-preventive or therapeutic molecules [90]. However,
a precise mechanism detailing this efect remains to be
elucidated [58]. We demonstrated that UA, together with
cisplatin, inhibited growth and induced apoptosis of NSCLC
cells, and UA inhibited the expression of CSC markers and
the capability of sphere formation.

It has been reported that UA has the ability to modulate
a variety of signaling pathways associated with cancer
survival and progression [91, 92]. For example, UA reduced
the expression of Stat3 and its downstream targets to inhibit
the proliferation of prostate cancer and hepatocellular
carcinoma [88, 93–95]. Results also showed that UA sup-
pressed myeloma growth through Stat3-mediated inhibition
[51]. Moreover, the synergism of UA and cisplatin could
signifcantly induce cell apoptosis and enhance growth in-
hibition properties in human cervical cancer cells by sup-
pressing NF-κB p65 activation [96]. Our studies showed that
UA could work in coordination with cisplatin toward the
growth inhibition and CSC characteristics of A549 via the
Jak2/Stat3 signaling pathway.

Wide application of UA in the pharmaceutical feld is
limited due to its low solubility in water, leading to poor oral
drug absorption in the body, a short half-life, and low
bioavailability. Te enhanced permeability and retention
efect of Nano preparation promotes the high accumulation
of Nano formulations in tumor tissue when compared to
normal tissue [97], and reduces the side efects of chemo-
therapy drugs [23, 58, 98–102]. In this study, we have only
explored the efects of free UA in a cisplatin-resistant cell
line. In future research, the Nano formulations of UA will
need to be generated and applied in the cisplatin-resistant
system.

In summary, the direct evidence provided by our data
showed that a low concentration of cisplatin could induce
the enrichment of CSCs in A549 cells. Te activated Jak2-
Stat3-driven stemness mediated the resistance of A549 cells
to cisplatin. Notably, we share the frst reported data that UA
enhanced the sensibilization of cisplatin and reduced the
formation of CSCs in NSCLC by the Jak2-Stat3 signaling
pathway.

5. Conclusion

In lung cancer, the expression of pluripotent stem cell
transcription factors Oct-4, Sox-2, and c-Myc, which are
involved in the enrichment process of tumor stem cells
induced by cisplatin, is increased. EGFR mutation or
overexpression may be involved in cisplatin resistance.
Activation of the EGFR-Jak2-Stat3 signaling pathway pro-
motes the expression of Oct-4, Sox-2, and c-Myc. As a po-
tential antitumor drug, UA was able to inhibit the

enrichment of the lung CSC population by inhibiting the
activation of Jak2-Stat3, in turn reversing the resistance of
lung cancer cells to cisplatin.
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