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To simulate the evolution of groundwaters interacting with granulitic rocks of the lower crust exposed in the southern sector of the
Calabrian region, reaction path modeling was performed by means of the EQ3/6 software package version 8.0a. Low-salinity waters
issuing from granulite have Na–Cl to Na-HCO3 composition, about neutral pH (mean value of 6.7), outlet temperatures of 7.7 to
14.2°C, oxidant redox potentials from 100 to 182mV, and electrical conductivity from 72.1 to 196.9 μS/cm. The mineral
constituents of local granulite are plagioclase, amphibole, biotite, clinopyroxene, garnet, and orthopyroxene. Simulations were
carried at constant temperature of 11.8°C (which reproduces the average temperature of local groundwaters) fixing the fugacity
of CO2 at 10-2.4 bar (mean value), 10-2.0 bar (mean value +1 σ), and 10-2.8 bar (mean value -1 σ). The analytical contents of
major elements in groundwaters were satisfactorily reproduced by modeling and are fully consistent with the secondary
minerals produced by weathering processes affecting the same rocks.

1. Introduction

The chemical composition of natural water is derived from
many different sources of solutes, including aerosols and
gases from the atmosphere, erosion and weathering of soil
and rocks, and dissolution or precipitation reactions occur-
ring below the land surface. However, human activities play
an important and not negligible role on the chemical compo-
sition of natural waters. Some of the processes of dissolution
or precipitation of minerals can be closely evaluated by
means of principles of chemical equilibrium whereas other
processes are irreversible and require consideration of
reaction mechanisms and rates [1–4]. During water rock-
interaction, the major, minor, and trace constituents are
leached from primary minerals and enriched into local
groundwaters. At the same time, during the progressive
dissolution of the rocks, the aqueous solution may attain
saturation with respect to different secondary solid phases,
potentially acting as sinks of various elements and species
[5–9]. For these reasons, the fate of the chemical components

of interest during weathering of rocks is a rather complex
theme, whose understanding requires the use of reaction
path modeling [10–20]. In this work, the EQ3/6 software
package, version 8.0a [21], was used to study the weathering
processes that occurred on the granulite rocks of the Serra
Massif. Reaction path modeling was performed using some
needful information, comprising (i) relevant thermodynamic
and kinetic data, (ii) chemical composition and abundance
of each primary solid phase of interest, (iii) chemical com-
position of the initial aqueous solution, and (iv) chemical
composition of the aqueous solution during water–rock
interaction. Items (i) to (iii) are needed to implement reac-
tion path modeling, whereas item (iv) is used to evaluate
its validity, through comparison of computed results with
analytical data.

2. Geological Background

The Calabrian belt, known as the Calabrian-Peloritan Arc
[22], belongs to a fold belt linking the NW-SE Apennines
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structure with W-E-trending structures of Sicily and
Northern African Maghrebian regions [23].

On the basis of radiometric, petrological, and seismic
data [24], the Calabrian Peloritan Arc (CPA) has been con-
sidered to have a pre-Hercynian lower crustal segment thrust
into the middle crust during the Hercynian orogeny and
uplifted during the Europe-Apulia collision in Oligocene-
Early Miocene ([22, 25] and references therein).

CPA is divided into two main sectors: (i) the northern
sector, in which fall the Sila Massif and Coastal Chain, and
(ii) southern sector, in which fall Aspromonte and Serre
Massifs. The two sectors are separated by a strike-slip tec-
tonic line cross along the Catanzaro trough [26]. The study
areas fall in the Serre Massif which is made up mainly of
high- and low-grade metamorphic rocks that discontinu-
ously overlay the late Hercynian granitoids, granodiorites,
and tonalites. All the sequences are sometimes covered by
unmetamorphosed Cenozoic sedimentary deposits [27]. In
the studied area (Figure 1), granulite-facies crop up exten-
sively. These rocks can be associated with two distinct
tectonic units belonging to the Monte Gariglione and
Polia-Copanello complexes of the Sila Unit ([22, 28]; Bonardi
et al., 2001). The two lithostratigraphic units [29] consist in
(i) the lower unit mainly made up of metabasic rocks,
predominantly layered metagabbro, and meta-anorthosite
with small and subordinate ultramafic bodies and in (ii) the
upper unit made up of migmatitic aluminous paragneiss,

orthopyroxene-bearing felsic granulite, and marbles that
sometimes include quartz monzo-gabbronorite sills and/or
dikes. Surrounding the investigated area, the granulite-
facies rocks and phyllonitic rocks are separated by the
Curinga-Girifalco Line of Alpine age [29].

3. Methods

3.1. Water Sampling and Analytical Techniques. A total of 30
spring water samples and 4 local rainwaters were collected in
the study area (Figure 1) and analyzed for major compo-
nents. During the collection samples, unstable parameters,
such as temperature, pH, and oxidation-reduction potential
(Eh) as well as electrical conductivity (EC), were measured
in the field by using portable instruments. Total alkalinity
was also determined in the field by acidimetric titration
utilizing HCl 0.01N as titrating agent. Waters were filtered
in situ through a 0.4μm pore-size polycarbonate membrane
filter (Nuclepore). Samples for the determination of anions
were stored without further treatment. Samples for the deter-
mination of cations were acidified, by addition of suprapure
acid (1%HNO3) after filtration and stored. New polyethylene
bottles were used for all the samples. In the laboratory, the
concentrations of Na+, K+, Mg2+, Ca2+, F-, Cl-, SO4

2-, and
NO3

- were determined by high-performance liquid chroma-
tography (HPLC, Dionex DX 1100). All the chemical data
were determined in the laboratory of the Department of
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Figure 1: Simplified geological map of the study area also showing the location of spring water and rainwater samples.
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Biology, Ecology and Earth Sciences of the University of
Calabria, and are reported in Tables 1 and 2.

3.2. Chemical Characterization of Rocks and Minerals. The
mineralogical and chemical characteristics of the granulite
considered as a dissolving reactant in this work is based on
the study of Apollaro et al. [30] who collected and analyzed

several granulite samples from the lower crust exposed in
the southern sector of the Calabrian region.

Apollaro et al. [30] carried out modal analyses on
granulite-bearing plagioclase rock lithotypes (e.g., [31, 32])
to determine the volume percentages of main and accessory
minerals by optical microscopy of thin sections using a
mechanical stage. Granulite rocks have a coarse-grained

Table 1: Chemical-physical parameters of groundwater samples coming from the study.

Code
Temp

pH
Eh Cond Na K Ca Mg Alk Tot SO4 Cl NO3 SiO2 F

°C (mV) (μs/cm) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

1 13.30 6.8 123.0 193.9 14.6 1.9 11.2 4.7 60.5 8.1 20.0 16.5 20.3 0.1

2 12.80 6.0 120.0 92.8 8.3 1.1 2.5 1.4 12.8 6.8 11.8 1.2 10.8 0.1

3 12.50 6.7 100.0 118.5 10.4 0.9 4.0 2.9 23.6 5.3 16.1 19.3 0.1

4 12.40 6.7 102.0 100.7 8.5 0.9 3.1 2.8 15.1 6.2 13.0 15.0 0.1

5 12.10 6.5 107.0 103.6 10.0 1.1 3.6 1.9 22.8 4.3 15.1 14.8 0.1

6 12.10 6.0 128.0 105.9 9.3 1.1 4.0 2.1 18.1 12.1 12.4 1.1 11.8 0.0

7 11.80 6.7 107.0 147.4 11.2 1.2 6.0 2.7 19.9 8.5 19.7 0.6 15.8 0.1

8 12.20 6.8 121.0 125.0 12.0 1.0 5.0 2.2 37.2 3.6 12.9 25.3 0.1

9 12.60 6.2 133.0 106.1 9.3 1.1 3.6 2.0 20.5 4.3 15.1 4.1 24.5 0.1

10 12.40 6.3 117.0 92.6 8.5 0.9 2.6 1.6 11.9 7.4 13.3 0.7 13.8 0.1

11 12.30 6.3 121.0 123.2 9.8 1.1 5.4 3.6 33.5 5.0 14.5 3.3 17.0 0.1

12 12.50 6.8 110.0 133.8 9.6 0.8 6.6 3.5 39.7 3.0 9.2 2.4 22.3 0.1

13 11.40 7.2 103.0 140.3 10.9 1.1 7.9 3.1 38.9 6.0 13.6 1.1 28.5 0.1

14 11.40 6.3 131.0 109.3 10.7 1.1 3.1 1.5 13.8 4.3 18.5 1.9 18.5 0.1

15 11.30 6.3 138.0 72.1 7.1 0.4 1.8 0.8 7.4 4.0 11.0 0.2 13.5 0.0

16 11.20 6.5 129.0 86.5 8.2 0.6 2.4 1.0 11.3 4.3 12.0 0.7 15.8 0.0

17 10.90 6.9 118.0 126.8 10.9 1.0 5.3 2.0 27.9 3.1 14.9 0.4 37.5 0.1

18 11.90 7.1 110.0 112.1 9.0 0.8 4.2 2.5 26.7 5.9 11.9 2.2 53.5 0.1

19 10.30 7.2 108.0 110.4 8.9 0.9 4.8 2.3 21.1 4.0 14.9 0.0 41.8 0.1

20 9.60 6.4 138.0 92.1 8.1 1.0 2.5 1.7 17.3 3.4 12.7 1.0 26.5 0.1

21 11.50 8.2 111.0 177.6 9.0 2.2 9.5 7.1 41.7 17.4 11.2 35.3 0.1

22 9.60 7.3 100.0 101.4 9.7 0.8 4.1 2.2 21.6 5.0 13.3 3.9 23.8 0.1

23 12.40 6.3 105.0 92.8 7.7 0.9 4.6 1.9 27.5 5.0 9.1 0.9 22.5 0.1

24 7.70 6.8 135.0 116.5 9.0 0.9 6.2 2.4 32.2 4.5 13.2 3.0 31.3 0.1

25 10.40 6.2 140.0 86.6 7.4 0.7 2.9 1.3 14.5 4.4 11.3 0.5 11.3 0.0

26 11.70 7.1 100.0 127.1 9.6 0.9 5.4 2.9 35.4 3.1 8.1 1.3 13.2 0.1

27 11.80 7.1 102.0 196.9 13.5 1.5 8.6 5.0 35.7 3.4 28.5 0.6 16.5 0.1

28 13.30 6.4 168.0 108.2 8.6 0.9 2.6 1.5 15.8 4.1 12.8 11.6 0.1

29 13.10 6.3 182.0 97.3 8.1 0.7 2.5 1.4 15.9 4.8 10.8 11.3 0.1

30 14.20 6.6 158.0 115.3 9.5 0.9 3.0 2.0 21.0 3.8 14.3 14.7 0.1

Table 2: Chemical-physical parameters of rainwater samples coming from the study area.

pH
Ca Mg Na K HCO3 SO4 Cl SiO2

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

Rain 1 5.62 2.60 0.60 6.80 0.31 7.42 3.65 10.49 9.65

Rain 2 6.50 1.30 0.33 6.20 0.94 10.1 4.56 9.40 9.33

Rain 3 6.20 2.30 0.35 12.40 1.40 5.62 3.26 13.20 5.64

Rain 4 6.33 0.90 0.30 8.60 0.60 6.98 4.23 12.41 7.10
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texture and are plagioclase-rich (60%) with minor amounts
of amphibole (10%), biotite (10%), clinopyroxene (8%),
garnet (8%), and orthopyroxene (4%).

3.3. Geochemical Modeling. Reaction path modeling of
progressive dissolution of granulite in rainwater was carried
out by means of the software package EQ3/6, version 8.0a
[21], utilizing the thermodynamic database of Wolery and
Jove-Colon [33]. Three simulations were performed in
kinetic (time) mode, under a closed system with secondary
solid phases and an open system with CO2, adopting
different, constant PCO2 values (10

-2.0, 10-2.4, and 10-2.8 bar)
and at constant temperature of 11.8°C (which reproduces
the average temperature of local groundwaters).

Based on the mineralogical and petrographic data, the
dissolving granulite was considered to be constituted by
plagioclase, amphibole, biotite, clinopyroxene, garnet, and
orthopyroxene. Kinetic parameters and surface area were
specified for each primary (dissolving) solid phase because
reaction path modeling was performed in time mode
(Table 3). Kinetic parameters were obtained from the compi-
lation and critical review of available laboratory dissolution
experiments [34]. Thermodynamic data of some minerals
such as anorthite, K-feldspar, albite, annite, phlogopite, mus-
covite, 1.4 nm clinochlore, magnesite, calcite, rhodochrosite,
siderite, witherite, strontianite, and aragonite were evaluated
by a review work of Helgeson et al. [35]. Thermodynamic
data of clay minerals (Mg, Na, K, and Ca end members of
beidellite, saponite, and montmorillonite) and 1.4 nm cha-
mosite and celadonites were calculated by Wolery and Jove-
Colon [33] and references therein. Those of vermiculites such
as Me-Al vermiculites, Me-Fe vermiculites, Me-Mg-Al ver-
miculites, and Me-Mg-Fe vermiculites with Me=Na, K, Mg,
and Ca were evaluated by Apollaro et al. [36, 37]. From Perri
et al. [38], thermodynamic data of illite were obtained, and
those of ferrihydrites are from the work of Majzlan et al. [39].

Four chemical analyses of rainwaters collected in the
study area (Table 2) were used to compute the chemical
composition of the initial aqueous solution (mean value).

4. Water Chemistry

4.1. Water Classification. Low-salinity waters issuing from
granulite have about neutral pH (mean value of 6.7), outlet
temperatures of 7.7° to 14.2°C, oxidant redox potentials from
100 to 182mV, and electrical conductivity from 72.1 to
196.9μS/cm. Based on the triangular plots of major anions
and major cations (Figure 2), the waters show a Na-Cl to
Na-HCO3 composition.

In the binary diagram of pH vs. PCO2 (Figure 3(a)), most
of the waters are within the soil range (0.002–0.04 bar; [40]);
only 2 samples are positioned below the lower soil threshold.

Therefore, in the area, CO2 is prevailingly contributed by
biogenic shallow sources, such as the decay of organic matter
and root respiration occurring in the rhizosphere. The plot
of the calcite saturation index vs. pH (Figure 3(b)) shows
that undersaturation with calcite is a common condition
for all waters.

5. Interpretation of Reaction Path Modeling

Analytical data of the groundwaters from the granulitic
aquifer of the lower crust exposed in the southern sector
of the Calabrian region were compared with results of
reaction path modeling. For the waters of interest, alkalin-
ity is used as a reaction progress variable (Xi) instead of
pH for the following reasons [13]: (i) the progressive

Table 3: Geometrical surface areas and masses of solid phases
of interest.

Mineral
Vol Initial surface area Vm Mass
% (cm2) (cm3/mol) (mole)

Plagioclase 60 84000 100.11 13.98462

Amphibole 10 14000 139.2 1.67625

CPX 8 11200 100.25 1.86201

OPX 4 5600 138.665 0.67309

Garnet 8 11200 272.92 0.68396

Biotite 10 14000 152.27 1.53237
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Figure 2: Triangular plots of major anions andmajor cations for the
30 groundwater samples from the study area.
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dissolution of primary solid phases, driven by conversion
of aqueous CO2 to HCO3

- ion, causes a continuous
increase in alkalinity, (ii) precipitation of calcite, which
would cause a decrease in alkalinity, is limited (see Section
4.1), and (iii) the alkalinity consumption due to acidity
produced by oxidative dissolution of pyrite is negligible,
as indicated by the generally low SO4 concentrations.

Indeed, during water-rock interaction, due to the appear-
ance of different secondary mineral assemblages acting as
pH buffers (e.g., [41–44]), pH changes are quite irregular
and less continuous.

Figure 4 shows a close-to-linear relation between Xi
and alkalinity, with a good correspondence for all different
pCO2 values considered.

The simulations show a progressive dissolution domi-
nated by plagioclase followed by a minor amount of amphi-
bole, clinopyroxene, and biotite and negligible amounts
of orthopyroxene and garnet for all the investigated
pCO2 (Figure 5).

As already shown by Apollaro et al. [30], the differ-
ences in the type and amount, along the reaction path
of the secondary minerals (Figure 6), mainly reflect the
different dissolutions of primary minerals and, therefore,
a different contribution during the reaction, of chemical
elements.

The two main secondary solid phases forming during
granulite dissolution, appearing at alkalinity close to 5mg
HCO3/L, are kaolinite and vermiculites with minor amount
of hydroxides. Kaolinite, vermiculites, and hydroxides act
as sinks of Al, Si, and Fe released by primary dissolved
minerals. Carbon dioxide partial pressure has a significant
influence on the first appearance of product phases for all
these minerals except kaolinite. The lower the pCO2, the
earlier all the secondary phases begin to precipitate.

Consistently with the undersaturation with calcite, there
is no solid carbonate.

5.1. The Aqueous Solution. The theoretical path of granulite
dissolution, at constant pCO2 of 10

-2.0, 10-2.4, and 10-2.8 bar,
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Figure 3: (a) Correlation diagram of pH vs. PCO2 also showing the range of soil PCO2 [40] and the mean atmospheric PCO2 value.
(b) Correlation diagram of pH vs. calcite saturation index.

0 5E-005 0.0001 0.00015 0.0002 0.00025
Xi

0

20

40

60

80

100

A
lk

pCO2 = 10–2.0 bar

pCO2 = 10–2.4 bar

pCO2 = 10–2.8 bar

Figure 4: Plot of alkalinity vs. the reaction progress variable
showing the results of reaction path modeling for the dissolution
of granulite under different fCO2 values (see legend).

5Geofluids



indicates that the water-rock interaction is dominated by
dissolution of plagioclase, amphibole, and clinopyroxene
and much less from biotite, orthopyroxene, and garnet
(Figure 5). The concentration of aqueous Ca and Mg
(Figure 7) increases owing to dissolution of plagioclase,
amphibole, and clinopyroxene, and the amount of Ca and
Mg incorporated in precipitating secondary minerals is neg-
ligible. Variable pCO2 does not affect the Ca/HCO3 and
Mg/HCO3 ratio at the three pCO2 values, and there is a very

good agreement between reaction path modeling results and
the analytical data (Figure 7).

The binary plots of Na versus alkalinity and K versus
alkalinity (Figure 8) highlight that the dissolved Na and
K concentrations increase slightly through the whole sim-
ulation, since the amounts of Na and K contributed by
dissolution of plagioclase and biotite are minimal, and a
part of K and Na is incorporated in the vermiculites at
all pCO2 (Figure 6). As already shown by Apollaro
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Figure 5: Moles of destroyed solid reactants against alkalinity, showing the results of reaction path modeling for the dissolution of granulite:
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et al.,[13] Na and K versus alkalinity plots in low TDS
groundwaters are poorly informative because these two
alkali metals are probably controlled by varying contribu-
tions of atmospheric-marine salts rather than the
water-rock interaction.

The binary plots of SiO2 versus alkalinity (Figure 9)
highlight that the concentration of aqueous SiO2 increases
during the dissolution of granulite because all minerals
present in the rocks contain SiO2 and the amount of SiO2
incorporated in precipitating kaolinite and vermiculite is

subordinate. Similar to Ca and Mg, variable pCO2 does
not affect the SiO2/HCO3 ratio and there is a very good
agreement between analytical data and results of reaction
path modeling.

6. Conclusion

Geochemical prospecting carried out in the granulitic rocks
exposed in the southern sector of the Calabrian region
(Southern Italy) has allowed identification of several springs
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Figure 6: Moles of solid product phases against alkalinity, showing the results of reaction path modeling for the dissolution of granulite
(a) pCO2 of 10-2.0 bar, (b) pCO2 of 10-2.4 bar, (c) pCO2 of 10-2.8 bar.
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hosted in a very extensive shallow hydrogeological metamor-
phic complex. To evaluate the irreversible water-rock mass
exchanges occurring during the evolution of rainwaters to

groundwaters, a reaction path modeling in kinetic (time)
mode was performed, under a closed system with secondary
solid phases and an open system with CO2, adopting
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Figure 7: Plots of (a) Ca and (b) Mg vs. alkalinity showing the analytical data from groundwaters interacting with granulitic rocks of the lower
crust as well as the results of reaction path modeling for granulite dissolution under different pCO2 (see legend).
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Figure 8: Plots of (a) Na and (b) K vs. alkalinity showing the analytical data from groundwaters interacting with granulitic rocks of the lower
crust as well as the results of reaction path modeling for granulite dissolution under different pCO2 (see legend).
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different, constant pCO2 values (10
-2.0, 10-2.4, and 10-2.8 bar)

and at constant temperature of 11.8°C.
The secondary (product) solid phases that were allowed

to precipitate are kaolinite, vermiculite solid mixture,
and hydroxide solid mixture according to the general
understanding of chemical weathering and the results
obtained by Apollaro et al. [30] who studied the weathering
processes affecting the same rocks.

The results of reaction path modeling show that the
release of major dissolved constituents to shallow groundwa-
ters is mainly controlled by weathering of plagioclase accom-
panied by minor amounts of amphibole, clinopyroxene, and
biotite and negligible amounts of orthopyroxene and garnet.
Computed contents of key dissolved components (Ca, Mg,
Na, K, and SiO2) are comparable with analytical data,
although not all the details are reproduced, probably due to
insertion in the model of the average composition of primary
minerals, in spite of their nonnegligible chemical variations
and to the fact that some elements such as Na and K are
controlled by varying contributions of atmospheric-marine
salts rather than the water-rock interaction.

Since the frequent worldwide occurrence of this type of
rock, it can be said that this kind of research is of widespread
interest and these results can be transferred to other sites
where granulite rocks occur.
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