Research Article

The Petrogenesis of the Permian Podong Ultramafic Intrusion in the Tarim Craton, Western China: Constraints from C-He-Ne-Ar Isotopes

Mingjie Zhang,1 Pengyu Feng,1 Tong Li,1 Liwu Li,2 Juerong Fu,1 Peng Wang,3 Yuekun Wang,1 Zhongping Li,2 and Xiaodong Wang1

1Key Lab of Mineral Resources in Western China (Gansu), School of Earth Sciences, Lanzhou University, Lanzhou 730000, China
2Key Lab of Petroleum Resource, Gansu Province, Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou 730000, China
3Sixth Geological Unit, Xinjiang Bureau of Geology and Mineral Exploration, Hami 839000, China

Correspondence should be addressed to Mingjie Zhang; mjzhang@lzu.edu.cn

Received 31 March 2019; Revised 26 June 2019; Accepted 10 July 2019; Published 22 August 2019

1. Introduction

The Podong Permian ultramafic intrusion is only one ultramafic intrusion with massif Ni-Cu sulfide mineralization in the Pobei layered mafic-ultramafic complex, western China. It is obviously different in sulfide mineralization from the nearby coeval Poyi ultramafic intrusion with the largest disseminated Ni-Cu sulfide mineralization and mantle plume contribution (Zhang et al., 2017). The type and addition mechanism of the confirmed crustal contaminations and possible mantle plume involved in the intrusion formation require evidences from carbon and noble gas isotopic compositions. In the present study, we have measured C, He, Ne, and Ar isotopic compositions of volatiles from magmatic minerals in the Podong ultramafic intrusion. The results show that olivine, pyroxene, and plagioclase minerals in the Podong intrusion have variable δ13C of CO2 (-24.5‰ to -3.2‰). The CH4, C2H6, C3H8, and C4H10 hydrocarbon gases show normal or partial reversal distribution patterns of carbon isotope with carbon number and light δ13C1 value of CH4, indicating the hydrocarbon gases of biogenic origin. The δ13C of CO2 and CH4 suggested the magmatic volatile of the mantle mixed with the volatiles of thermogenic and crustal origins. Carbon and noble gas isotopes indicated that the Podong intrusion could have a different petrogenesis from the Poyi ultramafic intrusion. Two types of contaminated crustal materials can be identified as crustal fluids from subducted altered oceanic crust (AOC) in the lithospheric mantle source and a part of the siliceous crust. The carbon isotopes for different minerals show that magma spent some time crystallizing in a magma chamber during which assimilation of crustal material occurred. Subduction-devolatilization of altered oceanic crust could be the best mechanism that transported large proportion of ASF (air-saturated fluid) and crustal components into the mantle source. The mantle plume existing beneath the Poyi intrusion could provide less contribution of real materials of silicate and fluid components.
mainly of lherzolite, websterite, troctolite, gabbro, olivine gabbbronite, and norite, whereas the nearby coeval Poyi (No. 1) ultramaﬁc intrusion contains dunite, wehrlite, troctolite, olivine clinopyroxenite, and olivine gabbro [3, 4]. The Podong Ni-Cu mineralization occurs in gabbbronite (± olivine) with high Ni grade, whereas the Poyi intrusion in the west end of the Pobei complex hosts disseminated sulﬁde deposit in troctolite and peridotite ultramaﬁc rocks with low Ni grade [4].

The zircon U-Pb age of gabbbronite in the Podong intrusion is 270 ± 2 Ma [3] or 273.5 ± 2.9 Ma [4].

The Podong ultramaﬁc intrusion shows pronounced negative anomalies of Nb, Ta, Ti, Zr, and Hf high ﬁeld strength elements. The external ﬂuids and siliceous crustal assimilations may have triggered sulﬁde saturation in the mineralization of the Podong magma [3, 4]. The εNd(t) (-0.61–+1.92) and variable $^{87}{}^{187}$Sr/$^{86}{}^{186}$Sr (0.7055–0.7090) indicated that the Podong parental magma experienced 0–13 wt% contamination of the upper crust [3]. However, the 0–13 wt% upper crust suggested by Sr-Nd isotopes which cannot fully account for the negative Nb-Ta anomalies [3, 4]. Meanwhile, the sulfur isotopic compositions (0.82-2.02‰) cannot completely rule out the addition of external sulfur or ﬂuids in the Podong intrusion [3].

On the other hand, the carbon and noble gas isotopic compositions revealed the information of mantle plume in the Poyi ultramaﬁc intrusion [10], but indicated the different petrogenesis of No. 4 and 10 ultramaﬁc intrusions at the west end of the Pobei complex, which showed a mixture of different portion of lithospheric mantle, crust, and air [11]. Hence, the type of contaminated crustal materials and the contribution of the mantle plume in the formation of the Podong intrusion require constraints from C and He-Ne-Ar isotopic compositions. An integrated study of C and He-Ne-Ar isotopes of magmatic minerals in the Podong ultramaﬁc intrusion has been carried out to constrain the origins of volatiles, to reveal the type and mechanism of the contaminated crustal material, and to provide insight into the petrogenesis of the Podong ultramaﬁc intrusion.

2. Geological Background

The Podong ultramaﬁc intrusion is located at the center of the Pobei maﬁc-ultramaﬁc complex in the northeastern margin of the Tarim Craton, western China. The Pobei complex is associated temporally and spatially with the Cantoushan, Bijishan, Hongsishan, Xuanwoling, and Zhongposhan maﬁc-ultramaﬁc complexes in the Beishan Paleozoic rift (Figure 1). These coeval Paleozoic magmatisms were intruded extensively into the Proterozoic and Carboniferous strata and hosted the Ni-Cu-Fe mineralization [2, 5, 6, 15, 16].
The Pobei mafic-ultramafic complex is ~36 km in length and ~8 km in width on the surface (Figure 1). The downward extension of the intrusion exceeds 2400 m [10]. It is predominantly composed of an early-stage huge gabbroic intrusion intruded by more than 20 small sulfide-mineralized ultramafic-troctolitic intrusions, including Poyi (No. 1), Posan (No. 3), Posi (No. 4), and Poshi (No. 10) ultramafic intrusions [2, 5, 13]. The contacts between the ultramafic-troctolite intrusions and the gabbroic intrusion show clear intrusive relations. Country rocks are Proterozoic schists, gneiss, and gneissic granite (Figure 1).

The ultramafic intrusions are commonly composed of dunite, peridotite, pyroxenite, troctolite, and gabbro with significant cumulate rhythmic layers of magmatic minerals [2, 5, 6, 13, 15, 17]. The contacts among the ultramafic rocks are gradational. The formation ages of the ultramafic intrusions and the early-stage gabbro intrusion are significantly different (Figure 1). The zircon U-Pb isotope ages are 269.9 ± 1.7 Ma for the Poyi ultramafic intrusion [2], 275.8 ± 2.7 Ma for the Posan intrusion [9], and 284.0 ± 2.2 Ma for the Poshi intrusion [1]. The gabbro intrusion has a zircon U-Pb isotope age of 276.1 ± 1.9 Ma [2].

The Podong intrusion surface exposure is ~1400 m in length and 80–400 m in width, with a downward extension > 600 m (Figure 2) [3]. Immediate country rocks are Late Paleozoic gabbros (Figure 2). Many dolerite dykes are present in the south and east of the Podong intrusion and have a zircon U-Pb age of ~280.5 ± 2.0 Ma [2]. Drilling confirmed that Podong Ni-Cu sulfide mineralization formed an economic sulfide deposit as steeply dipping net-texture

Figure 2: Geological sketch map (a) and vertical cross sections at exploration line 7 (b) and line 9 (c) of the Podong ultramafic intrusion, China (after [4]).
sulfide lenses at lines 7 to 9; Ni-Cu sulfide mineralization is mostly associated with gabbronorite at the center of the intrusion. The sulfide minerals commonly interstitial in the silicate matrix are dominated by pyrrhotite with minor pentlandite and chalcopyrite [3, 4, 18].

3. Sampling and Analytical Methods

3.1. Samples. Twenty-three peridotite, pyroxenite, troctolite, olivine gabbronorite, and gabbro samples used in this study were sampled from three drill cores (ZK7-3, ZK9-3, and ZK11-3) at exploration lines 7, 9, and 11, respectively, in the Podong ultramafic intrusion. The locations of exploration lines with drilled holes are shown in Figure 2, and the representative exploration profiles and sample locations are shown in Figures 2(b) and 2(c). All the rock samples were cut into polished thin sections. The microscopic petrology is observed using both reflected- and transmitted-light microscopy.

The mineral compositions, texture, and other petrographical characteristics of the Podong ultramafic intrusion are reported in reference [3] and are similar to the Poyi intrusion [10]. Olivine, pyroxene, and plagioclase magmatic minerals have different types of fluid inclusions and trapped the volatiles in different stages of magmatism (Figure 3). Partial alteration of olivine by serpentine plus secondary magnetite and clinopyroxene by tremolite are observed in the Podong ultramafic intrusion. Plagioclase is generally pristine, with a negligible alteration in the samples.

3.2. Sample Preparation. All the rock samples were observed using petrography microscopy, and the least altered samples were selected for mineral separation. The rock samples were cut into small pieces. The selected rock pieces without weathered surface, visible secondary veins were crushed and sieved 0.2–0.3 mm in diameter portions. The mineral separates were first of all selected by magnetic separation and followed by hand-picking using a binocular microscope. The samples for carbon isotopic analysis were immersed in 0.3 M HCl for 24 h and then ultrasonically cleansed with analytical grade CH₂Cl₂, which can remove possible secondary organic components, after which they were rinsed with distilled water until the pH value of the rinsing water reached about 7. The samples for noble gas isotopic analysis were washed with 5% HNO₃ in an ultrasonic bath to remove possible secondary radiogenic components [19].

Figure 3: Microphotos of different types of fluid inclusions in the Podong ultramafic intrusion, China. (a) Primary fluid inclusions in pyroxene of sample PD73-1, plane polarized light (-); (b) primary fluid inclusions in olivine of sample PD73-2, plane polarized light (-); (c) secondary fluid inclusions in plagioclase of sample PD73-5, perpendicular polarized light (+). Olv = olivine; Pyx = pyroxene; Pl = plagioclase; Phl = phlogopite; Po = pyrrhotite.
The cleaned mineral separates were baked at 110°C prior to analysis [10, 20–22].

3.3. Analytical Methods

3.3.1. Carbon Isotope Analysis. Carbon isotopes of CO₂ and CH₄, C₂H₆, C₃H₈, and C₄H₁₀ hydrocarbon gases were analyzed by a GC-C-MS system using a stepwise heating extraction procedure. Carbon isotopes are expressed as δ¹³C (‰) = ([¹³C/¹²C]sample/[¹³C/¹²C]PDB − 1) × 10³ (where PDB (Pee Dee Belemnite) is the reference standard). A well-established online stepwise heating method was used for the extraction of volatiles from the magmatic mineral separates [21, 23, 24].

The gas extraction apparatus is composed of a U-shaped quartz tube, a cold trap, and an adsorption trap of molecular sieve; it is directly connected to a gas chromatography-combustion-mass spectrometry (GC-C-MS) system. The sample of ab. 1 g was loaded into the quartz tube and was degassed in helium carrier gas to remove potentially surface-adsorbed gases at 200°C for 4 h. The molecular sieve was activated at 410°C. The CO₂ and hydrocarbon gases were released for 1 h heating at each interval at 3 temperature intervals of 200–400°C, 400–700°C, and 700–1200°C based on volatile releasing patterns in the Pobei complex [10], and were adsorbed and collected using the molecular sieve tube with liquid nitrogen cooling. Then, the CO₂ and hydrocarbon gases were released and introduced into an Agilent 6890 GC-Delta Plus XP-MS system by helium carrier gas for carbon isotope analysis in the Key Lab of Petroleum Resources, CAS, Lanzhou, China. The extraction and analysis methods of volatiles were described in detail by [10, 21, 25]. The reported δ¹³C (relative to V-PDB) values have a relative error less than 1.01‰.

3.3.2. He, Ne, and Ar Isotope Analysis. The noble gas isotopes from olivine and pyroxene separates were measured using an online vacuum heating Noblesse mass spectrometer system in the Key Lab of Petroleum Resources, CAS, Lanzhou, China. The sample of about 500 mg was wrapped using aluminum foil and was loaded into the Mo crucible of the sample chamber. The aluminum foil and Mo crucible were preheated for >24 h at 600°C and 1700°C, respectively. The noble gas extraction line and the sample were heated at 150°C for >24 h prior to analysis to remove atmospheric or possibly solar-implanted noble gases adsorbed in the samples.

The volatiles in the sample were extracted by one-step heating at 1200°C. The active gases were removed firstly by using a spongy titanium furnace at 800°C. H₂ was removed by Zw-Al getters at room temperature. The purified noble gases were adsorbed in a cryogenic trap at a temperature of 8 K for 20 min. Then, He, Ne, and Ar gases were released for isotope analysis at the cryogenic trap temperature of 15 K, 50 K, and 100 K, respectively. The volume of He, Ne, and Ar was determined for calibration of their concentration. The air of Lanzhou city collected from the top of Gaolan Mountain in Lanzhou city, China was used as an internal standard, which was measured before each sample. No significant fluctuations were observed during sample analysis. Finally, the measured data were calculated after measuring the voltage ratio of relevant ions from both the standard sample and the sample obtained. The extraction and analysis methods of volatiles are described in detail by [10, 22, 26].

The effect of helium pressure on mass shift was examined and corrected. The mass interferences at m/z = 22 of (²⁰Ne)⁺ and (²²Ne)⁺ from (⁴⁰Ar)⁺ and (¹₂C²O₃)⁺ were corrected using CO₂⁺/CO₂⁻ = 0.004. The details of Ne and data correction procedures were described in detail in [22, 26, 27].

4. Results

4.1. The Carbon Isotopic Compositions. The carbon isotope compositions of CO₂ and CH₄, C₂H₆, C₃H₈, and C₄H₁₀ hydrocarbon gases from the olivine (Olv), pyroxene (Pyx), and plagioclase (Pl) separates in the Podong ultramafic intrusion are listed in Table 1.

The Podong magmatic minerals have variable δ¹³C values of CO₂ (-24.5‰ to -3.2‰). The δ¹³C_CO₂ range is similar to the Poyi ultramafic intrusion (-33.6‰–2.2‰) in the Pobei complex, China [10], the coeval Zhubu ultramafic intrusion (-22.8±7.1‰) in the Emeishan large igneous province (LIP) [28], and the coeval Noril’sk ultramafic intrusion (-25.3±19.0‰) in Siberia LIP [20] which were related to mantle plume. δ¹³C_CO₂ values increase from olivine (-24.5–4.5‰, av. -14.3‰), pyroxene (-22.9–3.2‰, av. -11.05‰), to plagioclase (-17.2–6.7‰, av. -11.7‰).

The carbon isotopes of hydrocarbon gases in the Podong intrusion vary in a large range. δ¹³C_CH₄ ranges from -42.6 to -18.4‰, δ¹³C_C₂H₆ = -34.0–18.7‰, δ¹³C_C₃H₈ = -38.4–7.9‰, and δ¹³C_C₄H₁₀ = -30.9–22.5‰. The hydrocarbon gases in most of the samples show normal distribution patterns of carbon isotopes with carbon number (Figure 4(a)), and some samples show (partial) reversal distribution patterns (Figure 4(b)), implying different origins of hydrocarbon gases.

4.2. The He, Ne, and Ar Isotopic Compositions. The He, Ne, and Ar abundances and isotopic compositions of the mineral separates in the Podong ultramafic intrusion are listed in Table 2. ³He/⁴He ratios are reported as the R/Ra ratios (i.e., measured ³He/⁴He normalized to the atmospheric ratio, Ra = 1.39 × 10⁻⁶). The analytical uncertainties for ³He/⁴He, ²⁰Ne/²²Ne, ²¹Ne/²²Ne, and ⁴⁰Ar/³⁶Ar ratios are listed as 1σ in Table 2.

The ³He abundances of olivine and pyroxene minerals in peridotite, pyroxenite, and gabbro in the Podong ultramafic intrusion range from 3.94 × 10⁻⁶ cm³·STP/g to 51.81 × 10⁻⁶ cm³·STP/g, av. 31.61 × 10⁻⁶ cm³·STP/g. The average value of ³He abundances in pyroxene (30.73 × 10⁻⁶ cm³·STP/g) is lower than that in olivine (av. 37.38 × 10⁻⁶ cm³·STP/g). Podong samples show higher ³He abundance than the Jinchuan mafic-ultramafic intrusion (0.01-2.56 × 10⁻⁶ cm³·STP/g) [22] and the Poyi ultramafic intrusion (0.03-1.09 × 10⁻⁶ cm³·STP/g) [10],
Table 1: The carbon isotopic compositions (‰, V-PDB) of the mineral separates in the Podong mafic-ultramafic intrusion, China.

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Rock</th>
<th>Mineral</th>
<th>T (°C)</th>
<th>δ¹³CCO₂</th>
<th>δ¹³CCH₄</th>
<th>δ¹³C₂H₆</th>
<th>δ¹³C₃H₈</th>
<th>δ¹³C₄H₁₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD73-2</td>
<td>Olivine</td>
<td>Olv</td>
<td>200-400</td>
<td>-24.5</td>
<td>-26.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gabbro</td>
<td></td>
<td>400-700</td>
<td>-15.7</td>
<td>-31.8</td>
<td>-24.8</td>
<td>-23.2</td>
<td>-29.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>700-1200</td>
<td>-11.3</td>
<td>-35.5</td>
<td>-23.7</td>
<td>-24.0</td>
<td>-30.9</td>
</tr>
<tr>
<td>PD73-3</td>
<td>Gabbro</td>
<td>Pyx</td>
<td>200-400</td>
<td>-10.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400-700</td>
<td>-15.2</td>
<td>-34.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>700-1200</td>
<td>-6.3</td>
<td>-38.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400-700</td>
<td>-10.6</td>
<td>-20.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>700-1200</td>
<td>-5.4</td>
<td>-27.9</td>
<td>-27.9</td>
<td>-38.4</td>
<td></td>
</tr>
<tr>
<td>PD73-5</td>
<td>Gabbro</td>
<td>Pl</td>
<td>200-400</td>
<td>-17.2</td>
<td>-29.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400-700</td>
<td>-11.2</td>
<td>-29.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>700-1200</td>
<td>-6.7</td>
<td>-18.9</td>
<td>-26.8</td>
<td>-7.0</td>
<td></td>
</tr>
<tr>
<td>PD73-7</td>
<td>Gabbro</td>
<td>Pyx</td>
<td>200-400</td>
<td>-20.4</td>
<td>-42.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400-700</td>
<td>-10.4</td>
<td>-40.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>700-1200</td>
<td>-9.2</td>
<td>-32.4</td>
<td>-24.6</td>
<td>-27.8</td>
<td>-22.5</td>
</tr>
<tr>
<td>PD93-3</td>
<td>Gabbro</td>
<td>Pyx</td>
<td>200-400</td>
<td>-8.5</td>
<td>-31.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400-700</td>
<td>-4.3</td>
<td>-22.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>700-1200</td>
<td>-6.8</td>
<td>-22.3</td>
<td>-18.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD93-4</td>
<td>Olivine</td>
<td>Olv</td>
<td>200-400</td>
<td>-22.7</td>
<td>-18.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gabbro</td>
<td></td>
<td>400-700</td>
<td>-7.1</td>
<td>-28.0</td>
<td>-21.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>700-1200</td>
<td>-4.5</td>
<td>-27.1</td>
<td>-23.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD93-5</td>
<td>Olivine</td>
<td>Pyx</td>
<td>200-400</td>
<td>-22.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gabbro</td>
<td></td>
<td>400-700</td>
<td>-20.3</td>
<td>-30.1</td>
<td>-29.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>700-1200</td>
<td>-16.0</td>
<td>-30.3</td>
<td>-20.8</td>
<td>-29.8</td>
<td></td>
</tr>
<tr>
<td>PD93-7</td>
<td>Olivine</td>
<td>Pyx</td>
<td>200-400</td>
<td>-14.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gabbro</td>
<td></td>
<td>400-700</td>
<td>-9.8</td>
<td>-35.8</td>
<td>-34</td>
<td>-28.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>700-1200</td>
<td>-10.7</td>
<td>-31.2</td>
<td>-22.5</td>
<td>-25.7</td>
<td></td>
</tr>
<tr>
<td>PD93-8</td>
<td>Gabbro</td>
<td>Pyx</td>
<td>200-400</td>
<td>-17.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400-700</td>
<td>-6.1</td>
<td>-36.4</td>
<td>-26.7</td>
<td>-27.9</td>
<td>-24.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>700-1200</td>
<td>-6.0</td>
<td>-31.5</td>
<td>-24.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD93-9</td>
<td>Gabbro</td>
<td>Pyx</td>
<td>200-400</td>
<td>-8.4</td>
<td></td>
<td>-26.0</td>
<td>-19.6</td>
<td>-26.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400-700</td>
<td>-3.6</td>
<td>-28.3</td>
<td>-23.6</td>
<td>-30.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>700-1200</td>
<td>-3.2</td>
<td>-27.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Olv: olivine; Pyx: pyroxene; Pl: plagioclase.

Figure 4: The normal (a) and partial reversal (b) carbon isotopic distribution patterns of CH₄, C₂H₆, C₃H₈, and C₄H₁₀ with carbon number in the Podong ultramafic intrusion, China.
China (Figure 5(a)). The Jinchuan mafic-ultramafic intrusion in western China hosts the third largest Ni-Cu sulfide deposit in the world and is of a much older formation age (8.31 Ma) [28] than the Podong intrusion. It should have more radiogenic 4He ingrowths produced by U and Th decay after crystallization.

The 3He/4He ratios of olivine and pyroxene minerals in the Podong ultramafic intrusion range from 0.29 to 1.25 Ra, av. 0.90 Ra. Olivine in the Podong intrusion shows lower 3He/4He ratios (0.60-1.03 Ra, av. 0.82 Ra) than pyroxene (0.29-1.25 Ra, av. 0.92 Ra). The 3He/4He ratios of Podong samples are higher than the value of continental crust [29, 30], lower than the values of the subcontinental lithospheric mantle (SCLM, 6.1 Ra) [31–33], arc-related volcanic fluids (5.37 ± 1.87 Ra) [34], typical MORB (8 ± 1 Ra) [35], and OIB (~8-50 Ra) [30, 36, 37]. Podong samples show lower 3He/4He ratios than the nearby coeval Poyi intrusion (1.13-6.15 Ra) [10] and coeval mafic-ultramafic intrusions in the Emeishan LIP (0.078-4.34 Ra, av. 0.78 Ra) [38] but have higher 3He/4He ratios than the Jinchuan mafic-ultramafic intrusion, China [22] (Figure 5(a)) with more radiogenic 4He ingrowths.

The 20Ne abundances of the Podong intrusion range from 0.17 to 60×10^{-6} cm3 STP/g with a mean of 9.09×10^{-6} cm3 STP/g. The 20Ne/22Ne ratios in the

<table>
<thead>
<tr>
<th>No.</th>
<th>Rock</th>
<th>Mineral</th>
<th>Contents (10$^{-6}$ cm3·STP/g)</th>
<th>4He</th>
<th>20Ne</th>
<th>20Ne/22Ne</th>
<th>21Ne/22Ne</th>
<th>40Ar/36Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD73-1</td>
<td>Pl lherzolite</td>
<td>Pyx</td>
<td>9.49</td>
<td>0.54</td>
<td>41.96</td>
<td>1.16</td>
<td>0.09</td>
<td>9.75</td>
</tr>
<tr>
<td>PD73-2</td>
<td>Olv gabbro</td>
<td>Olv</td>
<td>33.04</td>
<td>9.55</td>
<td>359.12</td>
<td>0.62</td>
<td>0.03</td>
<td>9.65</td>
</tr>
<tr>
<td>PD73-4</td>
<td>Gabbro</td>
<td>Pl</td>
<td>27.04</td>
<td>11.50</td>
<td>11.48</td>
<td>1.02</td>
<td>0.04</td>
<td>9.68</td>
</tr>
<tr>
<td>PD73-5</td>
<td>Gabbro</td>
<td>Pyx</td>
<td>25.06</td>
<td>18.95</td>
<td>682.78</td>
<td>0.90</td>
<td>0.05</td>
<td>9.59</td>
</tr>
<tr>
<td>PD73-6</td>
<td>Gabbro</td>
<td>Pyx</td>
<td>45.76</td>
<td>3.43</td>
<td>4.15</td>
<td>0.72</td>
<td>0.02</td>
<td>9.75</td>
</tr>
<tr>
<td>PD73-7</td>
<td>Gabbro</td>
<td>Pyx</td>
<td>29.05</td>
<td>4.60</td>
<td>96.68</td>
<td>1.24</td>
<td>0.03</td>
<td>9.49</td>
</tr>
<tr>
<td>PD93-1</td>
<td>Pl lherzolite</td>
<td>Pyx</td>
<td>19.75</td>
<td>0.19</td>
<td>22.34</td>
<td>0.41</td>
<td>0.04</td>
<td>0.31</td>
</tr>
<tr>
<td>PD93-2</td>
<td>Pl lherzolite</td>
<td>Pyx</td>
<td>3.94</td>
<td>0.17</td>
<td>15.25</td>
<td>1.25</td>
<td>0.15</td>
<td>10.66</td>
</tr>
<tr>
<td>PD93-3</td>
<td>Gabbro</td>
<td>Pyx</td>
<td>51.81</td>
<td>33.60</td>
<td>68.55</td>
<td>1.10</td>
<td>0.03</td>
<td>9.81</td>
</tr>
<tr>
<td>PD93-4</td>
<td>Olv gabbro</td>
<td>Olv</td>
<td>41.72</td>
<td>21.26</td>
<td>744.56</td>
<td>1.03</td>
<td>0.04</td>
<td>9.70</td>
</tr>
<tr>
<td>PD93-7</td>
<td>Gabbro</td>
<td>Olv</td>
<td>40.24</td>
<td>14.40</td>
<td>490.15</td>
<td>1.01</td>
<td>0.04</td>
<td>9.81</td>
</tr>
<tr>
<td>PD93-6</td>
<td>Gabbro</td>
<td>Pyx</td>
<td>35.07</td>
<td>11.92</td>
<td>451.08</td>
<td>0.84</td>
<td>0.04</td>
<td>9.68</td>
</tr>
<tr>
<td>PD93-8</td>
<td>Gabbro</td>
<td>Pyx</td>
<td>41.69</td>
<td>1.17</td>
<td>154.42</td>
<td>0.90</td>
<td>0.03</td>
<td>9.31</td>
</tr>
<tr>
<td>PD93-9</td>
<td>Gabbro</td>
<td>Pyx</td>
<td>27.83</td>
<td>4.83</td>
<td>185.88</td>
<td>0.98</td>
<td>0.03</td>
<td>9.31</td>
</tr>
<tr>
<td>PD113-1</td>
<td>Pyroxenite</td>
<td>Pyx</td>
<td>32.70</td>
<td>0.23</td>
<td>18.24</td>
<td>0.29</td>
<td>0.02</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Podong intrusion vary from 9.31 to 10.66, and the
$^{21}\text{Ne}/^{22}\text{Ne}$ ratios range from 0.027 to 0.035 (Figure 5(b)). The $^{20}\text{Ne}/^{22}\text{Ne}$ ratios are lower than the mantle (12.5), higher than the atmospheric value (9.8) [29, 39, 40]. The $^{21}\text{Ne}/^{22}\text{Ne}$ ratios are within the ranges of the atmosphere (0.029) and the solar value (0.033) and are lower than the crust (0.47) and the upper mantle (0.074) [39–43].

$^{20}\text{Ne}/^{22}\text{Ne}$ and $^{21}\text{Ne}/^{22}\text{Ne}$ are plotted around Air and show a trend to the L-K line (Figure 5(b)).

The ^{40}Ar abundances of the Podong intrusion range from 4.15 to 774.56 × 10$^{-6}$ cm3 · STP/g, which is much higher than the Jinchuan intrusion (0.04-21.70 × 10$^{-6}$ cm3 · STP/g) [22] and the Poyi intrusion (0.14-0.50 × 10$^{-6}$ cm3 · STP/g) [10]. The ^{40}Ar/^{36}Ar ratios in the Podong intrusion vary from 285.29 to 398.11, which are close to the atmosphere (295.5) and lower than the crust (1650–170000) and the mantle (295.5–8000) [36, 42, 44-46].

5. Discussion

5.1. The Origins of Magmatic Volatiles. The volatiles had occurred in the Poyi and Podong intrusions (Figure 3) and had played a key role in the processes of triggering sulfide saturation and mineralization [3, 4, 10, 11]. The CO$_2$ and CH$_4$ volatiles and noble gases released from the Podong samples could be derived from three potential sources: (1) primary volatiles in the Podong magmatism, including mantle-derived volatiles from partial melting of mantle source and contaminated crustal volatiles from subducted plate or country rocks, (2) in situ radiogenic noble gas ingrowths produced by U, Th, and K decay after mineral crystallization, and (3) secondary volatiles added by subsequent alteration or regional metamorphism and contaminated air and cosmogenic noble gases. The third source of volatiles absorbed on sample surface is likely negligible in the Podong samples due to fresh core samples with less alteration or metamorphism, as well as sample pretreatment before analysis [22, 41, 47]. Therefore, volatiles released from the Podong samples could be derived from magmatism and radiogenic noble gas ingrowths and can trace the origins of the volatiles.

The volatiles of different origins exhibit markedly different C, He, Ne, and Ar isotopic compositions, which can be used to reveal their sources [10, 21, 22, 28, 37, 48]. The $^{3}\text{He}/^{4}\text{He}$ and $^{40}\text{Ar}/^{36}\text{Ar}$ ratios in the Podong intrusion are mainly plotted around the atmosphere (ATM) with a trend toward continental crust and old oceanic crust endmembers [22, 29, 39, 49] (crust, Figure 6). The $^{20}\text{Ne}/^{22}\text{Ne}$ and $^{21}\text{Ne}/^{22}\text{Ne}$ ratios of most Podong samples were also plotted around the ATM and show a trend to the L-K line and MORB (i.e., upper mantle, DMM) (Figure 5(b)) [27, 29, 50].

Low $^{3}\text{He}/^{4}\text{He}$ ratios of Podong samples could be interpreted as in situ radiogenic ^{3}He ingrowths, crust and air-saturated fluid additions (Figures 5(a) and 6), because mantle-derived He signatures are often diluted by the addition of in situ radiogenic ^{4}He [43] and/or crustal He [29, 30]. The radiogenic ingrowths produced by U, Th, and K decay after crystallization can be deduced by calculation or be identified by the relationship between isotopic ratios and contents of He and Ar.

The amounts of radiogenic ^{4}He* contents in the Podong intrusion can be calculated using Graham et al.’s (1987) equation:

$$^{4}\text{He}^* = 2.80 \times 10^{-8} \cdot (4.35 + \text{Th/U}) \cdot t \cdot (\text{cm}^3 \cdot \text{STP/g}),$$

where t is the formation time in Myr, [U] is the uranium concentration in ppm, and Th/U is the atomic ratio of Th and U. Using average contents of whole rock Th (0.15, 0.24, and 0.11 ppm) and U (0.04, 0.08, and 0.06 ppm) for lherzolite, pyroxenite, and gabbro, respectively [3, 4], and the crystallization age of the gabbro (270 Ma) in the Podong intrusion [4], the estimated radiogenic ^{4}He* contents are 2.45, 4.45, and 2.80 × 10$^{-6}$ cm3 · STP/g for lherzolite, pyroxenite and gabbro, respectively.

The whole rock K contents (0.07, 0.08, and 0.14 wt%) for lherzolite, pyroxenite and gabbro [3, 4] were used to estimate the radiogenic ^{40}Ar contents as 0.11, 0.13 and 0.22 × 10$^{-6}$ cm3·STP/g in lherzolite, pyroxenite and gabbro, respectively.

The estimated radiogenic ^{4}He* and ^{40}Ar contents in the Podong ultramafic intrusion range from 2.45 to 4.45 × 10$^{-6}$ cm3 · STP/g and from 0.11 to 0.23 × 10$^{-6}$ cm3 · STP/g, respectively, and are much lower than the measured values (Table 2). There is no obvious correlation between ^{3}He* and ^{4}He contents, which can rule out significant radiogenic ^{4}He ingrowths in the Podong samples (Figure 5(a)).

The obvious correlation between ^{40}Ar/^{36}\text{Ar}$ ratios and ^{40}Ar contents indicated a certain amount of radiogenic ^{40}Ar* ingrowths (Figures 7(a) and 7(b)). ^{3}He/^{4}\text{He}$ and ^{40}Ar/^{36}\text{Ar}$ ratios after deducting radiogenic ^{4}He* and ^{40}Ar* contents show similar ranges to measured values and indicate a large proportion of air and crust origins (Figure 6).
The CO₂ and hydrocarbon gases from different origins show distinct carbon isotopic compositions and distribution patterns, which can be used to constrain various terrestrial reservoirs \([10, 21, 22, 37, 48, 51]\). The CO₂ and CH₄ released at 200-400°C were mainly released from secondary fluid inclusions and cracked primary fluid inclusions (Figure 3(b)), since the atmospheric component adsorbed in the samples is generally degassed at low temperature during step heating \([49]\).

\[\delta^{13}C_{CO_2} \text{ and } \delta^{13}C_{CH_4} \text{ values at 200-400°C are plotted into the range associated with methane oxidation and crustal origins (Figure 8(a)) and proved the origin of secondary processes, i.e., alteration.} \]

The CO₂ and hydrocarbon gases released at 400-700°C and 700-1200°C temperature intervals from the Podong samples were mainly released from the fluid inclusions trapped during the magmatic process (Figure 3(a)). \[\delta^{13}C_{CO_2} \text{ and } \delta^{13}C_{CH_4} \text{ are plotted into the ranges of the mantle, thermogenic, and crust-methane oxidation origins (Figure 8(a))} \]

\[\text{[10, 49, 52], indicating that the Podong volatiles originated from the mantle (i.e., abiogenic origin) [53, 54] and were mixed with thermogenic and crustal components. The mantle origin of volatiles is supported by (partial) reversal carbon isotopic distribution pattern of the hydrocarbon gases (Figure 4(b)), i.e., abiogenic hydrocarbon gases. It is also supported by sulfur isotopes of sulfide separates (0.82-2.02‰) [3], similar to typical mantle values (0 ± 2‰). The thermogenic origin refers to the gases formed by thermal decomposition of biogenic organic matter under high geological temperature and pressure conditions and implies a sedimentary source [48]. The crust and thermogenic origins are supported by a normal carbon isotopic distribution pattern (Figure 4(a)).} \]
The C, He, and Ar isotopes depict a mixture of different end-members for the Podong mafic-ultramafic rocks. The proportions of each end-member can be estimated by mass balance calculations of He and Ar isotopic mixing models. The air-saturated fluid (ASF) has low $^3\text{He}/^4\text{He}$ (1 Ra) and $^{40}\text{Ar}/^{36}\text{Ar}$ (298.6) [29, 55]; recycled oceanic crust has low $^3\text{He}/^4\text{He}$ (0.005 Ra) [30] and $^{40}\text{Ar}/^{36}\text{Ar}$ (350) [56]. The upper mantle (UM) or subcontinental lithospheric mantle (SCLM) has high $^3\text{He}/^4\text{He}$ (6.1 Ra) [31–33] and $^{40}\text{Ar}/^{36}\text{Ar}$ (2000) ratios [31]. The SCLM and crust are considered as the only two end-members of the He isotopic mixing model to calculate the proportions of SCLM and crust components due to very low He concentration and the shortest atmospheric residence time (1 to 10 million years) in the atmosphere [22]. Calculation shows 5–26%, av. 18% for SCLM, av. 10% for altered oceanic crust, and av. 72% for ASF, i.e., ATM, when radiogenic $^4\text{He}^*$ has been corrected from silicate mineral separates. The most ATM component could be volatiles from ASF.

5.2. The Additions of Air and Crustal Volatiles. The carbon and noble gas isotopic compositions indicated that a large proportion of air and crustal components had been mixed in the Podong mantle-derived magma (Figures 4(b) and 5(a)). The low $^3\text{He}/^4\text{He}$ ratios and calculated contents of radiogenic $^4\text{He}^*$ imply a large proportion of crustal origin in the Podong intrusion, which was supported by pronounced negative Nb-Ta anomalies and whole-rock Sr-Nd isotopes [4]. Large proportions of air are suggested by low $^{40}\text{Ar}/^{36}\text{Ar}$ and $^{21}\text{Ne}/^{22}\text{Ne}$ ratios in the Podong samples.

The type of assimilated crustal materials in the Podong intrusion was inferred as siliceous materials of the upper crust, pre-Permian sedimentary rocks in region [3], or crustal fluid [4]. The crust siliceous materials contaminated in the Podong magma can not only result in low $^3\text{He}/^4\text{He}$ ratios but also cause the rising of both $^{40}\text{Ar}/^{36}\text{Ar}$ and $^{21}\text{Ne}/^{22}\text{Ne}$ ratios. Meanwhile, a large proportion of siliceous materials (at least 0–13 wt% [3]) should cause a significant increase in the SiO$_2$ content of the magma system, i.e., more felsic rocks. All of those are not observed in the Podong intrusion (Figure 6). Therefore, large proportions of contaminated crust materials could be fluids, but siliceous materials, as shown above in the calculations of He and Ar isotopic mixing models.

The siliceous and fluids are two types of crustal materials that could exist in the Podong magma. Xue et al. argued that 0–13 wt% crustal contamination suggested by Sr-Nd isotopes in the Podong parental magma cannot fully account for the observed negative Nb-Ta anomalies in the rocks [3], which implied more crustal materials related to negative Nb-Ta anomalies. The fluids associated with the subducted plate could be the best candidate without siliceous materials.

The $^{13}\text{C}_\text{CO}_2$, $^3\text{He}/^4\text{He}$, and $^{40}\text{Ar}/^{36}\text{Ar}$ ratios of the Podong ultramafic intrusion are plotted around the air (ATM) with a trend to the altered oceanic crust (AOC, Figures 6 and 8(b)) and are different from the Podong ultramafic intrusion. The Podong magma should be formed by the partial melting of metasomatized lithospheric mantle material with higher ($^{87}\text{Sr}/^{86}\text{Sr}_i$) ratios than the coeval Podong mafic-ultramafic intrusion (see Figure 10a in reference [3]). The Podong ultramafic intrusion could have a magma source of lithospheric mantle, which was metasomatized by slab-derived fluids and/or subducted sediment-derived melt during the previous subduction processes [3]. The Podong magma should be formed by the partial melting of metasomatized lithospheric mantle material with higher ($^{87}\text{Sr}/^{86}\text{Sr}_i$) and lower $\varepsilon\text{Nd}(t)$ than Poyi intrusion and was contaminated by the crustal components in the magma chamber.

The $^{13}\text{C}_\text{CO}_2$, $^3\text{He}/^4\text{He}$, and $^{40}\text{Ar}/^{36}\text{Ar}$ ratios of the Podong ultramafic intrusion are plotted around the air (ATM) with a trend to the altered oceanic crust (AOC, Figures 6 and 8(b)) and are different from the Podong ultramafic intrusion. The Podong intrusion showed a trend to mantle plume with high $^3\text{He}/^4\text{He}$ and $^{40}\text{Ar}/^{36}\text{Ar}$ ratios [10] (Figure 8(b)). Mantle plume has a $^3\text{He}/^4\text{He}$ value of ~12.7 Ra [36] and $^{40}\text{Ar}/^{36}\text{Ar}$ of 1200 [50]. The high $^3\text{He}/^4\text{He}$ ratios of 8-50 Ra observed in many mantle
plumes are from an ancient reservoir created within the first 100 Myr of solar system histories [36, 59, 60]. The noble gas isotopes had not completely homogenized in the mantle due to low recycling efficiency in the mantle compared to the lithophile elements [59]. The primordial noble gases that supply mantle plumes are not distributed throughout the whole lower mantle or are localized in a region of the deep mantle [59]. The mantle plume existing beneath the Poyi intrusion could provide less contribution of real materials (e.g., of silicate and fluid components) in the Podong magma because the associated Podong mafic dykes show similar Sr-Nd isotope ranges to the coeval Poyi mafic-ultramafic intrusion [3], i.e., Podong magmatism could be a little older (270 ± 2 Ma [3] or 273.5 ± 2.9 Ma [4]) than the Poyi magma (269.9 ± 1.7 Ma [2]) associated mantle plume.

The ATM and crustal components added in the Podong magma could be derived from either subducted sedimentary organic matter in the mantle source or contaminations from country rocks in magma chambers or rising conduit. The subduction of the oceanic crust can effectively transport air and crust components into the mantle [7, 40, 50] because the recycled oceanic crust has low He contents, extremely low 3He/4He (<0.1 Ra) [61], and relatively low 40Ar/36Ar (350) [46]; meanwhile, subducted oceanic crust has variable δ^{13}C$_{\text{CO}_2}$ values ranging from -26‰ for type I organic-rich sediments of altered ocean crust (AOC) to 0‰ for marine carbonate [10, 62, 63].

The correlations between 3He/4He ratio vs. both 40Ar/36Ar and δ^{13}C$_{\text{CO}_2}$ indicated the contribution from altered oceanic crust (AOC, Figures 6 and 8) in the Podong intrusion [64, 65]. δ^{13}C$_2$ > δ^{13}C$_3$ in most samples demonstrate type I organic materials from oceanic sedimentary [48]. The δ^{13}C$_{\text{CO}_2}$ and δ^{13}C$_{\text{CH}_4}$ variations in the Podong volatiles are suggestive of methane oxidative activity (Figure 8(a)), which provides further evidence of a contribution from altered oceanic crust [10]. All the evidences make the subducted altered ocean crust (AOC) as probable end-member to explain the C-He-Ne-Ar isotopic compositions of the Podong samples (Figure 8(b)). This is consistent with a subduction-modified mantle source suggested by LIL rich and Nb and Ta depletion [4, 13] because subduction-related magma is commonly characterized by pronounced negative Nb-Ta anomalies.

The noble gases are stored in sedimentary organic matter with air-saturated fluid (ASF) and are highly soluble in hydrous minerals such as amphibole and phlogopite [44]. The fluid-related components from the altered oceanic crust with low K, U, and Th contents could be the favorite candidate for added air and crustal components, which were supported by contributions from water or other volatile phases in the Podong intrusion [3, 4]. The water and other fluids in the parental magma were indicated by common occurrence of hornblende and phlogopite in the intrusion (Figure 3(c)) [3]. Enhanced recycling of subducted altered oceanic components to the mantle source region can account for the relatively low ratios of He, Ne, and Ar isotopes.

6. Conclusions

The C and He-Ne-Ar isotopic data of the Podong ultramafic intrusion provide the evidence for air and crustal origins as well as petrogenesis.

(1) Most of the Podong magmatic minerals show normal carbon isotopic distribution patterns of CH$_4$, C$_2$H$_6$, C$_3$H$_8$, and C$_4$H$_{10}$ that indicated hydrocarbon gases of sedimentary origin. The variable δ^{13}C$_{\text{CO}_2}$ and light δ^{13}C$_{\text{CH}_4}$ suggested that the mantle-derived magmatic volatiles were mixed with thermogenic and crustal components

(2) Low 3He/4He, 21Ne/22Ne, and 40Ar/36Ar ratios indicated a large proportion of air and crustal components mixed in the Podong intrusion. Two types of contaminated crustal materials can be identified as crustal fluids from the altered oceanic crust and siliceous crust materials. The crustal materials of country rock were assimilated during magma crystallizing in the chamber.

(3) Carbon and noble gas isotopes indicated that the Podong intrusion could have a different petrogenesis from the nearby coeval Poyi ultramafic intrusion. Subducted oceanic plate added air and crustal fluids released from altered oceanic crust with a large proportion of ASF into the magma SCLM source. The mantle plume beneath the Poyi intrusion could contribute less real material of silicate and fluid components.

Data Availability

The manuscript is a self-contained data article; the entire data used to support the findings of this study are included within the article. If any additional information is required, this is available from the corresponding author upon request mjzhang@lzu.edu.cn.

Additional Points

Highlight. The Podong ultramafic intrusion hosts the only massif Ni-Cu sulfide mineralization in the Pobei layered mafic-ultramafic complex, China, and had different petrogenesis with fewer mantle plume contributions from the nearby coeval the Poyi intrusion related mantle plume (Zhang et al., Chem. Geol., 2017).

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This study was financially supported by NSF of China (41872075, 41572136, 41502143, 41473062, and 41372095),
STEP program (Grant no. 2019QZKK0704), Gansu Key Lab of Petrol. Res. (SZDKFJ20170603), and DPHEC (2012021110023). We thank Gang Deng, Jiawei Zhang, Zhaowei Zhang, Qingyan Tang, Jianping Li, Zhe Song, Chunhui Cao and Li Du for their assistance in fieldwork, sampling, and experimental works.

References

[54] B. Sherwood Lollar, G. Lacrampe-Coulombe, K. Voglesonger, T. C. Onstott, L. M. Pratt, and G. F. Slater, “Isotopic signatures of CH$_4$ and higher hydrocarbon gases from Precambrian Shield sites: A model for abiogenic polymerization of

