
Research Article
Analytical Solutions for Steady-State Multiwell Aquifer Tests in
Rectangular Aquifers by Using Double Fourier Transform: A Case
Study in the Ordos Plateau, China

Jun-Zhi Wang ,1 Xu-Sheng Wang,2 Qing-Bo Li ,1 and Wei-Feng Wan1

1Yellow River Engineering Consulting Co., Ltd. (YREC), Zhengzhou, 450003 Henan, China
2MOE Key Laboratory of Groundwater Circulation and Evolution, China University of Geosciences, Beijing 100083, China

Correspondence should be addressed to Jun-Zhi Wang; wangjz.cugb@gmail.com and Qing-Bo Li; liqb_yrec@163.com

Received 10 September 2019; Revised 15 December 2019; Accepted 24 January 2020; Published 26 February 2020

Academic Editor: Maurizio Barbieri

Copyright © 2020 Jun-Zhi Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Straightforward solutions have long been expected for the analysis of multiwell aquifer tests. In this paper, we derive series
analytical solutions of steady-state groundwater flow in a rectangular-shaped aquifer with pumping/injection wells for both
confined and unconfined conditions. Double Fourier Transform (DFT) technique is applied to deal with different combinations
of impermeable and specified head boundaries on sides. The obtained solutions are compact and concise in mathematics and
flexible in terms of well number, well locations, and pumping/injection rates. Hatoucaidang, a groundwater resource field in the
Ordos Plateau, Northwestern China, is introduced as a field case study, where a multiwell aquifer test was conducted. One of the
analytical solutions derived herein is used to estimate hydraulic conductivities by applying a direct calculation method and a
least square estimation method regarding observed versus calculated drawdowns. By comparing with nearby single-well
pumping tests, the reliability of the derived analytical solutions is proven. This study facilitates utilizing the multiwell aquifer
test to analyze the general behavior of groundwater movement in aquifer systems.

1. Introduction

Aquifer tests are widely adopted as a standard practice in
groundwater science and engineering, which can be used
not only to characterize the general behavior of groundwater
movement in aquifer systems but also to more precisely esti-
mate hydrogeological parameters of the study site [1–4]. In
many cases, a single-well aquifer test (i.e., one pumping/in-
jection well with/without observation wells) can basically
meet the demands of the conventional hydrogeological sur-
veys or research. However, with the development of society,
requirements of the accuracy in hydrogeological survey or
research are getting higher. As one of the most efficient and
promising methods, multiwell aquifer tests are increasingly
needed. A multiwell aquifer test is usually characterized by
a high rate of pumping/injection, a deep drawdown/uplift,
and long-term operations. Thus, it has obvious advantages
in solving such problems as identifying the source of ground-
water recharge and the principle direction of regional

groundwater flow, estimating hydrogeological parameters,
analyzing hydraulic connections between groundwater and
surface water, designing the framework for pump-and-treat,
etc.(e.g., [5–9]).

Compared with a single-well test, multiwell tests are
more likely to be influenced by the bounded hydrogeological
boundaries such as impervious rocks, fault zones, perennial
rivers, and coastlines [10, 11] and by the mutual interference
of multiple pumping/injection wells. By using the image well
approach and conformal mapping approach, theoretically,
analytical solutions of a single well can be transformed to fit
for the multiwell aquifer tests (e.g., [10, 12–15]). However,
as well number increases and pumping/injection wells are
arbitrarily located, in theory, an infinite number of image
wells would be required to ensure that the solution accuracy
and the application of corresponding analytical solutions
would become toughly complex [10, 16]. With the recent
advance of computer technology, numerical modeling serves
the survey and research of hydrogeology intensely, and the
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hydrogeological parameters of aquifers can be obtained by
inversion of a groundwater numerical model. The numerical
model is quite versatile for parameter estimation using a
calibration process, but it also has the disadvantages of
unknown numerical errors, nonuniqueness of identified
parameter values, and sometimes convergence issues. There-
fore, it is of theoretical and practical value to derive straight-
forward analytical solutions with compactness, conciseness,
and clear physical meanings for the problem.

As a standard and well-known practice, Double Fourier
Transform (DFT) has been widely used in the field of
hydrogeology [8, 17, 18]. In this study, we apply the DFT
method to derive series analytical solutions of steady-state
groundwater flow in rectangular aquifers in the presence
of multiple wells. The series analytical solutions can, respec-
tively, deal with five hydrogeological scenarios with differ-
ent combinations of impermeable and specified head
boundaries and can be conveniently used to estimate
hydraulic conductivities, which has been applied in the des-
ignation of a drinking groundwater resource field in the
Ordos Plateau, Northwestern China.

2. Methods

The issue of pumping in rectangular aquifers has been widely
studied both in the confined and unconfined aquifers
previously (e.g., [12, 16, 19–21]). However, these solutions
are mainly developed for a single well; effects of multiwell

pumping/injections on the groundwater flow were not
considered, especially for cases that the pumping/injection
wells are arbitrarily located and at different rates.

Here, we consider that multiple fully penetrated pum-
ping/injection wells are located within a confined (or
unconfined) aquifer of rectangular shape in horizontal, as
shown in Figure 1(a). The x and y axes are aligned along
the lower and left boundaries, respectively, with the origin
at the lower left corner. The length (in the x-direction) and
width (in the y-direction) of the aquifer are Lx and Ly , respec-
tively. A pumping/injection well is settled at an arbitrary
location with coordinates of ðxi, yiÞ and operates at any
reasonable constant rate of Qi. Groundwater flow is
assumed at the steady-state situation. For simplification,
surface recharge/discharge and regional groundwater flow
are neglected in this study.

Consistent with former studies [12, 16, 19–21], five
hydrogeological scenarios with different combinations of
impermeable and specified head boundaries are discussed.
Specifically, in scenario 1 (Figure 1(b)), the aquifer is
bounded by four specified head boundaries; in scenario 2
(Figure 1(c)), the aquifer is bounded by three specified head
boundaries and one impermeable boundary; in scenario 3
(Figure 1(d)), the aquifer is bounded by two parallel imper-
meable boundaries and two parallel specified head bound-
aries; in scenario 4 (Figure 1(e)), the aquifer is bounded by
two pairs of orthogonal impermeable and specified head
boundaries; in scenario 5 (Figure 1(f)), the aquifer is
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Figure 1: Schematic diagrams of hydrogeological scenarios with different combinations of impermeable and specified head boundaries.
(a) Pumping (or injection) well with coordinates ðxi, yiÞ is located within a rectangular aquifer. The aquifer has a length of Lx and
width of Ly and is fully bounded by (b) four specified head boundaries (represented by black straight lines); (c) one impermeable boundary
(represented by the shaded rectangle) and three specified head boundaries; (d) two parallel impermeable boundaries and two parallel
specified head boundaries; (e) two orthogonal impermeable boundaries and two orthogonal specified head boundaries; and (f) one specified
head boundary and three impermeable boundaries.
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bounded by one specified head boundary and three imper-
meable boundaries. The scenario that an aquifer fully
bounded by four impermeable boundaries is not considered,
because it will never lead to a steady-state condition [12].

2.1. Solutions for a Confined Aquifer. The governing equation
of drawdown induced by multiple wells in a confined aquifer
can be given as

∂
∂x

Tx
∂s
∂x

� �
+ ∂
∂y

Ty
∂s
∂y

� �
+ 〠

w

i=1
Qiδ x − xið Þδ y − yið Þ = 0,

ð1Þ

where Tx and Ty are the hydraulic transmissivities in the
x- and y-directions, respectively, s is the drawdown, w
gives the number of wells, Qi refers to the pumping rate
of the ith well, δ is the Dirac delta function, and xi and yi
stand for the coordinate of the ith well. Note that Qi < 0
stands for injection and Qi > 0 for pumping.

As the governing equation is a second-order linear partial
differential equation, the superposition principle can be used.
For each hydrogeological scenario, by using methods of
Separation of Variables (SOF) and DFT, the analytical
solution could be obtained. A detailed derivation process
can be found in the appendix.

In order to reveal intrinsic factors controlling the general
behaviors of groundwater flow, we introduce the following
dimensionless parameters:

�x = x
Lx

,

�y = y
Ly

,

xi =
xi
Lx

,

yi =
yi
Ly

,

α = Tx

Ty
= Kx

Ky
,

β =
Ly
Lx

,

ð2Þ

and the series multiwell analytical solutions could be
expressed as

s = 〠
w

i=1

Qi

4πTx
W xi, yi, �x, �y, α, βð Þ, ð3Þ

whereWðxi, yi, �x, �y, α, βÞ is the well function of xi, yi, �x, �y, α,
and β. Specifically, in scenario 1, the well function can be
expanded as

W xi, yi, �x, �y, α, βð Þ

= 16
π
〠
∞

n=1
〠
∞

m=1

sin nπxið Þ sin mπyið Þ
nβð Þ2 + α m/βð Þ2

· sin nπ�xð Þ sin mπ�yð Þ:

ð4Þ

In scenario 2, the well function becomes

W xi, yi, �x, �y, α, βð Þ

= 16
π
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∞
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〠
∞
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2

� �
:
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In scenario 3, the well function is given as

W xi, yi, �x, �y, α, βð Þ

= 16
π
〠
∞

n=1
〠
∞

m=0

1
δm

sin nπxið Þ cos mπyið Þ
nβð Þ2 + α m/βð Þ2

· sin nπ�xð Þ cos mπ�yð Þ,

ð6Þ

where δm = 2 for m = 0 and δm = 1 for m ≠ 0, respectively.
Note that m starts from zero in this situation. In scenario 4,
the well function becomes

W xi, yi, �x, �y, α, βð Þ

= 16
π
〠
∞

n=1
〠
∞

m=1

sin 2n − 1ð Þπxi/2ð Þ sin 2m − 1ð Þπyi/2ð Þ
2n − 1ð Þβ/2ð Þ2 + α 2m − 1ð Þ/ 2βð Þð Þ2

· sin 2n − 1ð Þπ�x
2

� �
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� �
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ð7Þ

In scenario 5, the well function is given as

W xi, yi, �x, �y, α, βð Þ

= 16
π
〠
∞

n=0
〠
∞

m=1

1
δn

cos nπxið Þ sin 2m − 1ð Þπyi/2ð Þ
nβð Þ2 + α 2m − 1ð Þ/ 2βð Þð Þ2

· cos nπ�xð Þ sin 2m − 1ð Þπ�y
2

� �
,

ð8Þ

where δn = 2 for n = 0 and δn = 1 for n ≠ 0, respectively. Note
that n starts from zero in this situation.

In the above solutions, the mathematical appearances
are generally the same. The difference mainly exists in
the well functions. Well functions essentially are the
expression of characteristic functions of the boundary
conditions. Therefore, these series analytical solutions
have consistency in the form of mathematics, and one
can be easily modified to another by using the corre-
sponding characteristic functions according to the bound-
ary conditions.
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It should be mentioned that Equations (3) and (4) for
scenario 1 are identical to those given by Yeo and Lee [8]
since they deal with the same boundary conditions. In sce-
nario 5, although it is a cross-sectional model in Wang
et al. [17] while a planar model in this paper, the bound-
ary conditions of the two are the same. Thus, the solution
of using Equations (3) and (8) is essentially identical to
that given by Wang et al. [17]. For the conditions with
impermeable boundaries in scenarios 3 and 4, Yeo and
Lee [8] recommended using the image well approach,
but we can give the straightforward solutions with Equa-
tions (6) and (7).

2.2. Solutions for an Unconfined Aquifer. The governing
equation of water table height in an unconfined aquifer in
the presence of multiple wells can be given as

∂
∂x

Kxh
∂h
∂x

� �
+ ∂
∂y

Kyh
∂h
∂y

� �
= 〠

w

i=1
Qiδ x − xið Þδ y − yið Þ,

ð9Þ

where Kx and Ky are the hydraulic conductivities in the x-
and y-directions and h is the water table height above the flat
aquifer bottom.
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Figure 2: (a) Location of the Ordos Plateau. (b) Location and (c) the Google image of the Hatoucaidang water resource field. In (c), the red
rectangle outlines the Hatoucaidang groundwater resource field and the blue dots resemble pumping and observation wells of the multiwell
aquifer test.
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Equation (9) is a second-order nonlinear partial differ-
ential equation but can be linearized easily by introducing
f = h2/2 as follows:

∂
∂x

Kx
∂f
∂x

� �
+ ∂
∂y

Ky
∂f
∂y

� �
= 〠

w

i=1
Qiδ x − xið Þδ y − yið Þ, ð10Þ

which is similar to that shown in Equation (1). Therefore,
by properly modifying the multiwell analytical solutions of
a confined aquifer, corresponding analytical solutions of
an unconfined aquifer can be obtained:

Δf = 1
2 h0

2 − h2
� �

= s
2h0 − sð Þ

2 = 〠
w

i=1

Qi

4πKx
W xi, yi, �x, �y, α, βð Þ,

ð11Þ

where h0 is the initial water table height (a constant), and
the well function Wðxi, yi, �x, �y, α, βÞ can be determined

with Equations (3)–(8) for different scenarios as that
defined for the study of a confined aquifer.

Note that Equation (11) is not a straightforward solution
for the drawdown s. But in a thick unconfined aquifer, it can
be generally simplified, when the change in the water table is
significantly small in comparison with the initial height, i.e.,
s≪ h0, we could use Δf ≈ h0s, which leads to

s ≈ 〠
w

i=1

Qi

4πKxh0
W xi, yi, �x, �y, α, βð Þ: ð12Þ

It should be noted that in this study, the transient behav-
iors of groundwater flow triggered by aquifer tests are not
considered. The steady-state solutions are fine, but it means
that valuable transient data sets collected during aquifer tests
cannot be used. Therefore, no data of storativity, specific
yield, or aquifer diffusivity can be obtained. These parameters
are vital for the management of groundwater resources, the
evaluation of surface water-groundwater interactions, and
the protection of the ecological environment [22–25]. Solu-
tions regarding transient behaviors should be considered in
the future.

3. A Field Case Study

3.1. Study Area. The Ordos Plateau is located in Northwest-
ern China (Figure 2(a)). Due to the arid to semiarid climate,
groundwater is the only useable water resource in most parts
[26]. In recent years, to satisfy the increasing demand for
drinking water, the local government began a project of
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Figure 3: Schematic diagram showing locations of pumping and observation wells. The colored contours give the distributions of drawdown
calculated by the multiwell analytical solution with the best fitting K value of 31.51m/d.

Table 1: Key record of the multiple pumping wells.

Pumping wells Well depth (m) Pumping rate (m3/h)

HT07 137 152.9

HT08 122 165.6

HT09 86 159.1

HT10 134 155.2

HD27 144 164.0

Average 124.6 159.4
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pumping groundwater from a site named Hatoucaidang with
a group of wells (Figure 2(b)).

The groundwater resource field in Hatoucaidang, with a
total area of about 1300 km2, is located in the hinterland of
the Mu Us Desert of the Ordos Plateau, southwest of the
Ordos city (Figure 2(c)). The landscape is characterized by
sparse vegetation and relatively flat topography. The target
exploitation aquifer is formed by the Quaternary sediments
where groundwater depth is generally less than 3m but the
depth of the aquifer bottom is larger than 100m. These Qua-
ternary sediments act as a porous unconfined aquifer with
lithology dominated by medium to fine sands. Underlying
this unconfined aquifer, the Cretaceous sandstones exist,
which have relatively very low permeability in comparison
with the Quaternary sediments. Thus, the top of sandstones
could be plausibly regarded as the impervious boundary of
the unconfined aquifer.

3.2. Multiwell Aquifer Test. In order to ascertain the potential
yield capacity of the groundwater resource field, a multiwell
aquifer test was scheduled. The test site was located on the
east side of the proposed groundwater resource field
(Figure 2(c)). There were 5 pumping wells (labeled as
HT07, HT08, HT09, HT10, and HD27) and 18 observation
wells included in the test. Locations of each well are shown
in Figure 3. The observation wells can be categorized into
two types: piezometric wells (labeled with Obs in front)
drilled in this test and observed with the automatic water
level gauge and local domestic wells (labeled with MJ in
front) formerly drilled by the residents and observed
manually. During the pumping process, flow rates of each
pumping well were kept constant. The multiwell aquifer test
lasts for about 20 days with a total abstraction of about
360000m3.

3.3. Application of the Analytical Solution. The hydraulic
conductivity of the aquifer could be estimated by the analyt-
ical solution derived in the former section. Assuming that the
Quaternary sediments are homogeneous and isotropic, we
have α = 1 and K = Kx = Ky. The average aquifer thickness
h0 is 124.6m according to the drilling logs of each pumping
well (Table 1). The rectangular calculating area is centered
at the pumping wells and extends to a certain distance in
the x- or y-direction. The extending distance is determined
by checking the drawdowns in the domestic observation
wells far away from the pumping site (Figure 3, Table 2).
Drawdown less than 0.1m is considered to be not induced
by pumping but caused by some natural processes such as
seasonal dynamics. Therefore, we assume a model with the
length Lx = 4500m and the width Ly = 3000m, i.e., β = 2/3
(Figure 3).

Here, we choose to use the analytical solution regar-
ding four specified head boundaries in an unconfined
aquifer (Equations (11) and (4)). In this case, the Quater-
nary unconfined aquifer is thick, and the change in water
table height is relatively small compared to the thickness
of the aquifer. Accordingly, we can use the simplified for-
mula, Equation (12), to directly calculate the hydraulic

conductivity as follows:

K ≈ 〠
w=5

i=1

Qi

4πh0s
W xi, yi, �x, �y, 1,

2
3

� �
, ð13Þ

where the drawdown s of a selected observation well

Table 2: Drawdowns of observation wells.

Observation
wells

Depth to
water table (m) Drawdown

(m)

Estimated
hydraulic

conductivity
(m/d)

Before
pumping

After
pumping

Obs1 0.92 2.71 1.79 28.36

Obs2 1.06 2.90 1.84 25.84

Obs4 2.32 4.04 1.72 28.56

Obs5 1.41 3.08 1.67 27.42

Obs7 0.41 0.98 0.57 44.30

Obs8 0.80 1.31 0.51 59.28

Obs9 0.87 1.67 0.80 45.69

Obs10 0.87 1.47 0.60 45.98

Obs11 1.09 1.62 0.53 38.63

MJ7 3.96 3.90 0.06 —

MJ11 3.38 3.26 0.12 —

MJ11a 2.04 1.93 0.11 —

MJ88a 2.22 2.16 0.06 —

MJ140 3.02 2.80 0.22 —

MJ141a 2.91 2.83 0.08 —

MJ143 1.72 1.32 0.40 —

MJ149 1.93 1.92 0.01 —

MJ157 2.90 2.78 0.12 —
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Figure 4: Observed versus calculated drawdowns of the observation
wells with the best fitting K value of 31.51m/d.
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should be observed at the location of ð�x, �yÞ. By putting the
flow rate of each pumping well Qi (Table 1), the coordi-
nates of each pumping well ðxi, yiÞ and a selected observa-
tion well ð�x, �yÞ, and the drawdown of a selected
observation well s (Figure 3, Table 2) into Equation (13),
the hydraulic conductivity can be estimated (the domestic
wells were not used because of uncertainty in observa-
tions). As shown in Table 2, this results in 9 different
hydraulic conductivities of K values in the range of
25.84~59.27m/d due to the nature of heterogeneity and
noise in the observations. To average, the K value is
38.23m/d.

Another way is introducing a single effective value of the
hydraulic conductivity in Equation (12) to calculate the
drawdown values for all the wells that reach a best fitness
with the observations. Here, the sum of squares of errors
(SSE) between the observed and calculated drawdowns is
chosen as the objective function so that the method of least
squares can be applied to determine the optimized value of
the hydraulic conductivity:

SSE = 〠
n=9

i=1
si½ �obs − si½ �cal
� �2, ð14Þ

where n is the number of observation wells, obs is the
abbreviation of observation, and cal is the abbreviation
of calculation. As a result, the best fitting hydraulic con-
ductivity of the K value is 31.51m/d. The spatial distribu-
tion of drawdown calculated by the multiwell analytical
solution with the best fitting K value of 31.51m/d is
shown in Figure 3. Due to the nature of heterogeneity,
the observed drawdowns are not exactly the same as the
calculated ones, but the two groups have similar values
with a maximum difference of 0.33m (Figure 4). Note that
the best fitting K value given by the least square method is
not significantly different from the average of K values by
a direct calculation method with respect to Equation (13)
(38.23m/d) but may be more reasonable because it
matches the observed drawdown in an integrated way.

4. Discussion

Before the multiwell aquifer test, 4 sets of single-well aqui-
fer tests were conducted nearby. Each single-well aquifer

test included one pumping well and three observation
wells. Key records of each set of the single-well aquifer test
are shown in (Table 3). The hydraulic conductivity was
inversely estimated with the Thiem equation of an uncon-
fined aquifer [3, 4] from the final steady-state drawdown,
leading to K values in the range of 13.13~27.71m/d with
the average point at 19.17m/d. Note that the hydraulic
conductivity seems to be underestimated by these single-
well aquifer tests in comparison with the results obtained
from the multiwell aquifer test. This underestimation
may be caused by the significantly limited influence zone
of a single pumping well. The multiwell aquifer test pro-
vided a more reasonable estimation of the hydraulic con-
ductivity in a larger influenced area.

5. Conclusions

Analytical solutions for multiwell aquifer tests are of impor-
tant theoretical significance and practical application values.
In this study, by using the Double Fourier Transform
(DFT), we derived series analytical solutions of steady-state
groundwater flow in a rectangular aquifer in the presence
of multiple pumping or injection wells. These series multi-
well analytical solutions can deal with five hydrological sce-
narios of different combinations of impermeable and
specified head boundaries in both the confined and uncon-
fined aquifers and have no restrictions on well number, well
locations, and pumping/injection rates. Moreover, they are
relatively compact and concise in mathematics compared to
previous studies using the image well approach.

Hatoucaidang, a groundwater resource field in the Ordos
Plateau, Northwestern China, is introduced as a field case
study. A multiwell aquifer test with 5 pumping wells and 9
observation wells was conducted. The analytical solution
regarding four specified head boundaries in an unconfined
aquifer (i.e., Equations (13)) is used to directly calculate
hydraulic conductivities for each selected observation well.
In addition, the least square method is introduced to esti-
mate a single effective value of the hydraulic conductivity
using the drawdown values for all the wells that reach
the best fitness with the observations. As a result, the
hydraulic conductivity by the least square method is simi-
lar to those by the direct calculation method. Moreover, 4
sets of single-well aquifer tests conducted nearby were
used to prove the reliability of the derived analytical

Table 3: Key results of single-well aquifer tests.

Wells
Aquifer

thickness (m)
Drawdown in

pumping wells (m)
Flow rate
(m3/h)

OBS I OBS II OBS III Hydraulic
conductivity (m/d)Drawdown in observations

wells (m)/distance to the
pumping well (m)

OBS I&II OBS II&III OBS I&III

HT12 118.06 7.35 161.92 1.02/5.19 0.53/24.82 0.31/64.42 16.84 22.79 18.69

HT17 96.74 4.78 175.33 1.17/4.35 0.83/10.16 0.30/43.29 17.45 19.04 18.42

HT26 91.05 16.63 162.52 1.58/5.15 0.93/24.89 0.60/64.67 16.76 19.90 17.82

HT28 98.66 8.52 173.10 1.07/4.92 0.60/33.79 0.25/66.89 27.71 13.13 21.47

Note: drawdown/distance Average: 19.17
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solutions. The hydraulic conductivities given by these
single-well aquifer tests are similar but smaller in compar-
ison with the results obtained from the multiwell aquifer
test, which may be due to the significantly limited influ-
ence zone of a single pumping well.

This study facilitates utilizing the multiwell aquifer test to
analyze the general behavior of groundwater movement in
aquifer systems.

Appendix

A Detailed Derivation of Multiwell
Analytical Solutions

In scenario 1 (Figure 1(b)), the mathematical model of the
multiwell aquifer test is

∂
∂x

Tx
∂s
∂x

� �
+ ∂
∂z

Ty
∂s
∂y

� �
+ 〠

w

i=1
Qiδ x − xið Þδ y − yið Þ = 0,

ðA:1Þ

s x, yð Þjx=0 = 0, ðA:2Þ

s x, yð Þjx=Lx = 0, ðA:3Þ

s x, yð Þjy=0 = 0, ðA:4Þ

s x, yð Þjy=Ly = 0: ðA:5Þ

According to the boundary conditions, for variable x, the
corresponding characteristic function is

Xn xð Þ = Cn sin
nπx
Lx

� �
; ðA:6aÞ

for variable y, the corresponding characteristic function is

Ym yð Þ =Dm sin mπy
Ly

 !
: ðA:6bÞ

According to the method of Separation of Variables
(SOF), drawdown s could be expressed by the above two
characteristic functions. Thus, the following Double Fourier
Transform (DFT) can be obtained:

F n,mð Þ =
ðLx
0

ðLy
0
s x, yð Þ sin nπx

Lx

� �
sin mπy

Ly

 !
dxdy:

ðA:7Þ

By applying DFT to each term of the governing equation,

we can obtain

ðLx
0

ðLy
0
Tx

∂2s
∂x2

sin nπx
Lx

� �
sin mπy

Ly

 !
dxdy = −Tx

nπ
Lx

� �2
F n,mð Þ,

ðA:8Þ

ðLx
0

ðLy
0
Ty

∂2s
∂y2

sin nπx
Lx

� �
sin mπy

Ly

 !
dxdy = −Ty

mπ

Ly

 !2

F n,mð Þ,

ðA:9Þ

ðLx
0

ðLy
0
〠
w

i=1
Qiδ x − xið Þδ y − yið Þ sin nπx

Lx

� �
sin mπy

Ly

 !
dxdy

= 〠
w

i=1
Qi sin

nπxi
Lx

� �
sin mπyi

Ly

 !
:

ðA:10Þ

Thus, the governing equation can be transformed into

−Tx
nπx
Lx

� �2
F n,mð Þ − Ty

mπy
Ly

 !2

F n,mð Þ

+ 〠
w

i=1
Qi sin

nπxi
Lx

� �
sin mπyi

Ly

 !
= 0:

ðA:11Þ

After rearrangement, we can obtain

F n,mð Þ = ∑w
i=1Qi sin nπxi/Lxð Þ sin mπyi/Ly

� �
Tx nπ/Lxð Þ2 + Ty mπ/Ly

� �2 : ðA:12Þ

Meanwhile, the inverse DFT of Equation (A.7) is

s x, yð Þ = 4
LxLy

〠
∞

m=1
〠
∞

n=1
F n,mð Þ sin nπx

Lx

� �
sin mπy

Ly

 !
:

ðA:13Þ

By putting Equation (A.12) into Equation (A.13),
drawdown s could be expressed as follows:

s x, yð Þ = 4
LxLy

〠
∞

n=1
〠
∞

m=1

∑w
i=1Qi sin nπxi/Lxð Þ sin mπyi/Ly

� �
Tx nπ/Lxð Þ2 + Ty mπ/Ly

� �2
� sin nπx

Lx

� �
sin mπy

Ly

 !
:

ðA:14Þ

By putting the following dimensionless parameters into
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Equation (A.14),

�x = x
Lx

,

�y = y
Ly

,

xi =
xi
Lx

,

yi =
yi
Ly

,

α = Tx

Ty
= Kx

Ky
,

β =
Ly
Lx

,

ðA:15Þ

the dimensionless solution of drawdown s is

s = 〠
w

i=1

Qi

4πTx
WCS1 xi, yi, �x, �y, α, βð Þ, ðA:16Þ

where WCS1ðxi, yi, �x, �y, α, βÞ is the well function and equals
to

16
π
〠
∞

n=1
〠
∞

m=1

sin nπxið Þ sin mπyið Þ
nβð Þ2 + α m/βð Þ2 sin nπ�xð Þ sin mπ�yð Þ,

ðA:17Þ

where subscript C denotes confined aquifer and S1
denotes scenario 1.

In scenario 2, the aquifer is bounded by one impermeable
and three specified head boundaries (Figure 1(c)). According
to the boundary conditions, for variable x, the corresponding
characteristic function is

Xn xð Þ = Cn sin
nπx
Lx

� �
; ðA:18aÞ

and for variable y, the corresponding characteristic function
is

Ym yð Þ =Dm sin 2m − 1ð Þπy
2Ly

 !
: ðA:18bÞ

Using the same techniques as scenario 1, the analytical
solution of drawdown s could be derived as

s = 〠
w

i=1

Qi

4πTx
WCS2 xi, yi, �x, �y, α, βð Þ, ðA:19Þ

where

WCS2 xi, yi, �x, �y, α, βð Þ

= 16
π
〠
∞

n=1
〠
∞

m=1

sin nπxið Þ sin 2m − 1ð Þπyi/2ð Þ
nβð Þ2 + α 2m − 1ð Þ/ 2βð Þð Þ2

· sin nπ�xð Þ sin 2m − 1ð Þπ�y
2

� �
,

ðA:20Þ

where subscript C denotes confined aquifer and S2 denotes
scenario 2.

In scenario 3, the aquifer is bounded by two parallel
impermeable boundaries in the x-direction and two parallel
specified head boundaries in the y-direction (Figure 1(d)).
According to the boundary conditions, for variable x, the cor-
responding characteristic function is

Xn xð Þ = Cn sin
nπx
Lx

� �
; ðA:21aÞ

and for variable y, the corresponding characteristic function
is

Ym yð Þ =Dm cos mπy
Ly

 !
: ðA:21bÞ

Using the same techniques as scenario 1, the analytical
solution of drawdown s could be derived as

s = 〠
w

i=1

Qi

4πTx
WCS3 xi, yi, �x, �y, α, βð Þ, ðA:22Þ

where

WCS3 xi, yi, �x, �y, α, βð Þ

= 16
π
〠
∞

n=1
〠
∞

m=0

1
δm

sin nπxið Þ cos mπyið Þ
nβð Þ2 + α m/βð Þ2

· sin nπ�xð Þ cos mπ�yð Þ, δm =
2, m = 0

1, m ≠ 0

(
,

ðA:23Þ

where subscript C denotes confined aquifer and S3
denotes scenario 3. Note that m starts from zero in
WCS3ðxi, yi, �x, �y, α, βÞ.

In scenario 4, the aquifer is bounded by two pairs of
orthotropic impermeable and orthotropic specified head
boundaries (Figure 1(e)). According to the boundary condi-
tions, for variable x, the corresponding characteristic func-
tion is

Xn xð Þ = Cn sin
2n − 1ð Þπx

2Lx

� �
; ðA:24aÞ
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and for variable y, the corresponding characteristic function is

Ym yð Þ =Dm sin 2m − 1ð Þπy
2Ly

 !
: ðA:24bÞ

Using the same techniques as scenario 1, the analytical
solution of drawdown s could be derived as

s = 〠
w

i=1

Qi

4πTx
WCS4 xi, yi, �x, �y, α, βð Þ, ðA:25Þ

where

WCS4 xi, yi, �x, �y, α, βð Þ

= 16
π
〠
∞

n=1
〠
∞

m=1

sin 2n − 1ð Þπxi/2ð Þ sin 2m − 1ð Þπyi/2ð Þ
2n − 1ð Þβ/2ð Þ2 + α 2m − 1ð Þ/ 2βð Þð Þ2

· sin 2n − 1ð Þπ�x
2

� �
sin 2m − 1ð Þπ�y

2

� �
,

ðA:26Þ

where subscript C denotes confined aquifer and S4 denotes
scenario 4.

In scenario 5, the aquifer is bounded by one specified
head boundary and three impermeable boundaries
(Figure 1(f)). According to the boundary conditions, for var-
iable x, the corresponding characteristic function is

Xn xð Þ = Cn cos
mπx
Lx

� �
; ðA:27aÞ

and for variable y, the corresponding characteristic function
is

Ym yð Þ =Dm sin 2m − 1ð Þπy
2Ly

 !
: ðA:27bÞ

Using the same techniques as scenario 1, the analytical
solution of drawdown s could be derived as

s = 〠
w

i=1

Qi

4πTx
WCS5 xi, yi, �x, �y, α, βð Þ, ðA:28Þ

where

WCS5 xi, yi, �x, �y, α, βð Þ

= 16
π
〠
∞

n=0
〠
∞

m=1

1
δn

cos nπxið Þ sin 2m − 1ð Þπyi/2ð Þ
nβð Þ2 + α 2m − 1ð Þ/ 2βð Þð Þ2

· cos nπ�xð Þ sin 2m − 1ð Þπ�y
2

� �
,  δn =

2, n = 0

1, n ≠ 0

(

ðA:29Þ

where subscript C denotes confined aquifer and S5

denotes scenario 5. Note that n starts from zero in
WCS5ðxi, yi, �x, �y, α, βÞ.

In the above solutions, the mathematical appearances are
generally the same. The difference mainly exists in the well
functions. Well functions essentially are the expression of
characteristic functions of the boundary conditions. There-
fore, these series analytical solutions can be expressed in the
general form

s = 〠
w

i=1

Qi

4πTx
W xi, yi, �x, �y, α, βð Þ, ðA:30Þ

whereWðxi, yi, �x, �y, α, βÞ is the well function as a function of
different boundary combinations.
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