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Supplementary Material 1: Background 

 

 

The need for reliable groundwater sampling procedures and chemical analyses has been internationally 

recognised for years. The USGS (United States Geological Survey) was one of the first institutions in 

the 1970s to publish rigurous sampling and analytical protocols and procedures related to studies of 

environmental groundwater contamination ([1], although the first edition was published in 1959; [2, 

3]). Since then, and together with USEPA (United States Environmental Protection Agency), more 

detailed descriptions, proposals and manuals of sampling procedures, devices, techniques, etc. in 

different host rocks, have been reported in various publications by these two organisations [4-14]. 

Along similar lines, other countries such as Australia and South Africa have recently published 

guidelines for groundwater sampling [15, 16] which are based on previous experience developed since 

1997, involving drilling, sampling, analytical methodologies and quality assessment [17-20]. 

There are many other domains in which the deep drilling and the related investigations have also 

evolved and improved over the years (geothermalism, ODP, etc) but in this summary we will focuse 

on the context of radioactive waste disposal. In this context, most of the existing technologies for 

sampling in boreholes to around 1,000 m depth have been developed and documented in several 

international site characterisation projects. Furthermore, natural analogue studies have also provided 

valuable input in this respect (e.g. [21-22]). Overall, it is important to stress that collaboration between 

these international organisations has been close, particularly were similar rock types have been 

demarcated for radioactive waste disposal; some notable examples are briefly listed below. 

Site investigations carried out by AECL (Atomic Energy of Canada Ltd.) and now by NWMO, (the 

Nuclear Waste Management Organization) on the Canadian Shield commenced in 1978 and resulted 

in important developments of borehole and sampling techniques for hydrogeochemical investigations 

in fractured crystalline rocks [5, 23-33]. 
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In Switzerland, a major effort has been made since the 1980 ś by NAGRA (National Cooperative for 

the Disposal of Radioactive Waste) on drilling and development of characterisation methodologies 

related to deep boreholes initially in crystalline rocks [34-44] and more recently in clay formations 

[40]. 

The Finnish site investigation programme carried out initially by TVO (Teollisuuden Voima Oyj) and 

later by Posiva Oy, started in 1984 and was mainly focused on groundwater flow and geochemistry 

due to their importance in terms of long-term repository safety in crystalline rock. These studies 

resulted in, for example, the development of field instrumentation and tests and protocols for 

groundwater sampling and measuring groundwater flow [45-58]. Also included were analytical 

programmes which covered, for example evaluation of the representativeness of the groundwater 

samples, use of sampling equipment, and handling and preparation of groundwater samples, as well as 

field measurements and analyses. 

In Spain, the main scientific and technological advance on the hydrogeochemical investigations for 

deep geological disposal started with ENRESA (Empresa Nacional de Residuos Radioactivos, SA) in 

1984. Then, in the 1990s a specific and comprehensive protocol for the groundwater sampling and 

characterisation was developed in the framework of the International Natural Analogue Project at El 

Berrocal [59-63]. 

In Belgium and France, were radioactive wastes disposal in clay repositories are being considered by 

ONDRAF/NIRAS (Organisme National des Déchets RAdiactifs et des matières Fissiles enrichies) and 

ANDRA (Agence Nationale pour la gestion des Déchets RAdioactifs), technological and 

methodological developments have been carried out in relation to the hydrogeochemical 

characterisation of underground research laboratories in clay [64-67]. 

In the United Kingdom the first publications concerning deep borehole sampling, sample handling and 

storage and chemical analyses were associated with the Sellafield site investigations [68-73]. More 

recently the NDA-RWMD (Nuclear Decommissioning Authority - Radioactive Waste 

ManagementDirectorate) have published several reports related to groundwater sampling and 

analytical strategies and techniques as part of a future site characterisation programme for a geological 
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radioactive waste disposal facility [74-79]. The work from Bath and Metcalfe [75] provides a thorough 

review of the available technologies for groundwater sampling and analyses developed in site 

characterisation projects on three relevant host rock types. The authors give a general overview of the 

sampling methods and techniques, the operational information about the equipment and information 

about the countries that have developed the equipment (Tables 5-1, 5-2, 5-5 and 6-1 in [75]). They 

also discuss the quality of groundwaters in terms of their representativity. The United Kingdom 

programme has still not been restricted to any specific rock type. 

The Japanese hydrogeochemical investigations related to the deep geological disposal of radioactive 

wastes started in the 1990s and were carried out by the JNC (Japan Nuclear Cycle Development 

Institute). Some specific methodologies have been developed [80-81] and others have been applied 

based on experience from other countries. All these developments were initially studied in the 

Kamaishi and Tono Mines [82-86] and, more recently in the Mizunami and Horonobe Underground 

Research Laboratories [87-95]. This experience has been incorporated in the procedures that constitute 

the scientific and technical basis for HLW (High Level Wastes) disposal in Japan [96-100]. 

Sweden (through the Swedish Nuclear Fuel and Waste Management Company, SKB) together with 

Finland, has had the advantage of a continuous programme of scientific and technical development of 

a site characterisation for almost 40 years. Since 1977 SKB has performed activities with the overall 

objective of acquiring knowledge and data to develop methodologies and instrumentation required for 

the safe disposal of radioactive wastes in fractured crystalline rocks. An important part of this work 

has been the hydrogeochemical characterisation of the deep groundwaters in granitic rocks, in order to 

describe their chemistry, origin and distribution in the bedrock and the hydrogeochemical processes 

involved in their evolution. Close collaboration with other agencies, such as those listed above, has 

been a great benefit in this respect. 

The Swedish site characterisation programme initially investigated a number of crystalline rock sites 

with the aim to increase knowledge of bedrock conditions in different types of rocks and at different 

locations in Sweden (SKB Study Site Programme; 1976-2001). Together with these investigations, a 
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final repository for low- and intermediate-level radioactive waste (SFR), located adjacent to Forsmark 

at the Baltic coast about 150 km north of Stockholm, commenced operations in 1988. 

At the time of these early Study Site investigations (1976-1986) very little was known about the 

groundwater chemistry at 500 m depth in non-mineralised crystalline bedrock and therefore a 

progressive development of a specific investigation methodology was initiated. The initial reports on 

sampling and analysis protocols for groundwaters where published by SKB at the beginning of the 

1980s associated with the establishment of the KBS-3 disposal concept [101-103], and the 

characterisation of several sites [104-112]. High quality groundwater data was already recognised at 

that time as a necessary pre-requisite in site characterisation and, therefore, evaluation of the quality of 

groundwater samples was an important part of the studies [113-116]. Due to the complexity of the 

fracture systems, these studies showed the lack of representative groundwater samples for 

hydrochemical considerations [113] and, therefore, an important effort was made to rectify this. It 

involved improving instrumental development, experimenting using different materials, testing 

drilling and sampling techniques and analysing their effects on the final chemical composition of the 

sampled groundwaters. These successful experiments and associated knowledge subsequently became 

an integrated part of the SKB approach. 

One of the major improvements was the design and use of the first mobile chemistry equipment in 

1984. It included a mobile laboratory for immediate chemical analyses and down-hole equipment for, 

among other uses, to carry out in situ Eh and pH measurements. This new methodology regarding 

redox measurements was of special relevance since the general belief at the time was that it was not 

possible to measure meaningful Eh values in natural waters.  

However, despite the important advances made thanks to this mobile equipment, some problems still 

remained, for example it was not realised how difficult it was to obtain representative groundwater 

samples; another problem was the lack of good analytical methods for isotope determinations 

(especially for 14C and 3H) which prevented the reliable use of these isotopes for residence time 

interpretations. 
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Prior to the construction of the Äspö Hard Rock Laboratory (1986-1990), the pre-investigation studies 

represented important progress from the earlier KBS-3 groundwater studies in refining and 

establishing future borehole investigation methodology [117-118]. A major step forward was the 

introduction of a new drilling technique, telescope-type drilling, which improved the possibilities to 

remove flushing water and drilling debris, thereby increasing the quality of the groundwater samples. 

The investigations in boreholes from the Äspö tunnel during the following construction phase (1990-

1995; [119-120] were performed in parallel with the construction work which required careful 

planning. The operation phase in the late 1990s involved the introduction of differential flow logging 

measurements [49, 121] and BIPS logging measurements (Borehole Image Processing System; [122]) 

techniques which significantly improved the possibility of selecting water bearing fractures for 

sampling and determining the water yield situation in demarcated borehole sections. Furthermore, the 

tripple tube drilling system minimised the loss of fracture filling material therefore improving the 

quality of the fracture mineral samples, which are very important for the hydrogeochemical 

interpretations from several aspects. During this time much effort was also spent on the thorough 

assessment of all procedures involved in the localisation, sampling and analysis of groundwaters to 

find sources of uncertainties or inconsistencies in the final groundwater chemical data. Laaksoharju et 

al. [123], Smellie et al. [124] and Laaksoharju [125] describe in detail different quality evaluation 

approaches (expert judgement, statistical treatment and scoring system) used to identify representative 

chemical compositions for classification and modelling purposes. 

Based on this experience gained over a period of about 20 years, SKB published a series of documents 

outlining the basis for the geoscientific programme for investigation and evaluation of sites for a deep 

repository ([126] and references therein). The general investigation programme was established in 

SKB [127] and the guidelines and strategy for the hydrogeochemical interpretation and modelling 

work were described in detail in Smellie et al. [128]). However, the details about the groundwater 

sampling issues were not addressed in any of these previous publications. 

During the site characterisation investigations at Forsmark, Laxemar and SFR (2002 to 2010; 4-6) to 

select the location for the final repository of spent nuclear fuel (the two first) and for the extension of 
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the existing repository (SFR) for low and intermediate level waste, a large number of boreholes were 

drilled and newly developed or modified hydrochemical investigation methods were applied for 

studying the groundwater chemistry [129-132]. Although these investigations were planned based on 

the previous experience, modifications, updates and improvements on the methodologies and 

strategies had to be done and they are presented and discussed in this paper. SKB will use the same 

kind of methodological scheme during repository construction and operation with modifications and 

future technical developements. Additional publications concerning specific SKB methodologies 

related to the hydrogeochemical studies have been published and will not be described in detail here, 

e.g. the methodology developed for potentiometrical Eh measurements and their evaluation [133], the 

methodology used for the matrix porewater studies [134, 135], the studies on microbes and gases [136, 

137], on fracture minerals [138-143], and on statistical and hydrogeochemical modelling techniques 

[144, 145]. 
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Supplementary Material 2: Drilling and after drilling procedures 

 

 

This file contains some detailed description on different steps of the drilling and after drilling 

procedures (see Figure 1 in the main paper), including the issues about the flushing water and the 

cleaning, that complement the summary included in the main paper. 

 

SM2.1 THE FLUSHING WATER 

One of the most important aspects when evaluating groundwater samples and groundwater data from 

core boreholes drilled from the ground surface is the degree of contamination with flushing water and 

its impact on the groundwater chemistry and sample representativity. Typically, about 1,000 m3 

flushing water (spiked with sodium fluorescein as tracer) is used for a 1,000 m long SKB type 

telescopic core borehole drilled from the ground surface. About twice this volume (2,000 m3) is 

discharged (depending on water yield) from a borehole during gas-lift pumping from the uppermost 

100 m of the borehole at a flow rate between 20 and 50 L/min. The gas-lift pumping removes the 

return water, i.e. a mixture of flushing water, groundwater and drill cuttings, from the borehole. 

The risk of flushing water contamination is much lower in samples collected from boreholes drilled in 

underground tunnels since the flow direction is out from the borehole due to the hydrostatic 

overpressure. However, special conditions may arise where contamination is difficult to avoid, for 

example if two boreholes are hydraulically connected or if there is a hydraulic gradient along the 

borehole. 

In any case, due to contamination risks, the choice of a flushing water source is very important. Two 

possible strategies are used: 1) flushing water with a chemical composition similar to the groundwater 

expected to be found in the borehole to minimise the influence on the samples, i.e. flushing water 

taken from an adjacent percussion borehole, implicitly assuming that the composition will be quite 
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close, or 2) tap water with much lower concentrations of most components and therefore not likely to 

affect the interpretation of the groundwater origin (e.g. marine or non-marine signatures). The first 

alternative has been the most common choice but its main disadvantage is that the groundwater 

composition is unknown beforehand, and it varies with depth. Consequently, the composition of the 

flushing water and the groundwater in the borehole being drilled may differ considerably. The second 

alternative, on the other hand, results in dilution of the groundwater sample. This dilution is usually 

manageable when interpreting the data. However, parameters such as TOC/DOC may be significantly 

higher in the tap water and can therefore obstruct the evaluation of the organic component in the 

formation water. The tap water contribution is also a problem when analysing 14C in organic material 

and in inorganic carbon. 

Another important aspect when selecting the flushing water source is the probable effect of its oxygen 

content on the groundwater redox conditions. Therefore, nitrogen gas is bubbled into the flushing 

water (irrespective of its source) before use (cf. Figure SM2.1). An estimation of the impact of the 

flushing water on the groundwater composition is always carried out during the data interpretation 

process. A flushing water budget is calculated [146] for each drilled borehole. 

With respect to the cleaning, for hydrochemical and microbial investigations the specialised SKB 

telescopic borehole requires a strict routine of cleanliness and sterility. The down-hole equipment and 

the flushing water system (see below) undergo rigorous cleaning procedures: 1) the pipe string and 

drilling crown are steam cleaned before use, 2) the drilling water supply tube line is cleaned and 

scanned using UV-light for sterilisation (Figure 2), and 3) the bioaccessibility of all the used chemical 

products are also thoroughly addressed including the choice of lubricants for connecting the pipe 

string. However, despite these precautions, it would be unrealistic to expect total sterile conditions. 

SM2.2. AFTER DRILLING 

After drilling (see Figure 1 in the main manuscript), the boreholes are usually cleared of rock debris 

and drilling water by gas-lift pumping (N2). The detailed core mapping activity starts as soon as the 

drill core is removed and transported to the core mapping hall/facility. Hydrochemical logging (tube 

sampling) is performed relatively early in the investigation sequence with the purpose of obtaining the 
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composition of the groundwater present along the borehole. Also obtained early in the sequence are 

data from the different geophysical logging methods which are needed to proceed with the ongoing 

core mapping activity. The same applies to the differential flow logging which is used, together with 

the information from the BIPS logging (Borehole Image Processing System), to select the water 

yielding fracture(s) to be hydrochemically characterised and to isolate suitable borehole sections to be 

investigated. Extensive hydrochemical characterisation (Complete Chemical Characterisation or CCC) 

implies investigations in one packed-off borehole section at a time, and most often it also includes 

colloid, gas and microbial studies. 

 
Figure SM2.1. Schematic outline of the flushing water line and the treatment of returned water. The different 

measurement stations and sampling points are also displayed (modified from drilling method description SKB 

MD 640.001) UV = Ultra Violet light used for sterilisation, Uranine = injection location for uranine (sodium 

fluoresceine; the flushing water is spiked with uranine as tracer), Q = water flow rate measurement, EC = 

Electrical Conductivity measurement, O2= dissolved oxygen measurement. Figure courtesy of Göran Nilsson. 
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Once the main hydrochemical characterisation campaign has finished, other more extensive hydraulic 

tests are performed that are likely to contaminate the groundwater; these include injection and 

interference tests and groundwater flow measurements. These are not performed until any pressure 

disturbances caused by water sampling have disappeared, i.e. if water sampling has been carried out 

for two weeks, then the hydraulic tests are postponed for at least another two weeks after the water 

sampling. 

When the above basic investigation activities have finished, fixed packer equipment is installed to 

prevent groundwater flow along the borehole and ultimately to allow regular groundwater level 

monitoring, sampling and flow measurements in the packed-off borehole sections. Thereafter, 

hydrochemical monitoring is performed in selected borehole sections (i.e. regular yearly sampling; 

[147]). 
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Supplementary Material 3: Supplementary Tables 

 

 

This file includes two tables that give detailed information on some of the methodo logical 

aspects treated in the paper, especifically in Sections 4.1 and 5.3. Table SM3-1 lists the 

analytical protocol followed for the groundwaters, including the detection limits and the 

measurement uncertainties. Table SM3-2 displays an example of cornerstone criteria that 

were found to be relevant independently of the type of dataset. 
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Table SM3-1. List of components usually analysed in the hydrochemical investigations. Many elements may be 
determined by more than one ICP technique depending on concentration range. The most relevant technique and 
measurement uncertainty for the concentrations normally encountered in groundwater are indicated. In cases 
where two techniques were frequently used, both are displayed under the Method column. The analyses 
generally follow the standards from the Swedish Standards Institute (SIS) and Comité Européen de 
Normalisation (EN) or the US Environmental Protection Agency (USEPA). Reporting limits (RL) are generally 
10×standard deviation. Measured values below RL or DL are stored as negative values in SICADA (i.e. –RL 
value and –DL value). The reporting limits are given if not otherwise stated. Measurement uncertainty reported 
by the laboratory is generally as ± percent of measured value in question at 95% confidence interval, calculated 
according to the EURACHEM/CITAC guide (2000). 

Component Method* 
Reporting limits (RL), 
detection limits (DL) 
or range 

Units Measurement 
uncertainty 

pH Potentiometric 3-10 pH unit ±0.1 

EC Conductivity meter 1-150 
150-10,000 mS/m 5%  

3% 
HCO3 Alkalinity titration 1 mg/L 4% 
Cl- 
Cl- 

Mohr- titration 
IC 

≥ 70 
0.5 – 70  mg/L 5% 

8% 
SO4 IC 0.5 mg/L 12% 
Br-  IC DL 0.2, RL 0.5 mg/L 15% 
Br ICP SFMS 0.001, 0.004, 0.0101 mg/L 25%2 
F- 
F- 

IC 
ISE 

DL 0.2, RL 0.5 
DL 0.1, RL 0.2 mg/L 13% 

12% 
I- ICP SFMS 0.001, 0.004, 0.0101 mg/L 25%2 
Na ICP AES 0.1 mg/L 13% 
K ICP AES 0.4 mg/L 12% 
Ca ICP AES 0.1 mg/L 12% 
Mg ICP AES 0.09 mg/L 12% 
S(tot) ICP AES 0.16 mg/L 12% 
Si(tot) ICP AES 0.03 mg/L 14% 
Sr ICP AES 0.002 mg/L 12% 
Li ICP AES 0.004 mg/L  12.2% 
Fe ICP AES 0.02 mg/L 13.3%3 
Fe ICP SFMS 0.0004, 0.002, 0.0041 mg/L 20%3 
Mn ICP AES 0.003 mg/L 12.1%2 

Mn ICP SFMS 0.00003, 0.00004, 
0.00011 mg/L 53%3 

Fe(II), Fe(tot) Spectrophotometry DL 0.006, RL 0.02 mg/L 
0.005 (0.02-0.05 mg/L) 
9% (0.05-1 mg/L) 
7% (1-3 mg/L) 

HS- Spectrophotometry, 
SKB SKB DL 0.006, RL 0.02 mg/L 30% 

HS- Spectrophotometry, 
external laboratory 0.01 mg/L 0.02 (0.01-0.2 mg/L) 

12% (>0.2 mg/L) 
NO2 as N Spectrophotometry 0.1 µg/L 2% 
NO3 as N Spectrophotometry 0.2 µg/L 5% 

NO2+NO3 as N Spectrophotometry 0.2 µg/L 
0.2 (0.2-20 µg/L) 
2% (> 20 µg/L) 

NH4 as N 

Spectrophotometry, 
SKB 11 µg/L 

30% (11-20 µg/L) 
25% (20-50 µg/L) 
12% (50-1200 µg/L) 

Spectrophotometry 
external laboratory 

0.8  
 µg/L 

0.8 (0.8-20 µg/L) 
5% (> 20 µg/L) 

PO4 as P Spectrophotometry 0.7 µg/L 0.7 (0.7-20 µg/L) 
3% (> 20 µg/L) 

SiO4 Spectrophotometry 1 µg/L 2.5% (>100 µg/L) 
O2 Iodometric titration 0.2 – 20 mg/L 5% 
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Table SM3-1. Continuation. 

Component Method 
Reporting limits (RL), 
detection limits (DL) 
or range 

Units Measurement 
uncertainty  

O2 Iodometric titration 0.2 – 20 mg/L 5% 
Al,  ICP SFMS 0.2, 0.3, 0.71 µg/L 17.6%3 
Zn ICP SFMS 0.2, 0.8, 21 µg/L 15.5, 17.7, 25.5%3 

Ba, Cr, Mo,  ICP SFMS 0.01, 0.04, 0.11 µg/L 
Ba 15%1, Cr 22%2 Mo 
39%3 

Pb ICP SFMS 0.01, 0.1, 0.31 µg/L 15%3 
Cd ICP SFMS  0.002, 0.02, 0.51 µg/L 15.5%3 
Hg ICP AFS 0.002 µg/L 10.7%3 
Co ICP SFMS 0.005, 0.02, 0.051 µg/L 25.9%3  
V ICP SFMS 0.005, 0.03, 0.051 µg/L 18.1%3 
Cu ICP SFMS 0.1, 0.2, 0.51 µg/L 14.4%3 
Ni ICP SFMS 0.05, 0.2, 0.51 µg/L 15.8%3 
P ICP SFMS 1, 5, 401 µg/L 16.3%3 
As ICP SFMS 0.01 (520 mS/m) µg/L 59.2%3 
La, Ce, Pr, Nd, 
Sm, Eu, Gd, 
Tb, Dy, Ho, Er, 
Tm, Yb, Lu 

ICP SFMS  0.005, 0.02, 0.051 µg/L 20%, 20%, 25%3 

Sc, In, Th ICP SFMS 0.05, 0.2, 0.51 µg/L 25%3 

Rb, Zr, Sb, Cs ICP SFMS 0.025, 0.1, 0.251 µg/L 
15%, 20%, 20%2 

25%3 
Tl ICP SFMS 0.025, 0.1, 0.251 µg/L 14.3%2 and 3 

Y, Hf ICP SFMS 0.005, 0.02, 0.051 µg/L 
15%, 20%, 20%2 

25%3 

U ICP SFMS  0.001, 0.005, 0.011 µg/L 
13.5%, 14.3%, 15.9%2 

19.1%, 17.9%, 20.9%3 

DOC 
UV oxidation, IR 
detection Carbon 
analysator 

0.5 mg/L 8% 

TOC 
UV oxidation, IR 
detection Carbon 
analysator 

0.5 mg/L 10% 

δ2H MS 2 ‰ SMOW4 0.9 (one standard 
deviation) 

δ 18O MS 0.1 ‰ SMOW4 0.1 (one standard dev.) 
3H LSC 0.8  TU5 0.8  
δ 37Cl AMS 0.2 ‰ SMOC6 0.212 
δ13C AMS - ‰ PDB7 0.312 
14C pmc AMS - PMC8 0.412 
δ 34 S MS 0.2 ‰ CDT9 0.4 (one standard dev.) 
87Sr/86Sr TIMS - No unit 

(ratio)10 0.00002  

10B/11B ICP SFMS - No unit 
(ratio) 10 - 

234U, 235U, 
238U, 232Th, 
230Th 

Alfa spectr. 0.0001 Bq/L11 ≤5% (Counting 
statistics uncertainty) 

222Rn, 226Ra LSC 0.015 Bq/L ≤5% (Counting 
statistics uncertainty) 

* Analytical methods abreviations: 

AMS: Accelerator Mass Spectrometry 
IC: Ion Chromatography 
ICP-AES: Inductively Coupled Plasm a Atomic Emiss ion Spectrometry 
ICP-AFS: Inductively Coupled Plasma Atomic Fluorescence Spectrometry 
ICP-SFMS: Inductively Coupled Plasma Sector Field Mass Spectrometry 
ISE: Ion Selective Electrode 
LSC: Liquid Scintillation Counting 
MS: Mass  Spectrometry 
TIMS: Thermal Ionisation Mass Spectrometry  
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Table SM3-1. Continuation. 

1. Reporting limits at electrical conductivity 520 mS/m, 1440 mS/m and 3810 mS/m respectively. 

2. Measurement uncertainty at concentrations 100×RL 

3. Measurement uncertainty at concentrations 10×RL 

4. Per mille deviation from SMOW (Standard Mean Oceanic Water). Isotopes are often reported as per mill 
deviation from a standard. The deviation is calculated as: δyI = 1000×(Ksample-Kstandard)/Kstandard, 
where K= the isotope ratio and yI =2H, 18O, 37Cl, 13C or 34S etc. 

5. TU=Tritium Units, where one TU corresponds to a tritium/hydrogen ratio of 10-18 (1 Bq/L Tritium = 8.45 
TU). 

6. Per mille deviation from SMOC (Standard Mean Oceanic Chloride). 

7. Per mille deviation from PDB (the standard PeeDee Belemnite). 

8. The following relation is valid between pmC (percent modern carbon) and Carbon-14 age: pmC = 100 × 
e((1950-y- 1.03t)/8274) 
where y = the year of the C-14 measurement and t = C-14 age. 

9. Per mille deviation from CDT (the standard Canyon Diablo Troilite). 

10. Isotope ratio without unit. 

11. The following expressions are applicable to convert activity to concentration; for uranium-238 and 
thorium-232: 1 ppm U = 12.4 Bq/kg238U, 1 ppm Th = 3.93 Bq/kg232Th. 

12. SKB estimation from duplicate analyses by the contracted laboratory. 
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Table SM3-2. An example of a criteria table with category grading. Each criterion has its grade and 
the final category grading for the sample is determined by the worst grade/highest number. The table 
presented here is derived from similar tables developed during past SKB site investigations (Table 3-2 
in [148]; Table 4-1 in [149]; Table 3-2 in [150]; and Table A1-1 in [151]). These categorisation criteria 
should be adapted to the conditions of the specific conditions for each site investigation. 

Criteria 
Category grade 

1 2 3 4 5 

Drill water 
(<2 %) X     

(<5 %)  X    

(<10 %)   X   

(>10 %)     X 

Sampling method 
Sampling during drilling     X 

Sampling in an isolated section in a surface (CCC) or in a tunnel borehole X     

Monitoring in fixed borehole sections in surface boreholes    X  

Monitoring in fixed borehole sections in tunnel boreholes X     

Available data (major constituents and basic components with lower concentrations) 
Complete major constituents (Na, K, Ca, Mg, Cl, HCO3

-, SO4
2-) and ions with lower 

concentration (Si, Br, Sr, Li, F, S(II) Fe, Mn). X     

Ions with lower concentrations are incomplete: one or more of them are missing.  X    

Uncertain pH-value   X   

One of the folowing components are missing: K, Mg, HCO3, or SO4.    X  

The major constituents are incomplete: more than one of them are missing.     X 

Charge imbalance 
>±5% (±10% at <50 mg/L Cl)     X 

Available isotope data  

Complete: δ18O, δ2H, 3H, 14C, δ13C (except in samples with HCO3 < 10 mg/L) X     

δ18O, δ2H, 3H  X    

δ18O, δ2H   X   

Incomplete: lack of δ18O and/or δ2H    X  

Section length  
(<10 m) X    

 

(<20 m)  X   
 

(<100 m)   X  
 

(>100 m)    X  

Sample series* 
Adequate number of samples (to follow the developement during months- years) X     

Inadequate number of samples   X   

Time series**:       

Adequate number of samples (at least three samples during days-weeks). X     

One or two samples    X  

Significant impact from injection of grout (enhanced pH value)      X 
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