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The principle purpose of this work is to formulate an accurate mathematical model to evaluate the transient pressure behavior of a
well intercepted by a partially penetrating vertical fracture (PPVF) with non-Darcy flow effect. Fracture conductivity is taken into
account by coupling the three-dimensional flow in reservoir and the two-dimensional flow within fracture; the Barree-Conway
model is incorporated into the model to analyze non-Darcy flow behavior in fracture, which leads to the nonlinearity of the
governing equations. A high-effective iterative algorithm using a combined technique of fracture-panel discretization and
dimension transform is developed to render the nonlinear equations amenable to analytical linear treatment. On the basis of the
solutions, the pressure response and its derivative type curves were generated to identify the evolution of flow regimes with time.
Furthermore, the influences of fracture conductivity, penetration ratio, and non-Darcy characteristic parameters on pressure
response are investigated. The results show that PPVF exhibits five typical flow regimes, and analytical solutions for each flow
regime are similar to that for a fully penetrating vertical fracture (FPVF) that can be correlated with the penetration ratio and
apparent conductivity. The non-Darcy flow effect is found to have more significant effect on the low and moderate conductivity,
especially in early-stage flow regimes. When the penetration ratio is smaller than 0.5, the pressure behavior exhibit a more
remarkable variation with penetration ratio. This study provides a better insight into understanding the influence of non-Darcy
flow on flow regime identification.

1. Introduction

Fracturing stimulation has been widely applied in the devel-
opment of tight hydrocarbon formations. Hydrocarbons are
efficiently extracted from low-permeability formation into
the wellbore throughout hydraulic fractures. It has been
established that the inclination of the overall plane of a
hydraulic fracture is determined by the axis of the least prin-
cipal stress. If the axis is in the vertical or horizontal direc-
tion, the created fracture would be horizontal or vertical,
respectively; otherwise, the fracture would be inclined [1].
In addition to those time-consuming numerical simulations,
numerous works using various analytical or semianalytical
methods have been published for study the flow behavior of
vertical fracture [2–5], horizontal fracture [6–8], and inclined

fracture [9–13]. These solutions serve as a theoretical basis of
the pressure-transient and rate-transient analysis for hydrau-
lically fractured well.

At depths deeper than approximately 2000 ft in the
unconventional reservoir, the direction of the least principal
stress is generally parallel to the formation plane [14], and
as a result, the hydraulic fractures are generated principally
in the vertical direction. Although the intention was for oil
companies to create fully penetrating hydraulic fractures,
the actual measurement shows that hydraulic fracture may
not extend throughout the entire vertical extent of the forma-
tion thickness [15, 16]. Only the effective height of the frac-
ture that is propped open contributes to the production,
and the three-dimensional flow pattern occurs in the reser-
voir. Alternatively, the flow in vertical direction should be
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considered. From the viewpoint of reservoir engineering,
fracture dimensions (fracture length, width, and height) are
all of much influence on the production performance. How-
ever, few studies have dealt with the effects of partially pene-
trating fracture. Raghavan et al. [17] presented a pioneering
work of investigating the effect of fracture height of a single,
vertical fracture. A uniform flux across the fracture plane was
assumed, and an approximate analytical solution for the case
of infinite conductivity was obtained by evaluating the
uniform-flux solution at a special position. Rodriguez et al.
[18] investigated the effect of the partial penetration of PPVF
with infinite conductivity by discretizing the fracture into a
set of uniform-flux planes and ignoring the pressure drop
within fracture. Rodriguez et al. [19] further considered the
pressure drop within finite conductivity fracture by establish-
ing a Poisson’s type differential equation in fracture. Igbokoyi
and Tiab [20] used the elliptical flow model in Laplace
domain to obtain the solution for PPVF with infinite conduc-
tivity in naturally fractured reservoirs. Al-Rbeawi and Tiab
successively used the type-curve matching technique and
Tiab’s direct synthesis technique to analyze the pressure
behavior of a horizontal well with multiple vertical partially
hydraulic fractures [11, 12].

Meanwhile, the non-Darcy flow effect should be consid-
ered because it usually happens due to the high-velocity flow
within hydraulic fracture. As we know, non-Darcy flow
within fracture has more important influence on transient
pressure responses than non-Darcy flow in the reservoir
[21, 22]. It is well demonstrated that non-Darcy effects
account for a 35% decrease in productivity in a hydraulically
fractured high-rate oil well, a larger productivity decrease for
gas well [23]. It is well accepted that the fracture length and
conductivity might be underestimated in the presence of
non-Darcy flow. Umnuayponwiwat et al. [24] found that
the errors of the estimation of fracture conductivity and
fracture length would be up to 78% and 54% if neglecting
non-Darcy flow effect for gas well. Therefore, it is of much
practical importance to accurately evaluate the performance
of appropriate conductivity fractured well with non-Darcy
behavior. Forchheimer’s equation was widely used to analyze
the flow behavior of finite conductivity FPVF with consider-
ing non-Darcy flow in many semianalytical approaches such
as the work presented by Guppy et al. [25, 26]. Zeng and
Zhao [27] used the Forchheimer number to quantify the
effect of non-Darcy flow in the reservoir on the transient
pressure behavior of vertical well through regarding it as
rate-dependent skin factor. Valko and Amini [28] applied
the 3D method of distributed volumetric sources to predict
production from a horizontal well intersected by multiple
transverse fractures with non-Darcy flow effect. Considered
the fact that Forchheimer’s equation leads to an error at both
low and high velocities [29, 30], and Zhang and Yang [31]
incorporated the versatile Barree-Conway model to describe
non-Darcy flow behavior in hydraulically fractured wells
and developed an equation to correlate the Forchheimer
equation and the Barree-Conway model. Jiang et al. [32]
further applied it to quantify the non-Darcy flow effect
in a hydraulically fracture horizontal well in a naturally
fractured reservoir.

These previous literatures demonstrated that there was a
large reduction in the fracture conductivity when non-Darcy
flow effect occurring in the FPVF was included. However,
uncertainty still remains regarding whether the reduction
becomes more significant as for the PPVF or not. It is neces-
sary to emphasize that Zhang and Yang [33] used a novel slab
source function to accurately quantify non-Darcy effect and
penetrating ratio with consideration of the appropriate frac-
ture dimension and its conductivity. The assumption of
one-dimensional flow pattern in the finite conductivity frac-
ture is proposed to simulate approximately the actual two-
dimensional flow, which contributes to inaccurate results
for the pressure-transient analysis of low/moderate-conduc-
tivity fracture.

In this work, we develop an efficient and effective
approach that provides accurate pressure-transient response
of PPVF with non-Darcy flow effect during drawdown
testing. Flux variations along the horizontal and vertical
directions in the fracture are physically described by use of
two-dimensional flow pattern. Different from the solutions
using the Greens function method [11–13, 25, 31–33], a com-
putational package based on Laplace solutions are derived to
accelerate the calculation speed with high precision, and the
technique using dimension transform is presented to elimi-
nate the nonlinearity caused by non-Darcy effect. Subse-
quently, we identify the flow regimes and perform the
sensitivity analysis of influence factors. In addition, a field
case is used to illustrate the application of this model for
accurate interpretation of well testing data.

2. Model Development

2.1. Model Illustrations. In this study, Figure 1 shows the
physical model of a vertical well intersected by a partially
penetrating vertical fracture. There are several fundamental
assumptions:

(i) The formation is infinite in the lateral direction (x-
and y-direction), and the boundaries on the top
(z = h) and bottom (z = 0) are impermeable. The for-
mation is assumed to be homogeneous with constant
porosity (φ), compressibility (ct), and permeability
(km). The vertical permeability is set to be kmz

(ii) The fracture plane has a rectangular shape, and the
compressibility of fracture is ignored

(iii) The length, width, height, and orientation angle of
vertical fracture are denoted by Lf , wf , hf , and θ,
respectively. The starting coordinate is denoted by
ðxofD, yofD, zofDÞ.

(iv) The fluid is assumed to be single phase, isothermal,
and slightly compressible

(v) The fluid flow is considered as Darcy’s law in the
matrix, and the flow is described by non-Darcy flow
in the fracture. Here, the non-Darcy flow is
described with the Barree-Conway model [34]

(vi) The well produces at a constant-rate condition
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Here, it is necessary to clarify the reason that we select
the Barree-Conway model. First, the Forchheimer equation
describes the laminar flow with inertia effect, which is
given by

−∇p = μv
1
kfD|{z}

laminar

+ β
ρv
μ|ffl{zffl}

inertia

0BBB@
1CCCA = μv

1
kf app

 !
, ð1Þ

where β is non-Darcy flow coefficient, kfD represents the
Darcy permeability, and kf app represents the apparent
permeability caused by non-Darcy flow effect. However,
numerous studies demonstrate that 1/kf app does not
reduce to the inverse of the Darcy permeability 1/kfD
when velocity approximates to zero, and kf app approaches
a value of zero at high velocities, rather than a limited
value [29, 35]. This is inconsistent with Eq. (1), which
indicates that Forchheimer’s equation may not be univer-
sal and only applicable in a limited range of velocities.
Alternatively, the beta factor β is dependent on velocity,
not a constant, and the kapp would deviate from the linear
Forchheimer’s correlation at low and high velocities.

The equation suggested by Barree and Conway [34] is
introduced to recast the non-Darcy effect in the entire range
of velocities. According to the Barree-Conway model, the
ratio of apparent permeability to Darcy’s permeability is
rewritten as follows:

kf app
kfD

= kmr +
1 − kmr
1 + ρv/μτ = kmr +

1 − kmr

1 + FND qcf D
��� ��� , ð2Þ

where kmr is relative minimum permeability, τ is the charac-
teristic length, and v is the fluid superficial velocity. In the

form of dimensionless variables, the Reynolds number and
the cross-sectional rate are defined, respectively, by

FND = ρ

μτ
× qref
wf h

,

qcf D = h
hf

×
qcf
qref

:

ð3Þ

The Reynolds number is a constant, independent of frac-
ture height. It is only determined by production rate and
fracture width. Note that the fracture width is fixed in this
study. Fracture conductivity is determined by changing the
value of fracture permeability.

2.2. Mathematical Formulation. The fracture is represented by
a rectangular porous medium of dimensions Lf × hf ×wf . The
flow parallel to the axis of fracture width can be ignored
because of tiny fracture width, which signifies that the flux dis-
tribution can be assumed to be uniform in this direction [19].
After the non-Darcy effect is taken into account, according to
the principle of mass balance, the fracture flow is described
by the following partially differential equation in dimensionless
form (dimensionless definitions are seen in Appendix A):

∇
kf app
kfD

∇pfD

 !
−

2π
CfDi

qf D xf D, zf D
� �

+ 2π
CfDi

δ xfD − xwfD

� �ðhfD

0
qwfD zfD′

� �
δ zfD − zf D′
� �

dzfD′ = 0:

ð4Þ

Laplace operator is written as ∇ðÞ = ∂/∂xf + ∂/∂zf .

x

z
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Impermeable boundary

(xof, yof)

zof

𝜃

Figure 1: Schematic of a vertical well intersected by a partially penetrating fracture.
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Initial dimensionless conductivity with regard to the
Darcy permeability, which is a constant value, is defined by

CfDi =
kfDwf

� �
kmLrefð Þ : ð5Þ

In Eq. (4), xwf is the wellbore location within fracture,
qf is the flux-density function of spatial variables which
represents the flux entering the fracture from the reservoir
throughout the fracture surface. qwf is a source term
representing the fluid extracted throughout the vertical
wellbore within fracture, and it is parallel to the fracture
height. In addition, the boundary conditions can be writ-
ten as follows:

∂pfD
∂xfD

�����
xfD=xofD

=
∂pfD
∂xfD

�����
xfD=xofD+LfD

= 0,

∂pfD
∂zfD

�����
z f D=zofD

=
∂pfD
∂zfD

�����
z fD=zofD+hfD

= 0:
ð6Þ

In the vertical axis, the fracture plate is divided into a
set of linear panels. Each panel is separated by red lines in
Figure 2. We eliminate the spatial dependence in zfD
direction by integrating with respect to zfD varying from
0 to hfD:

1
hfD

ðhfD

0
∇

kapp
kD

∇pfD

� 	
dzfD −

2π
CfDihfD

ðhfD

0
qfD xfD, zfD
� �

dzfD

= −
2π

CfDihfD
δ xfD − xwfD

� �ðhfD

0

ðhfD

0
qwfD zfD′

� �
δ zfD − zfD′
� �

dzfD′ dzfD:

ð7Þ

According to the studies provided by Al-Kobaisi et al.
[36], the flow parallel to the fracture length dominates
compared to the other direction. Therefore, the flux
exchange between adjacent panels is ignored to some
extent, i.e.,

∂pfDn
∂zfD

�����
z fD=zof Dn

=
∂pfDn
∂zfD

�����
z f D=zofDn+hfDn

= 0: ð8Þ

As a result, the nth fracture panel forms the equation
with regard to the weighted average of panel height hfDn,
which is given by

∂
∂xfDn

kapp
kD

∂�pfDn
∂xfDn

 !
−

2π
CfDi

�qfDn xfDn
� �

+ 2π
CfDin

�qwfDnδ xfDn − xwfD

� �
= 0:

ð9Þ

Equation (9) is an approximate treatment which con-
verts the partially different equation for two-dimensional
flow pattern into a system of ordinary-differential equa-
tions that is independent of zf -directional spatial variable.
At a given position of xfD, the values of pressure in differ-
ent panels might be different, which leads to a pressure
difference contributing to the flux exchange in zf -direc-
tion. In fact, the approximation given in Eq. (9) has some
inconsistencies, but it is close to the exact solution for the
cases of interest; therefore, the equations could still be
used for practical purposes. This approach is similar to
the approximate analytical solution for the composite
five-region model presented by Stalgorova and Mattar
[37], and the following calculation results also verify our
approximate approach.

The solution for matrix system could be directly obtained
by using the fundamental point-source solution in Laplace-
transformed domain [38], which is given by

~pD xD, yD, zDð Þ = 〠
N f

n=1

ðhfDn

0

ðLfDn

0
~qDn ξD, ζDð ÞK0

ffiffi
s

p
rDn

� �
dξDdζD

+ 2〠
N f

n=1
〠
∞

m=1

ðzofDn+hfDn

zofDn

ðLfDn

0
~qDn ξD, ζDð Þ cos βmzDð Þ cos βmζDð ÞK0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s + β2

m

h2D

s
rDn

" #
dξDdζD,

ð10Þ

where Nf is the number of fracture panels, βm =mπ, and the
plane distance between the spatial point in the reservoir ðxD,
yDÞ and the spatial point on the fracture panel ðxofD + ξD cos
θf , yofD + ξD sin θf Þ is expressed as

rDn = xD − xofD − ξD cos θf
� �2 + yD − yofD − ξD sin θf

� �2h i0:5
:

ð11Þ

Although the Laplace-transformed solutions have great
advantage in calculating the convolution, they usually pose com-
putational problem. K0 is a zero-modified Bessel function of the
second type. The case of rDn = 0 leads to a singularity, and it is
difficult to use numerical integration. Besides, since the integrals
of Bessel functions appear in the terms of the infinite series [i.e.,
the second term on the right hand side of Eq. (10)], it is impor-
tant to ensure the convergent and vanishing components of the
infinite series. Some alterative solutions must be developed to
accelerate the speed of the computations and improved the accu-
racy. An accurate computation package is provided in Appendix
B, which is an important novelty of this work.

2.3. Semianalytical Solution. Although the two-dimensional
equation is simplified into a system of one-dimensional
equations, the governing equation for fracture panel
described by Eq. (9) still has a strong nonlinearity nature
because the term of kapp/kfD is a function of velocity with
regard to temporal and spatial variables. We introduced
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the technique of dimension transformation presented by
Luo and Tang [39] to render the nonlinear equation ame-
nable to linear analytical treatment. Here, the definition of
transformed dimension is given by

ξDn xfDn
� �

= Ĉ f Dn,app ⋅
ðxfDn
0

dxD
CfDn,app xDð Þ ,

Ĉ f Dn,app = LfDn/
ðLfDn

0

dxD
CfDn,app xDð Þ ,

ð12Þ

and an apparent conductivity considering non-Darcy flow
effect is defined as

Ĉ f Dn,app =
LfDnÐ LfDn

0 1/CfDn,app xDð Þ� �
dxD

: ð13Þ

Based on Eq. (2) and Eq. (5), the relation between
apparent and initial dimensionless conductivity satisfies

CfDn,app xfDn, qcf Dn
� �

= CfDi kmr +
1 − kmr

1 + FND qcf Dn
��� ���

0B@
1CA:

ð14Þ

In this work, the conductivity based on the non-Darcy
model is denoted as apparent conductivity, while the con-
ductivity based on the Darcy model is denoted as (initial)
conductivity. The apparent conductivity equals to the ini-
tial conductivity in the absence of non-Darcy flow
(kmr = 1 or FND = 0), and it will be smaller than the initial
in the condition of non-Darcy flow (other cases).

After substituting Eq. (12) into Eq. (9) and using Laplace
transformation, a system of linear equations is obtained,
which is

∂2e�pfDn
∂ξ2Dn

−
2π

Ĉ f Dn,app
e�qfDn ξDnð Þ + 2π

Ĉ f Dn,app
e�qwfDnδ ξf Dn − ξwfD

� �
= 0:

ð15Þ

Eq. (15) is the well-known Fredholm integral equation.
Integrating Eq. (15) with regard to ξDn from 0 to ξDn would
yield the closed-form pressure solution and auxiliary solution
(i.e., cross-sectional velocity), which are expressed, respec-
tively, as follows:

e�pwD − e�pfDn ξDnð Þ = 2π
Ĉ f Dn,app

e�qwfDG ξDn − ξwfDn

� �
−

2π
Ĉ f Dn,app

ðξDn
ξwfDn

dς
ðς
0
e�qfDn ζð Þdζ

e�qcf Dn ξDnð Þ =
ðξDn
0
e�qfDn ζð Þdζ − e�qwfDnH ξDn − ξwfDn

� �
8>>>><>>>>:

:

ð16Þ

Noting that according to the Darcy law in the trans-
formed dimension, the dimensionless cross-sectional flow
rate is defined as e�qcf Dn = hfDnðĈ f Dn,app/2πÞð∂e�pfDn/∂ξDnÞ.

To obtain the unknowns, a semianalytical method is used
to further discretize each panel into Ni segments with uni-
form flux (denoted by blue lines in Figure 2). According to
the constant-rate condition, the constraint condition can be
written as follows:

〠
N f

n=1
e�qwfDn = 〠

N f

n=1
〠
Ni

i=1
e�qfDn,iΔξDn,i = 1

s
: ð17Þ

In addition, the pressure and flow rate are continuous at
the interface between the matrix and fracture. Here,

e�pfD ξDn xfDn,i
� �� �

= ~pD xof D + xfDn,i cos θ, yof D + xfDn,i sin θ, zof Dn
�

+ 0:5hfDn
�
:

ð18Þ

Because the solution of the fracture is derived from the
new dimension, flux cannot be directly equalized at the inter-
face. It is correlated as

e�qfDn,i = ~qDn,i ×
ΔxfDn,i
ΔξDn,i

: ð19Þ

On the basis of the continuity condition and constraint
condition, the matrix and fracture systems are coupled to

𝛥Lf

Lf

1 2 NiNi-1… …

hf

1

2

Nf-1

Nf

…

q
fm,i

…

m

… …i

Wellborexwf

z

x

𝛥hf

Figure 2: Discretization of PPVF along both the horizontal axis and the vertical axis.
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generate closed-form equations. The unknown variables are
listed as

(i) N i ×Nf uniform-flux rate of each segment, qfDn,i,
i = 1, 2,⋯,Ni, n = 1, 2,⋯,Nf

(ii) Nf flow rate of each panel, qwfDn, n = 1, 2,⋯,Nf

(iii) The wellbore pressure, pwD

The total unknown variables are Ni ×Nf +Nf + 1, which
are presented in a vector form:

XT = e�qfD1,1,e�qfD1,2,⋯, e�qfD1,Ni
,⋯,e�qfDN f ,Ni|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ni×N f

,e�qwfD1, e�qwfD2,⋯,e�qwfDN f|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N f

, e�pwD
0BB@

1CCA:

ð20Þ

The structure of coefficient matrix and the known vector
refers to our previous work [5].

In each time step, an explicit iterative method is applied
here to solve the nonlinear equations. Thus, Eq. (16) is writ-
ten as

e�pwD − e�p κ+1h i
f Dn ξ

κh i
Dn

� �
= 2π
Ĉ

κh i
f Dn,app

e�q κ+1h i
wfD G ξ

κh i
Dn − ξ

κh i
wfDn

� �
−

2π
Ĉ

κh i
f Dn,app

ðξ κh i
Dn

ξ
κh i
wfDn

dς
ðς
0
e�q κ+1h i
f Dn ζð Þdζ

e�q κ+1h i
cf Dn ξ

κh i
Dn

� �
=
ðξ κh i

Dn

0
e�q κ+1h i
f Dn ζð Þdζ − e�q κ+1h i

wfDnH ξ
κh i
Dn − ξ

κh i
wfDn

� �
8>>>>><>>>>>:

:

ð21Þ

The detailed process is illustrated as follows:

(1) Model inputs: reservoir parameters, fracture dimen-
sions, and non-Darcy characteristic parameters

(2) Initialization: with κ = 0, the apparent conductivity

Chκi
f Dn,app is assumed to be the initial conductivity

CfDi. The e�qhκif Dn and e�qhκicf Dn are obtained by Gaussian
elimination method and Stehfest numerical inversion

(3) Iterative process

(a) Calculating apparent conductivity Chκi
f Dn,app and

Ĉ
hκi
f Dn,app and transforming xfDn into ξhκiDn according

to Eq. (12)

(b) Solving the explicit linear equations of Eq. (21) by
Gaussian elimination method and Stehfest numerical

inversion and obtaining the updated e�qhκ+1if Dn , e�qhκ+1icf Dn ,

and e�qhκ+1iwfD

(c) If je�phκ+1iwD −e�phκiwDj < εð= 10−5Þ, then terminate the

iterative process; otherwise, updating e�qhκif Dn =e�qhκ+1if Dn

and e�qhκicf Dn =e�qhκ+1icf Dn with κ = κ + 1 and return step (a)
until convergence

3. Results and Discussions

3.1. Model Validation. Before conducting the validation, a
sensitivity analysis was first conducted to determine the
number of fracture panels (Nf ) and the number of fracture
segments (Ni) needed to yield accurate results. As we know,
both the number of fracture segment and the number of frac-
ture panels increase with the decrease of conductivity. The
following dimensionless fracture and reservoir data are used
in this model: hD = 2h/Lf = 1, hfD = hf /h = 1, km/kmz = 1,
CfDi = π, kmr = 0:1, and FND = 100, which indicate the case
of low conductivity and strong non-Darcy effect. Figure 3
shows the dimensionless pressure from small to large time
scope under different number of fracture panels. This indi-
cates that the pressure drop approximate a stable and accu-
rate result when the number of panels and segments is
more than 1000 (10 × 100); therefore, the number of fracture
panels of Nf = 10 and the number of fracture segments
Ni = 100 are used in the following studies.

In this section, existing solutions are used to verify our
model. First, the results for finite-conductivity PPVF without
non-Darcy flow effect were compared against results
previously presented by Rodriguez et al. [19], where we set
kmr = 1 and FND = 0 that assume the Darcy flow within frac-
ture. Second, the results for finite-conductivity FPVF with
non-Darcy flow effect using the Forchheimer equation were
compared against the results presented by Guppy et al. [25]
and Luo and Tang [39]; here, the Barree-Conway equation
is simplified to the Forchheimer equation when kmr = 0 and
ðqDNDÞf = FND. Noting that fully penetrated fracture is the

limiting case of our model. As seen in Figure 4, the calculated
results from our model agree well with those published calcu-
lations for times of interest. The validations indicate that the
proposed semianalytical model is reliable in simulating pres-
sure transient response of finite-conductivity PPVF with
non-Darcy effect.

In addition, the speed of the computations of two models
is compared using the identical hardware platform. For the
above simulations, the computation times using the improved
algorithm in this paper and the previous algorithm are, respec-
tively, 19.5 s and 28.8 s.

3.2. Transient-Flow Behavior. Figure 5 shows the dimension-
less pressure and derivative responses of the PPVF with a
moderate conductivity (CfDi = 100π) and a small penetration
ratio (hfD = 0:1) under a weak non-Darcy flow effect
(kmr = 0:5, FND = 100). For the sake of comparison and
description, the corresponding pressure responses caused
by the Darcy flow are also presented. The black lines repre-
sent the non-Darcy case, while the red lines represent the
Darcy case.

As analyzed in Figure 5, the flow regimes are clearly dis-
tinguished by identifying the slopes on log-log curve of
pressure-derivative in the Darcy condition. Five typical flow
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regimes are exhibited in sequence: (1) bilinear-flow period
characterized by a 1/4-slope straight line, (2) formation-
linear flow period identified by a 1/2-slope straight line, (3)
early-radial flow regime, (4) compound-linear flow regime,
and (5) pseudoradial flow regime. A detailed illustration
was presented.

3.2.1. Bilinear flow. The fluids beyond the fracture face in ver-
tical direction are not developed as show in Figure 6(a). An
explicit solution for a FPVF was provided by Cinco-Ley
and Samaniego [40] during bilinear flow:

pwD tDð Þ = π

Γ 5/4ð Þ ffiffiffiffiffiffiffiffiffiffiffi2CfDi
p t1/4D : ð22Þ

For PPVF with non-Darcy flow effect, the fracture
behaves like FPVF with the same height (hf ) during this
period, so the solution is corrected as follows:

hfDpwD tDð Þ = 2πkmhf pi − pwð Þ
qrefμ

= π

Γ 5/4ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2CfD,app
p t1/4D ,

ð23Þ

where CfD,app is a correlation for the apparent fracture
conductivity, which is the function of initial conductivity
(CfDi), the Reynolds number (FND), and the minipermeability

plateau (kmr). After simulating numerous cases, the relation-
ship between apparent and initial (true) conductivities that is
suitable for the special case using the parameters seen in
Figure 5 is achieved, which is

CfD,app
CfDi

= kmr +
1 − kmr

1 + 2:51FND
: ð24Þ

3.2.2. Formation-linear flow. During this period as shown in
Figure 6(a), formation fluid enters the fracture in a direction
perpendicular to the fracture surface, but the pressure
response within fracture is not considered again. Note that
the flow pattern in the fracture exhibits line-shaped during
bilinear and linear flow regimes, which is confirmed in
Figure 7(a). Based on the analytical solution for FPVF pre-
sented by Gil et al. [41], both penetration ratio and non-
Darcy effect are further taken into account in this work.
Similar to the derivation of bilinear-flow solution, we recast
analytical solution for formation-linear-flow period as follows:

hfDpwD tDð Þ =
ffiffiffiffiffiffiffiffi
πtD

p
+ α

CfD,app
, ð25Þ

where α is a constant given by the following: α = π/3 for
CfD ≥ 25, α = 0:944 for 10 ≤ CfD < 25, and α = 0:902 for
5 ≤ CfD < 10 [41].

z

y

x

(a) Bilinear and linear flow

z

y

x

(b) Early-radial flow

z

y

x

(c) Compound-linear flow

Figure 6: Schematic of some special flow regimes occurring during the production for a PPVF.
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3.2.3. Early-radial (ER) flow. If penetration ratio is small
enough, hfD should be smaller than 0.5 suggested by Al-
Rbeawi and Tiab [11]; an ER flow regime is developed around
and along the fracture length in YZ plane. The ER flow regime
is identified by a horizontal line on pressure derivative plot with

tD × pwD′
� �

ER
= 0:5: ð26Þ

During this period, fracture behaves like a finite-
conductivity horizontal well with axis along the formation
boundary, and the reservoir fluids flow radially in YZ plane
towards fracture as seen in Figure 6(b). The effective penetra-
tion length becomes fracture length rather than formation
thickness or fracture height, which is given by

pwD,ER =
pwD
2hD

=
2πkmLf pi − pwð Þ

qrefμ
: ð27Þ

The corresponding horizontal line on derivative curve is
corrected as follows:

tD × pwD,ER′
� �

ER
= 0:5
2hD

: ð28Þ

Note that the flow pattern deviates from the line shaped,
becoming the radial shaped as shown in Figure 7(b).

3.2.4. Compound-linear (CL) flow. CL flow often occurs after
ER flow when both upper and bottom impermeable bound-
aries are felt. The fluid flow is predominantly perpendicular
to the fracture face in XY plane, and the response does not
reach the region beyond fracture tip. The PFVF behaves like
a FFVF during this period, as shown in Figure 6(c). The char-
acteristic of this flow behavior is very similar to the com-
pound linear flow for multistage-fractured horizontal well
presented by Chen and Raghavan [4] and fractured inclined
well presented by Dinh and Tiab [10], which is identified
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Figure 7: Pressure fields within two-dimensional fracture at (a) tD = 10−6 and (b) tD = 10−2.
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by an approximated 1/2-slope straight line on log-log plot of
pressure derivative.

3.2.5. Pseudoradial (PR) flow. During this period, the reser-
voir flow begins to converge radially to the partial fracture.
The flow in XY plane dominates compared with YZ plane;
alternatively, the flow in z-direction can be ignored. The PR
flow is characterized with tD × p’wD = 0:5 on the log-log plot.

Depending on the reservoir, fracture, and non-Darcy
flow parameters used in a single test, the duration of some
flow regime might elongate or shorten, even disappear. The
non-Darcy flow effect leads to extra pressure drop, but can-
not alter the characterization of flow regimes identified by
the Darcy behavior.

3.3. Sensitivity Analysis. According to Eq. (2), the effect of
non-Darcy flow is determined by two dimensionless param-
eters (i.e., kmr and FND) with the Barree-Conway model. It is
assumed that the formation thickness, fracture length, and
initial conductivity are given, i.e., hD = 1, hfD = 0:1, and
CfDi = 100π. To highlight the improvement of this work,
the effect of dimensionless parameters with the Barree-
Conway model and the penetration ratio of fracture are
mainly discussed here because effects of dimensionless
thickness, fracture conductivity, fracture location, and asym-
metrical wellbore have been extensively investigated and
analyzed [17, 25].

Figure 8 shows the influence of non-Darcy flow effect on
transient pressure behavior of PFVF. Figure 8(a) displays the
pressure and derivative curves for FND = 0:1, 1, 10, and 100 at
kmr = 0:1. The Reynolds number (FND) is proportional to
production rate according to Eq. (3). Increasing FND repre-
sents the increase of production rate. Besides, the case that
FND = 0 or kmr = 1 indicates Darcy’s flow equation. The lim-
iting Darcy cases are introduced, which are denoted by blue
dashed lines. Case 5 indicates the pressure responses for the
initial conductivity in the Darcy flow condition, while case
6 indicates the minimum conductivity in the Darcy flow con-
dition (CfD min = CfDi × kmr). For case 1~4, non-Darcy effect
causes a significant reduction in fracture conductivity in sim-
ulated cases. As a result, an extra pressure drop is caused by
non-Darcy effect. Case 4 exhibits a whole sequence of flow
regimes similar to the initial case (case 5) due to a weak
non-Darcy effect. The increasing of FND shortens the dura-
tion of formation-linear flow regime until disappears (i.e.,
case 1 and case 2). Meanwhile, the pressure drop and deriva-
tive curves also increase and approach the minimum case
(case 6) because of strong non-Darcy effect. As a result, the
curves of pressure responses with non-Darcy effect (i.e., case
1~case 4) are distributed within the range between the initial
case (case 5) and the minimum case (case 6). Note that case 1
is almost overlapped with the minimum case for times
of interest.

The flux distribution stabilizes and remain unchanged
when pseudoradial flow is established, which is shown in
Figure 8(b). Note that the flux distribution indicates the
arithmetic average value of flux distribution among fracture
panels. The integral with regard to xfD represents the volume

of fluids entering the fracture. In case 6, most of the flow
occurs from the half of fracture away from the wellbore. With
the FND increasing, the characterization of fluid flow is
approaching the unified case (case 6): the flow from the tips
decreases, and more fluid comes from the half of fracture
closer to the wellbore.

Figure 9(a) plots the curves of pressure responses for
kmr = 0:1, 0.2, 0.5, and 0.9 at FND = 10. Different values of
kmr represent different minimum cases under Darcy flow,
which are denoted by blue dashed lines. The initial case is
denoted by green dashed line. Solid lines indicate the cases
with non-Darcy effect. The non-Darcy cases are located
within the range between the initial case and the minimum
case. As seen in Figure 9(a), as the value of kmr decreases,
the pressure drop and its derivative would deviate from the
initial case and approach the corresponding minimum case
due to intense non-Darcy effect. When the value of kmr
approaches unity, such as case 4, the pressure response of
the minimum Darcy case is similar to the initial Darcy case.
The apparent conductivity for case 4 is always in the order
of magnitude for infinite conductivity during the process of
conductivity degradation. As a result, the effect of non-
Darcy flow tends to disappear. When the value of kmr is rel-
atively smaller, the non-Darcy effect becomes significant.
Figure 9(b) shows the stabilized average flux distribution
along fracture. As the value of kmr decreases with a strong
non-Darcy effect, the apparent conductivity decreases, and
more fluid comes from the half of fracture away from the
wellbore. This is different from the phenomenon described
in Figure 8(b), because the minimum conductivity is differ-
ent, not a unified value.

As analyze from Figures 8 and 9, the dimensionless
parameters of larger FND and small kmr make the non-
Darcy effect more significant. With the consideration of
non-Darcy effect, the apparent fracture conductivity exhibits
different conductivities in the Darcy flow condition when it
actually has only one true value. Figure 10 further investi-
gates the effect of penetration ratio in different conditions
of initial conductivity. The value of FND and kmr is still the
same as that in Figure 10, and the transient pressure and its
derivative show a similar trend. For smaller conductivity
(CfDi = 10π) as shown in Figure 10(a), the pressure drop is
always lower than the minimum Darcy case but higher
than the initial Darcy case all the time in the condition of
hfD = 0:1. However, the non-Darcy case would overlap with
the initial Darcy case in the late-time period in the condi-
tion of hfD = 1. As a comparison, a higher conductivity is
considered as shown in Figure 10(b). The pressure response
of non-Darcy case deviates from the initial Darcy case, but
would overlap with the initial case on the onset of ER flow
regime in the condition of hfD = 0:1. The pressure response
of non-Darcy case might overlap with the initial case on
advance in the condition of hfD = 1.

In summary, the effect of non-Darcy flow has a more sig-
nificant influence on the condition of smaller penetration
and lower initial conductivity. Alternatively, the effect of
non-Darcy flow has a more significant influence on the con-
dition of small penetration.
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3.4. Application to Field Case. The case presents a pressure
drawdown test in an oil well in the Tahe oil field of Xinjiang,
China. The vertical well is hydraulically fractured, and the
fracture is recognized as a partial penetrating vertical fracture

according to the results of microseismic monitoring. The
basic parameters used in this case are summarized in Table 1.

Figure 11 provides the pressure drawdown and its deriv-
ative data on log-log plot. According to the flow regime

10–7 10–6 10–5 10–4 10–3 10–2 10–1 100 101 102
10–3

10–2

10–1

100

101

hD = 1, hfD = 0.1, CfDi = 100𝜋,
 km/kmz = 1, zwD = 0.5 

p
w
D

 &
 d
p
w
D

/d
ln
t D

t
D

Case 6
Case 1
Case 2
Case 3
Case 4
Case 5

Case 1: kmr = 0.1, FND = 100
Case 2: kmr = 0.1, FND = 10
Case 3: kmr = 0.1, FND = 1
Case 4: kmr = 0.1, FND = 0.1
Case 5: Darcy (CfDi = 100𝜋)
Case 6: Darcy (CfDi = 10𝜋)

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
3
4
5
6
7
8
9

10
11
12
13
14
15

q f
D

av
g

x
fD

Case 1: kmr = 0.1, FND = 100
Case 2: kmr = 0.1, FND = 10
Case 3: kmr = 0.1, FND = 1
Case 4: kmr = 0.1, FND = 0.1
Case 5: Darcy (CfDi = 100𝜋)
Case 6: Darcy (CfDi = 10𝜋)

(b)

Figure 8: Effect of the Reynolds number on (a) pressure response and (b) stabilized flux distribution.

Blue dashed line 
Case 1: CfDi = 10𝜋 (minimum)
Case 2: CfDi = 20𝜋 (minimum)
Case 3: CfDi = 50𝜋 (minimum)
Case 4: CfDi = 90𝜋 (minimum) 

Case 1
Case 2
Case 3
Case 4
Case 5

Solid line

Green dashed line
Case 5: CfDi = 100𝜋 (initial)

hD = 1, hfD = 0.1, CfDi = 100𝜋, km/kmz = 1, zwD = 0.5 

p
w
D

 &
 d
p
w
D

/d
ln
t D

10–7 10–6 10–5 10–4 10–3 10–2 10–1 100 101 102
10–3

10–2

10–1

100

101

tD

Case 1: FND = 10, kmr = 0.1
Case 2: FND = 10, kmr = 0.2
Case 3: FND = 10, kmr = 0.5
Case 4: FND = 10, kmr = 0.9

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
3

4

5

6

7

8

9

10

q f
D

av
g

x
fD

Case 1: FND = 10, kmr = 0.1
Case 2: FND = 10, kmr = 0.2
Case 3: FND = 10, kmr = 0.5
Case 4: FND = 10, kmr = 0.9
Case 5: Darcy (CfDi = 100𝜋)

(b)

Figure 9: Effect of the relative minimum permeability on (a) pressure response and (b) stabilized flux distribution.

11Geofluids



identification in Section 3.2, it is shown from the deriva-
tive curve that a wellbore-storage effect is firstly recog-
nized with a unity slope. As a result, the bilinear flow
regime is masked by the wellbore-storage period. Then,
the formation-linear flow regime appears, followed by a

significant ER flow regime. The slope of ER flow is a
negative value not zero, and the value of tD × p’wD is
approximately 0.25. According to Eq. (28), the penetra-
tion ratio is about 1/4, so the fracture height is about
8.125m height. Meanwhile, the negative slope for ER flow
regime satisfies the characteristic of low and moderate con-
ductivity of PPVF as presented in Figure 10(a). Eventually,
the compound-linear flow and pseudoradial flow are found
successively.

To match the entire drawdown data, the effects of
wellbore storage capacity and fracture damage should be
incorporated into our model. Because we use Laplace-domain
solution, the solution accounting for these effects can be flexibly
written as follows:

~powD = s~pwD + Sd
s + CDs2 s~pwD + Sdð Þ : ð29Þ
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Figure 10: Effect of the penetration ratio on pressure response in the condition of (a) low and (b) high conductivity.

Table 1: Reservoir and fluid properties for the well.

Parameter Value Unit

Formation thickness, h 32.5 m

Volume factor, B 1.05

Formation porosity, φ 19.8

Fluid viscosity, μ 2.0 mPa•s

Wellbore radius, rw 0.1 m

Total compressibility, ct 4:7 × 10−4 MPa-1

Production rate, qw 10.0 m3/d
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Through constantly calculating the unknown variables,
Figure 11(b) presents the measured and final simulated pres-
sure drawdown data, and an excellent agreement exists
between the measured and simulated pressure for drawdown
test. This case uses the responses of several different flow
regimes at the same flow rate, instead of the responses of single
flow regimes at two different rates as presented by Guppy et al.
[25]. Nevertheless, the non-Darcy flow responses can be still
matched with the Darcy flow response for a lower conductivity
because of the nonuniqueness problem. If non-Darcy effect is
not considered in the matching denoted by dashed lines, the
dimensionless conductivity (CfDi) is calculated as 125.56.

If non-Darcy effect is considered denoted by solid lines, the
dimensionless initial conductivity (CfDi) is calculated as 204.29
with kmr = 0:187, and FND = 71:56 all the time. The resulting
matching parameters are given in Table 2. Considered that
the production rate of this well is relatively high, the fracture
might be subject to the effects of non-Darcy flow. The tradi-
tional analysis method would result in nearly 40% error in
the estimation of conductivity. The type curves based on the
Darcy model would yield an underestimated conductivity.

4. Conclusions

Based on this work, a semianalytical solution was proposed
for the pressure drawdown analysis of a well with partially
penetrating vertical fracture. From the results of the investi-
gation, several important conclusions need to be emphasized
as follows:

(1) PPVF exhibited five typical flow regimes, including
bilinear flow, formation-linear flow, early-radial flow,
compound-linear flow, and pseudoradial flow. The
corresponding analytical solutions can be presented
by correlating with the penetration ratio and appar-
ent conductivity

(2) The effect of non-Darcy flow makes the fracture con-
ductivity behave lower than its true value. When the
value of kmr approaches unity or when the value of
FND approaches zero, the effect of non-Darcy flow
becomes weak, and the pressure transient responses
approach the initial-Darcy case
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Figure 11: Pressure transient analysis for (a) flow regime identification and (b) type-curve matching of the pressure drawdown data.

Table 2: Type-curve matching results for the drawdown test.

Without non-Darcy effect With non-Darcy effect
Parameter Value Unit Parameter Value Unit

Wellbore storage, C 0.0012 m3/MPa Wellbore storage, C 0.0024 m3/MPa

Skin factor, Sd 0 Skin factor, Sd 0

Fracture conductivity, kf wf 65.99 D•m Fracture conductivity, kf wf 284.86 D•m

Fracture length, Lf 58.4 m Fracture length, Lf 66.4 m

Formation permeability, km 0.018 D Formation permeability, km 0.042 D
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(3) The non-Darcy flow has a more significant influence
in the condition of smaller fracture penetration and
lower initial conductivity. When the penetration
ratio is smaller than 0.5, the pressure behavior exhibit
a more remarkable variation with penetration ratio

(4) The type-curve matching of non-Darcy-flow
responses with type curves without non-Darcy effect
would yield lower estimate of true value of dimension-
less fracture conductivity. As a result, fracture conduc-
tivity and fracture length would be underestimated

Appendix

A. Dimensionless Definitions of Variables

For the sake of simplicity, dimensionless variables in the
model are used. The dimensionless pressures and the dimen-
sionless time are given:

pζD =
2πkmh pi − pξ

� �
qrefμ

, ðA:1Þ

where ξ = f ,m,w:

tD = kmt

φmμcL
2
ref

: ðA:2Þ

The spatial variable in XY plane is defined with regard to
Lref , while spatial variable in z-direction is defined with
regard to formation thickness h:

ζD = ζ

Lref
, ðA:3Þ

where ζ = x, y, Lf , xf , xof , yof :

ςD = ς

h
, ðA:4Þ

where ς = z, zf , zof :
The dimensionless thickness and fracture penetration

ratio are given by

hD = h
Lref

ffiffiffiffiffiffiffi
km
kmz

s
, hfD =

hf
h
: ðA:5Þ

The dimensionless flux density on fracture face, the flux
density along wellbore, and production rate are given, respec-
tively, by

qfD =
qf hLref
qref

,

qwfD =
qwf Lref
qref

,

qwD = qw
qref

:

ðA:6Þ

The relationship satisfies as follows:ðhfD

0

ðLfD

0
qfD xD′ , zD′
� �

dxD′dzD′ =
ðhfD

0
qwfD zD′

� �
dzD′ = qwD:

ðA:7Þ

In this study, we define the reference length and the ref-
erence rate as

Lref =
Lf

2 , qref = qw: ðA:8Þ

B. Computational Consideration for Eq. (10)

Although the Laplace-transformed solutions have great advan-
tage in calculating the convolution, they usually pose computa-
tional problem. Some alterative solutions must be developed to
accelerate the speed of the computations and improved the
accuracy. When yD − yofD = tan ðθf Þ × ðxD − xofDÞ, the inte-
grals of Bessel functions appear in the terms of the infinite
series, this is

Ki1 xð Þ =
ð∞
x
K0 x′
� �

dx′: ðB:1Þ

The term could converge quickly in the infinite series.
When x = 0, K i1 = π/2, There would be an infinite series con-
taining constant term, which is

〠
∞

m=1

ðzofDn+hfDn

zofDn

cos mπzDð Þ cos mπαð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s +m2π2/h2D

q dα: ðB:2Þ

The convergence of the series in Eq. (B.2) is slow. From a
computational viewpoint, a more tractable formulation might
be developed if we recast Eq. (B.2). In other words, it is impor-
tant to ensure the convergent and vanishing components of the
infinite series. Equation (B.2) should be recast as the following
expression:

Eq: B2ð Þ = hD
2π 〠

2

k=1

ðzofDn+hfDn

zofDn

K0
ffiffi
s

p
εk

� �
dα

(

+ 〠
4

k=1
〠
∞

m=1

ðzofDn+hfDn

zofDn

K0
ffiffi
s

p
εk,m

� �
dα

)
−
hfDn
2 ffiffi

s
p :

ðB:3Þ
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Here, the terms of εk and εk,m are given, respectively

ε1 = zD − αj jhD
ε2 = zD + αj jhD

(
,

ε1,m = zD − α − 2mj jhD
ε2,m = zD + α − 2mj jhD
ε3,m = zD − α + 2mj jhD
ε4,m = zD + α + 2mj jhD

8>>>>><>>>>>:
:

ðB:4Þ

The series on the right side of Eq. (B.3) could converge rap-
idly since K0ðxÞ approaches zero rapidly as x becomes large.

Equation (B.3) would be further recast into the following
form:

lim
s→0

〠
∞

n=1

ðzofDm+hfDm

zofDm

cos nπzDð Þ cos nπαð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s + n2π2/h2D

q dα

= −
hD
4π

ðzofDm+hfDm

zofDm

ln 2 − 2 cos πzD ± παð Þ½ �dα,
ðB:5Þ

which is the well-known Lobachevsky function. The refor-
mulation of Eq. (B.2) noted in Eq. (B.3) to Eq. (B.5) is the
important step of efficient algorithm.

Nomenclature

Field Variables

ct : Compressibility, Pa-1

C: Wellbore storage, m3/Pa
CfD: Dimensionless conductivity
CfDi: Initial dimensionless conductivity in the Darcy

condition
CfD,app: Apparent dimensionless conductivity in the non-

Darcy condition
FND: Reynolds number, dimensionless
G(): Integral of stepwise function
H(): Stepwise function
h: Formation thickness, m
K0(): Zero-modified Bessel function of the second type
k: Permeability, m2

kmr: Dimensionless relative minimum permeability
L: Length, m
Nf : Number of fracture panel, dimensionless
Ni: Number of fracture segment, dimensionless
p: Pressure, Pa
pow: Wellbore pressure considering wellbore storage and

skin, Pa
pw: Wellbore pressure, Pa
pu: Pressure drop under unit-rate condition, Pa
q: Flux density along fracture in reservoir system, m2/s
qf : Flux density along fracture in fracture system, m2/s
qwf : Production rate of fracture, m3/s
qcf : Cross-section rate within fracture, m3/s

s: Laplace variable, dimensionless
Sd : Skin factor, dimensionless
t: Time, s
v: Velocity, m/s
wf : Fracture width, m
x: x-direction coordinate of reservoir system, m
xf : x-direction coordinate of fracture system, m
y: y-direction coordinate of reservoir system, m
z: z-direction coordinate of reservoir system, m
zf : z-direction coordinate of fracture system, m
α: The Biot coefficient, dimensionless
β: Non-Darcy flow coefficient, Pa·s2/g
κ: Number of iterative, dimensionless
ρ: Fluid density, g/m3

φ: Porosity, dimensionless
ξ: Transformed dimension, m
τ: Characteristic length, m
μ: Viscosity, Pa·s
Γ(): Gamma function.

Subscripts

app: Apparent
D: Dimensionless
f : Fracture
f D: Fracture and Darcy
m: Matrix
w: Well
ref: Reference
i: Initial
of: Endpoint
m,n: Count number of fracture panel
i,j: Count number of fracture segment.
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