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The prediction of the grouting volume is a very important task in the grouting quality control. Because of the concealment and
complexity of the karst curtain grouting engineering, there is little research on the prediction of the karst curtain grouting
volume (KCGV), and the prediction is hindered by the practical problems of small samples, high dimensions, and nonlinearity.
In the study, based on the basic idea of support vector machine (SVM), a multiparameter comprehensive intelligent prediction
method of the KCGV is proposed, which overcomes the limitation of few sample data in practical engineering. This method
takes the grouting construction conditions and the slurry conditions which control the slurry diffusion as the input parameters,
which are the basic data which can be easily obtained in the field grouting process. This feature greatly improves the prediction
accuracy and generalization performance of the method. The intelligent prediction method of the KCGV based on SVM is
applied to a typical karst curtain grouting project. The mean absolute error of the prediction results is 3.47 L/m, and the mean
absolute percentage error of the prediction results is 5.97%. The results show that the proposed prediction method has an
excellent prediction effect on the KCGV and can provide practical and beneficial help for the field karst curtain grouting project.

1. Introduction

Karst landforms are widely distributed in southwest China
[1, 2]. In these karst developed areas, the antiseepage of karst
strata is a common challenge [3–8]. In the current theoretical
analysis, numerical simulation, and experimental study of
rock cracks [9–31], there is little research on karst cracks
and their leakage. The grouting method has been more and
more widely used as an effective means to control water leak-
age disasters [32–36]. Karst curtain grouting is a reliable
method to solve the problem of karst leakage according to
the special conditions of the karst area [37]. The karst curtain
grouting volume (KCGV) is an important parameter in the
design and construction of karst curtain grouting engineer-
ing, which directly affects the quality and antiseepage effect

of karst curtain grouting [38]. Therefore, the scientific and
accurate prediction of the KCGV will provide more quality
control information for karst curtain grouting engineering.

The traditional methods for predicting grouting volume
can be divided into two categories. One is the artificial empir-
ical prediction method, which is basically based on the
engineering experience of technicians and depends on the
artificial experience to predict the grouting volume.
Sohrabi-Bidar et al. [39] established an empirical estimation
method of grouting volume by taking the Bakhtiari dam site
as a case study. Gustafson and Stille [40] established a predic-
tion method of grouting volume in grouting construction
based on empirical knowledge according to grouting charac-
teristics and hydrogeological data. However, due to the
roughness and difference of empirical estimation, the results
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will have a great impact on the quality and cost of the project.
The other is the traditional statistical prediction method,
which mainly uses regression cluster analysis to establish a
prediction model on the basis of collecting a large number
of grouting data. Sadeghiyeh et al. [41] established a statisti-
cal prediction model of grouting volume on the basis of sta-
tistics on the permeability and groutability of rock mass at
the Ostur dam site. Song and Liu [42] obtained the prediction
model of grouting volume in the karst area based on the sta-
tistics of curtain grouting data of the Zhongguan ironmine in
recent three years. However, the application effect of this
kind of method is not very ideal, and there is no good
application promotion.

With the emergence of an intelligent algorithm, the intel-
ligent grouting prediction method has been applied to the
prediction of grouting volume. In this method, artificial intel-
ligence is applied to the grouting engineering of rock mass,
and the intelligent prediction model of grouting volume is
established based on all kinds of intelligent algorithms to
realize the prediction of grouting volume. According to the
commonly used intelligent algorithms, this kind of method
includes the fuzzy theory prediction method, the grey theory
prediction method, and the neural network prediction
method. Chen and Tao [43] established a fuzzy comprehen-
sive evaluation model for the optimization of a grouting
scheme to predict grouting volume. Cheng and Hoang [44]
established an evolutionary fuzzy k-nearest neighbor infer-
ence model to predict grouting volume. Markou et al. [45,
46] used the fuzzy linear regression method to estimate
grouting volume. However, because the membership degree
and the weight of the index of the fuzzy theory prediction
method are not easy to be determined, and the evaluation
results obtained by different evaluation models are different,
the fuzzy theory prediction method has many shortcomings
and does not have good practicability in engineering practice.
Li and Shen [47] used the grey theory prediction model to
predict grouting volume. However, the grey theory predic-
tion method is mainly based on a large number of grouting
data and does not consider the grouting mechanism, so its
science and feasibility need to be verified. Wang and Hao
[48] proposed and established a genetic neural network
model for solving grouting volume, and the genetic neural
network method was used to predict grouting volume. Hao
et al. [49] introduced the backpropagation neural network
and the information diffusion method into grouting practice
to predict grouting volume. Tekin and Akbas [50, 51] con-
structed the artificial neural network model and the adaptive
neurofuzzy inference system model to predict grouting vol-
ume. Liao et al. [52] developed the radial basis function neu-
ral network to predict the grouting volume of infiltration
grouting. However, the neural network prediction method
lacks a unified mathematical basis, and its structure selection
and initial value setting of weights need the help of experi-
ence, and the model obtained is usually a local optimal
solution rather than a global optimal solution, so its general-
ization performance is poor. In addition, this method is a
learning method based on large samples, and only enough
learning samples can train a prediction model with high
accuracy. The actual situation is that there cannot be enough

learning samples in the process of the grouting test and con-
struction, and there are only small sample data in most cases.
Therefore, the reliability of the neural network prediction
method is poor.

To sum up, there are many irrationalities in the existing
prediction methods of grouting volume in grouting engineer-
ing, and there is little research on the prediction of the
KCGV. In addition, due to the concealment and complexity
of the karst curtain grouting project, the sample data in the
actual project is very limited. Moreover, most of the factors
affecting the KCGV are random and uncertain, and many
of them often influence each other, resulting in great discrete-
ness of grouting data. As a result, there is a complex nonlin-
ear relationship between the KCGV and its influencing
factors. It shows that the prediction of the KCGV is faced
with the problems of small samples, high dimensions, and
nonlinearity. Therefore, it is necessary to put forward a new
and more reliable method to predict the KCGV.

In machine learning methods, the support vector
machine (SVM) is a very effective tool to solve learning and
prediction problems in complex situations [53]. Verbiest
et al. [54] pointed out that the SVM algorithm is one of the
most powerful, popular, and accurate classifiers. At present,
SVM has been widely used in civil engineering to solve the
problems of classification and regression prediction [55–
58]. The SVM model even has excellent performance in
solving practical problems such as small samples, high
dimensions, and nonlinearity [59, 60]. Therefore, SVM can
be used to predict the KCGV.

In this paper, SVM is introduced into the prediction of
the KCGV, and the main factors affecting the KCGV are
selected as prediction factors. Based on these, an intelligent
prediction method of the KCGV based on SVM is proposed.
The method comprehensively considers the influence factors
such as grouting construction conditions and slurry condi-
tions and overcomes the obstacles of limited sample data,
high dimensions, and nonlinearity in practical engineering,
which greatly improves the prediction accuracy. The ratio-
nality and applicability of the proposed method are verified
by a typical karst curtain grouting project.

2. Methodology

2.1. SVM. SVM is a general machine learning method based
on the statistical learning theory, which has a good generali-
zation performance for the statistical learning problems with
small samples. The learning method of SVM is established
according to the structural risk minimization criterion, and
its algorithm is a convex quadratic optimization problem,
which ensures that the obtained solution is the global optimal
solution. The basic idea of SVM is to map the input space to a
high-dimensional feature space based on the nonlinear trans-
formation defined by the kernel function and to find a
nonlinear relationship between input variables and output
variables in this high-dimensional space. The basic structure
of SVM is shown in Figure 1.

For the regression problem of SVM, the problem of
fitting the data ðxi, yiÞ ði = 1, 2,⋯,n, xi ∈ Rn, yi ∈ RÞ with the
linear fitting function f ðxÞ = ω x + b should be considered

2 Geofluids



first. Suppose that all training data are fitted with a linear
function without error under ε precision, that is,

yi − ω xi − b ≤ ε

ω xi + b − yi ≤ ε

(
i = 1, 2,⋯,nð Þ, ð1Þ

where ω is the weight vector, b is the threshold, xi is the input
vector of the ith sample, yi is the target value of the ith
sample, and n is the sample size.

The optimization goal is to minimize 1/2kωk2. According
to the statistical learning theory, a better generalization abil-
ity can be achieved under this optimization goal. Considering
the fitting error, the relaxation factors ξi ≥ 0 and ξ∗i ≥ 0 are
introduced. Equation (1) can be changed as follows:

yi − ω xi − b ≤ ε + ξi

ω xi + b − yi ≤ ε + ξ∗i

(
i = 1, 2,⋯,nð Þ: ð2Þ

The actual risk considered by the SVM structure is a
combination of empirical risk and confidence range. It is nec-
essary to control the complexity of the function to reduce the
confidence range, which is to make the regression function
the flattest. Therefore, the optimization goal is to minimize
Equation (3) given as follows:

Φ ω, b, ξi, ξ∗i
� �

= 1
2 ωk k2 + C〠

n

i=1
ξi + ξ∗i
� �

, ð3Þ

where CðC > 0Þ is the penalty parameter, which indicates the
degree of punishment for samples that exceed error ε.

The above optimization problem is transformed into its
dual problem by introducing Lagrange multiplier αi, α∗i ði =
1, 2,⋯,nÞ. The solution goal is to maximize Equation (4)
given as follows:

W α, α∗ð Þ = −
1
2 〠

n

i,j=1
αi − α∗ið Þ αj − α∗j

� �
xi xj
� �

+ 〠
n

i=1
yi αi − α∗ið Þ − ε〠

n

i=1
αi + α∗ið Þ:

ð4Þ

The constraint is Equation (5) given as follows:

〠
n

i=1
αi − α∗ið Þ = 0 0 ≤ αi, α∗i ≤ C, i = 1, 2,⋯,nð Þ: ð5Þ

Based on the maximization function above, the regres-
sion function of SVM is as follows:

f xð Þ = ω x + b = 〠
n

i=1
αi − α∗ið Þ x xið Þ + b: ð6Þ

For a nonlinear problem, the original problem can be
mapped into a linear problem in the high-dimensional fea-
ture space by the nonlinear transformation, and then, it can
be solved. In the high-dimensional feature space, the inner
product operation in linear problems can be replaced by ker-
nel functions, that is,

K xi, xj
� �

=Φ xið Þ ⋅Φ xj
� �

: ð7Þ

Kernel functions can be realized by functions in the orig-
inal space, so it is not necessary to know the specific form of
nonlinear transformation. In this way, the nonlinear function
regression problem can be transformed into maximizing
Equation (8) given below under the constraint equation (5):

W α, α∗ð Þ = −
1
2 〠

n

i,j=1
αi − α∗ið Þ αj − α∗j

� �
K xi, xj
� �

+ 〠
n

i=1
yi αi − α∗ið Þ − ε〠

n

i=1
αi + α∗ið Þ:

ð8Þ

The obtained regression function of SVM is as follows:

f xð Þ = 〠
n

i=1
αi − α∗ið ÞK x, xið Þ + b: ð9Þ

The commonly used kernel functions mainly include

(1) the polynomial kernel function given as follows:

Output layer

Hidden layer

Input layer

Prediction result

Kernel function. . .

. . . . . . Prediction factors

K(X, X1)

X1 X2 XnX

K(X, X2)

Y

K(X, Xn)

Figure 1: The basic structure of SVM.
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K x, yð Þ = xy + 1ð Þd d = 1, 2,⋯,nð Þ ð10Þ

(2) the radial basis function kernel given as follows:

K x, yð Þ = exp −
x − yk k2
σ2

� �
ð11Þ

(3) the Sigmoid kernel function given as follows:

K x, yð Þ = th Φ xyð Þ + θ½ � ð12Þ

In the high-dimensional nonlinear spaces, the radial basis
function kernel can usually obtain satisfactory results [61,
62].

2.2. The PredictionMethod of the KCGV Based on SVM.After
the karst curtain grouting is completed, the volume of slurry
injected per unit length of grouting hole is called the karst
curtain grouting volume (KCGV). It reflects the difficulty
level of grouting and whether the rock mass can be grouted.
The KCGV is affected by many factors. In this paper, the rep-
resentative parameters are selected as prediction factors from
many influencing factors. These main influencing factors
include the grouting time (T), the length of grouting section
(L), the grouting pressure (P), the grouting flow rate (Q), and
the water : cement ratio of slurry (W : C). These main
influencing factors can basically reflect the two control con-
ditions of slurry diffusion, namely, grouting construction
conditions and slurry conditions.

Because the relationship between the KCGV and its main
influencing factors is often not a simple linear relationship, it
is difficult to use a linear mathematical equation to express
the relationship between them. The study combines the basic
idea of SVM with the main factors affecting the KCGV and
uses SVM to express the mapping relationship between the
KCGV and its main influencing factors; that is, the nonlinear
relationship between the KCGV and its main influencing fac-
tors can be expressed by the SVM function Sðx1, x2,⋯,xnÞ
given as follows:

Y = S Xð Þ,
S Xð Þ: Rn → R,

(
ð13Þ

where X = ðx1, x2,⋯,xnÞ are the main factors affecting the
KCGV, that is, the grouting time (T), the length of grouting
section (L), the grouting pressure (P), the grouting flow rate
(Q), the water : cement ratio of slurry (W : C), and Y is the
KCGV.

In order to establish the nonlinear mapping relationship
between the KCGV and its main influencing factors X = ðx1
, x2,⋯,xnÞ, the existing grouting sample data are used for
learning. According to the SVM theory, the nonlinear

approximation function between the KCGV and its main
influencing factors is as follows:

S Xð Þ = 〠
n

i=1
αi − α∗ið ÞK x, xið Þ + b, ð14Þ

where SðXÞ represents the grouting volume corresponding to
the main influencing factors of the KCGV, n is the number of
learning samples, Kðx, xiÞ is the kernel function, and αi, α∗i
are the Lagrange multipliers of SVM, 0 ≤ αi, α∗i ≤ C, C is the
penalty parameter.

In this study, the proposed prediction method of the
KCGV based on SVM is shown in Figure 2, which mainly
includes three parts: the acquisition of input parameters,
the establishment of the intelligent prediction model based
on SVM, and the output of model application.

Step 1. determines two types of input parameters that affect
the KCGV. These parameters are based on the data of the
grouting process and the slurry properties obtained from
the field grouting. The grouting construction condition
parameters can be obtained from the grouting process data,
including the grouting time (T), the length of grouting sec-
tion (L), the grouting pressure (P), the initial grouting flow
rate (Qi), and the end grouting flow rate (Qe). The slurry con-
dition parameters can be obtained from the slurry property
data, including the initial water : cement ratio of slurry
(W : Ci) and the end water : cement ratio of slurry (W : Ce
). The input parameters in this study are the basic data that
can be easily obtained in the process of field grouting and
do not need too much exploration testing and calculation.
Therefore, the prediction method has good generalization
performance.

Step 2. establishes an intelligent prediction model based on
SVM. The procedures are (1) to input the selected grouting
data set as learning samples; (2) to select SVMmodel param-
eters according to learning samples, including kernel func-
tion selection and penalty parameter selection; and (3) to
study and train according to needs and establish an SVM pre-
diction model.

Step 3. applies the established intelligent prediction model to
the actual projects. The KCGV can be predicted. By compar-
ing and analyzing the predicted value and the actual value,
the rationality and applicability of the model can be verified.

3. Verification

3.1. The Typical Karst Curtain Grouting Project. The typical
case of karst curtain grouting project is the antiseepage cur-
tain grouting project of the Panlong lead-zinc mine, a protec-
tive project in the reservoir area of the Datengxia water
control project in Guangxi, China. The Datengxia water con-
trol project is a large-scale water conservancy project with
comprehensive utilization of flood control, shipping, power
generation, and irrigation. The normal water level of the res-
ervoir is 61.0m. After the water storage of the Datengxia
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water control project, the return water level of Qianjiang
river on the east side of the Panlong lead-zinc mine will reach
61.5m, and the reservoir leakage will affect the production
safety of the Da-Ling section of the Panlong lead-zinc mine.
Therefore, an antiseepage curtain is arranged on the east side
of the mining area of the Da-Ling section to prevent the
influence of the river uplift of Qianjiang river on mine pro-
duction. The plane position of the axis of the antiseepage cur-
tain is shown in Figure 3.

According to the geological data of the field geological
survey, the Shanglun formation aquifer of the lower Devo-
nian is the direct water-filled aquifer of the Da-Ling section
of the Panlong lead-zinc mine, which is the curtain protec-
tion section of the antiseepage curtain project. The condition
of the strata revealed by the grouting holes and the observa-
tion holes on both sides of the curtain shows that the karst
in the construction site of the curtain grouting project is
mainly developed in dolomite. The statistical results of karst
revealed by drilling are shown in Figure 4.

The water-pressure test before grouting is carried out in
the grouting holes in the karst area of Shanglun formation
on the curtain line. The statistical results of the subsection
and subelevation of the water-pressure test of the Shanglun
formation on the curtain line are shown in Figure 5.

As shown in the above figures, the degree of karst devel-
opment and the water permeability of rock strata decrease
gradually with the increase of the depth of strata. By compar-
ing and analyzing the degree of karst development and the
results of the water-pressure test, it can be concluded that,
in the dolomite stratum of Shanglun formation, the section
above the elevation of -80m is the section of the fracture-
karst cave water with strong permeability, the section of the

elevation of -80 to -120m is the section of the karst cave-
fissure water with medium permeability, and the section
below the elevation of -120m is the section of the karst fissure
water with weak permeability.

3.2. Method Verification. The purpose of the part is to verify
the rationality and applicability of the proposed prediction
method of the KCGV by the field test of the typical karst cur-
tain grouting project. In the karst curtain grouting test, a typ-
ical section which can generally represent the characteristics
of karst development in the grouting area is selected as the
field grouting test section. The karst curtain grouting test sec-
tions include two sections with different characteristics of
karst development. Among them, the northern grouting test
section represents the area of strong karst development,
while the southern grouting test section represents the area
of weak karst development. The plane layout and profile of
the northern and southern grouting test sections are shown
in Figures 6 and 7.

The grouting technology and parameters used in the
karst curtain grouting test are determined according to the
actual conditions of the construction area and the practice
of similar karst curtain grouting projects. The grouting test
section is arranged with double rows of linear grouting holes,
and the row spacing of the grouting holes is 3m. First, a row
of grouting holes on the side of the mining area is con-
structed, and then, a row of grouting holes on the side of
Qianjiang river is constructed. Each row of grouting holes
is constructed in two sequences. The grouting I sequence hole
is constructed first, and then, the grouting II sequence hole is
constructed. In the grouting test, the top of the curtain is the
position, which is 2m above the boundary between the rock

Data collection

Grouting construction conditions

Slurry conditions

Data set

T, L, P, Qi, Qe

W : Ci, W : Ce

W:Ci W:Ce

Model application

Karst curtain grouting volume
Output

T L P

Input

SVM intelligent prediction model

y

. . .

. . . . . .

K(X, X1)

X1

Qi Qe

X2 XnX

K(X, X2) K(X, Xn)

Figure 2: The prediction method of the KCGV based on SVM.
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and soil, and the bottom of the curtain is at the elevation of
-150m. The initial diameter of the grouting hole is not less
than 110mm, and the end diameter of the grouting hole is
not less than 75mm. The grouting method is the
downward-sectional pure-pressure grouting method. The
grouting material is the ordinary cement slurry. First, the
slurry with lower concentration is used, and then, the con-
centration of the slurry increases step by step with the process
of grouting, and finally, the grouting is finished by the slurry
with higher concentration. The inspection standard of karst
curtain grouting quality is that when the water permeability
of a single inspection hole obtained by the water-pressure test
is not more than 5Lu, it is considered that the grouting qual-
ity is better and meets the quality acceptance standard.

In the study, 56 groups of grouting data are selected from
the field grouting test of the karst curtain grouting project,

and an intelligent prediction model of the KCGV is estab-
lished. There are 28 groups of grouting data in the northern
grouting test section (a section with strong karst develop-
ment) and 28 groups of grouting data in the southern grout-
ing test section (a section with weak karst development). The
grouting time (T), the length of grouting section (L), the
grouting pressure (P), the grouting flow rate (Q), and the
water : cement ratio of slurry (W : C) are taken as the input
parameters of the sample, and the KCGV is taken as the out-
put parameter of the sample. 44 groups of grouting data are
randomly selected as the learning samples of the prediction
model, and the remaining 12 groups of grouting data are
used to test the established model. The regression analysis
adopts the SVM algorithm in the machine learning library
of the Python programming language, which realizes the
establishment of the SVM prediction model by giving the

Mining area

Curtain axis

Qianjiang river

D1Sl

D1Sl

Fe.Mn

Ba

Ba

Ba

Fe.Mn

D1Sl

D1y

D1y

D1g

D1e

D1g

D1g

D1e

D1n

Figure 3: The plane position of the axis of the antiseepage curtain.
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kernel function and penalty parameter, inputting the training
samples and completing the regression calculation automat-
ically. In the study, the data set for training and testing is
shown in Table 1. The numerical statistics of input and out-
put parameters are shown in Table 2. The box diagrams of
the influencing factors are shown in Figure 8.

As can be seen from Table 2 and Figure 8, the data of L,
W : Ci, W : Ce, and P are relatively fixed and regular,
whereas the data of T , Qi, and Qe are scattered.

As mentioned above, 56 groups of grouting data are ran-
domly divided into two parts: 44 groups of grouting data of
which are the training samples and 12 groups of grouting
data of which are the verification samples. The training sam-
ples are used to construct the prediction model, whereas the

test samples are used to evaluate the performance of the
model. In the study, after testing all kinds of kernel functions,
the radial basis function is selected as the kernel function, so
the hyperparameters of the SVM model are the kernel func-
tion parameter σ and the penalty parameter C. The smaller
the kernel function parameter σ is, the smaller the regression
risk is, and the smoother the regression function curve is, but
the greater the structural risk is. The larger the penalty
parameter C is, the greater the penalty for the misclassifica-
tion of the approximation function SðXÞ of SVM is, and the
training accuracy is controlled by C. The Grid-Search
method in the Python programming language is used to
obtain the best hyperparameters. The Grid-Search method
is a parameter adjustment method for exhaustive search.
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After the range and step of σ and C are given, the Grid-
Search method traverses the regression score in each case
by the double-loop traversal means. When the optimal score
is selected, the best hyperparameters C is 40 and σ is 1.118.
The established intelligent prediction model is used to pre-
dict the KCGV. By comparing and analyzing the predicted
value and the actual value of the KCGV (Figure 9), it can
be seen that the predicted value is very consistent with the
actual value. According to the prediction performance indi-
cators of the KCGV (Figure 10), the mean absolute error of
the prediction results is 3.47 L/m, and the mean absolute per-
centage error of the prediction results is 5.97%; as a result, the
prediction accuracy meets the engineering requirements.
These show that the established intelligent prediction model
of the KCGV based on SVM has excellent prediction effect on
the KCGV and can provide practical and beneficial help for
the on-site grouting engineering.

4. Discussion

In fact, the karst curtain grouting has been one of the most
complicated processes in the civil engineering field. Many
factors will affect the determination of the KCGV. These
influencing factors have the characteristics of randomness
and uncertainty, and many of them often influence each
other, which leads to a complex nonlinear relationship
between the KCGV and its influencing factors. It is difficult
to generalize this relationship by using an explicit mathemat-
ical regression expression. Therefore, the establishment of a
scientific multiparameter comprehensive intelligent predic-
tion model of the KCGV is of great significance to the intel-
ligent development of grouting technology.

At present, the commonly used intelligent prediction
methods of the KCGV include the fuzzy theory prediction
method, the grey theory prediction method, and the neural
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Figure 6: The plane layout and profile of the northern grouting test section.
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Figure 7: The plane layout and profile of the southern grouting test section.
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Table 1: The data set for training and testing.

Group
number

T
(min)

L
(m)

W : C
P

(MPa)

Q The KCGV
Notes

W : Ci W : Ce
Qi

(L/min)
Qe

(L/min)
Actual value

(L/m)
Predicted value

(L/m)

1 81 30 3 1 3.5 103.5 16.5 150.96 —

The training
samples

2 81 20 3 1 0.8 124.5 5.1 238.79 —

3 65 30 5 2 5 91.6 13.7 110.63 —

4 41 30 5 5 3.5 31.5 10.3 31.76 —

5 71 30 5 2 3.5 122.1 13.4 124.07 —

6 50 30 5 5 5 48.6 13.6 43.74 —

7 85 30 5 2 3 95.2 11.5 152.9 —

8 14 23.2 0.5 0.5 3.2 22.6 20.5 13.12 —

9 41 30 5 3 2.5 31.5 20.7 35.58 —

10 56 30 5 5 3.5 45.1 20.4 57.32 —

11 41 30.61 5 3 5 31.1 17.4 34.18 —

12 55 30 5 5 4 64.5 16.2 65.46 —

13 85 20 5 1 0.8 98.8 10.9 205.94 —

14 41 31.7 5 5 1.5 32.1 19.5 34.12 —

15 41 30 5 5 4.5 42.3 14.8 34.9 —

16 66 30 5 2 2.5 99.1 15.4 105.89 —

17 13 25.3 0.5 0.5 3.2 18 16.7 8.68 —

18 65 30.5 5 2 5 89.8 12.5 107.25 —

19 50 35.5 5 3 1.5 57.8 12.8 42.5 —

20 65 30 5 2 5 96.1 14.4 101.47 —

21 12 27.7 0.5 0.5 3.2 21.3 22.1 9.39 —

22 45 30.4 5 5 5 54.5 14.2 43.07 —

23 65 30 5 2 5 108.2 16.5 115.23 —

24 45 30 5 3 2.5 55.2 10.5 41.16 —

25 51 30.88 5 2 5 59.1 10.1 45.91 —

26 66 30.37 5 2 5 110.1 13.4 107.62 —

27 66 30 5 2 1.5 100.5 16.6 108.22 —

28 65 30.5 5 2 5 89.8 12.8 106.76 —

29 81 30 5 2 2.5 104.6 10.1 144.52 —

30 66 30 5 2 3.5 109.1 13.7 109.29 —

31 12 21.5 0.5 0.5 3.2 18.1 14.4 8.94 —

32 66 19 5 2 0.8 80.5 13.8 147.99 —

33 82 30 5 2 2.5 82.1 12.4 124.9 —

34 80 30 5 2 1.5 75.6 10 112.31 —

35 47 30 5 3 2.5 33.6 15.4 38.29 —

36 85 19.5 5 1 0.8 56.2 8.6 129.77 —

37 67 30 5 2 1.5 61.4 2.5 62.06 —

38 46 30 5 3 3 58.4 10.9 43.06 —

39 56 30 5 5 2.5 43.1 17.4 55.44 —

40 46 30 5 5 2 53.4 6.5 38.49 —

41 76 30 5 2 3.5 112.4 13.2 142.88 —

42 61 33.8 5 2 1.5 56.3 14.3 60.89 —

43 50 30 5 3 3 43.4 14.5 49.79 —

44 55 30 5 2 1.5 112.4 15 99.08 —

45 65 30 5 2 3.5 98.2 15.8 107.53 108.96

The test samples46 47 30 5 5 3.5 58.9 13.1 43.37 44.06

47 65 30.5 5 2 5 110.2 16.8 112.51 110.66
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network prediction method. Because the degree of member-
ship and the weight of the index of the fuzzy theory predic-
tion method are not easy to be determined, and the
evaluation results obtained by different evaluation models
are significantly different, the fuzzy theory prediction
method is not very practical in engineering practice. The grey
theory prediction method is mainly based on a large number
of grouting data and does not consider the grouting mecha-

nism, so its science and feasibility need to be verified. The
neural network prediction method is a learning method
based on large samples. Only with enough learning samples
can it train a prediction model with high accuracy, but it is
impossible to have enough learning samples in engineering
practice, and in most cases, it is faced with small sample data.
Moreover, the learning speed and efficiency of the method
are slow, and the obtained result is usually the local optimal

Table 1: Continued.

Group
number

T
(min)

L
(m)

W : C
P

(MPa)

Q The KCGV
Notes

W : Ci W : Ce
Qi

(L/min)
Qe

(L/min)
Actual value

(L/m)
Predicted value

(L/m)

48 58 30.96 5 3 5 53.1 13.1 55.7 58.06

49 41 30 5 3 3.5 33.1 19.3 34.85 38.01

50 65 30 5 2 3.5 92.6 12.3 109.97 112.34

51 50 30 5 3 3 55.4 11.8 52.71 47.91

52 72 30 3 1 2.5 99.8 18.1 128.62 124.31

53 50 30.3 5 5 1.5 67.5 11.6 54.32 58.15

54 65 30 5 2 5 90.6 13.3 109.96 105.73

55 65 30 5 2 3.5 90.8 12.5 110.09 111.29

56 48 30 5 5 5 55.6 10.6 42.21 53.66

Table 2: The numerical statistics of input and output parameters.

Parameter Unit Minimum Mean Maximum Standard deviation Notes

T min 12 56.95 85 17.91

Input

L m 19 29.15 35.5 3.27

W : Ci — 0.5 4.57 5 1.23

W : Ce — 0.5 2.63 5 1.42

P MPa 0.8 3.20 5 1.35

Qi L/min 18 70.55 124.5 30.35

Qe L/min 2.5 13.81 22.1 3.75

The KCGV L/m 8.68 82.25 238.79 49.95 Output
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Figure 8: The box diagrams of the influencing factors.
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solution rather than the global optimal solution. Therefore,
the reliability and generalization performance of the neural
network prediction method are poor. All in all, the applica-
tion effect of the existing main intelligent prediction methods
of the KCGV is not ideal, which leads to the lack of good
application promotion.

The intelligent prediction method of the KCGV proposed
in this study combines the basic idea of SVM, which solves
the problems of few sample data, high dimensions, and non-
linearity encountered in the actual karst curtain grouting
engineering, and greatly improves the performance of the
prediction model. In the process of establishing the model,
the hyperparameters (C, σ) of SVM have a great influence
on the prediction results, and their reasonable determination
directly affects the accuracy and generalization ability of the
model. Because the manual search method used to find the
parameters of SVM has great blindness, it cannot guarantee

that the found hyperparameters are the optimal hyperpara-
meters. In the study, the Grid-Search method in the Python
programming language is used to obtain the optimal hyper-
parameters (C, σ). The Grid-Search method is a parameter
adjustment method for exhaustive search. After the range
and step of the kernel function parameter σ and the penalty
parameter C are given, the Grid-Search method traverses
the regression score in each case by the double-loop traversal
means. When the best score is selected, the optimal hyper-
parameters (C, σ) will be obtained. It ensures the prediction
accuracy of the model.

In addition, the input factors selected in the study reflect
the two control conditions of the slurry diffusion, namely, the
grouting construction conditions and the slurry conditions.
These parameters are the basic data that can be easily
obtained in the process of field grouting and do not need
too much exploration test and calculation. Moreover, the
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data source is reliable, the cost is low, and it has strong engi-
neering pertinence and obvious technical feasibility. At the
same time, the obtained results are relatively reasonable.
Therefore, the proposed prediction method of the KCGV
has good applicability and generalization for the karst curtain
grouting engineering and can meet the needs of design, con-
struction, and theoretical research of the karst curtain
grouting.

In the future research, if the intelligent prediction model
of the KCGV based on SVM is embedded into a real-time
grouting monitoring system, the real-time guidance can not
only avoid the fact that the curtain cannot meet the antisee-
page standard of the curtain grouting design due to the lack
of grouting volume in the process of grouting construction
but also avoid the waste of grouting materials caused by
excessive grouting volume. It will help the builders in the
grouting site to take control of the grouting quality in a more
timely and comprehensive fashion.

5. Conclusions

In order to overcome the limitation of the prediction
methods of grouting volume commonly used in the karst
curtain grouting engineering at present, in this study, the
main factors affecting the KCGV are selected as the predic-
tion factors, and the basic ideas of SVM are combined. Based
on these, a multiparameter comprehensive intelligent predic-
tion method of the KCGV is proposed. The main conclusions
can be drawn as follows:

(1) For the complicated problem of predicting the
KCGV, the proposed intelligent prediction method
of the KCGV not only makes use of the excellent per-
formance of SVM in solving the problems of small
samples, high dimensions, and nonlinearity but also
considers the grouting construction conditions and
the slurry conditions that control the slurry diffusion,
which greatly improves the prediction accuracy and
generalization performance of the method

(2) Based on the data of the grouting process and the
slurry properties obtained from the field grouting,
the proposed method can be used to scientifically
predict the KCGV. The procedure is (i) to select the
factors that affect the KCGV as input parameters,
(ii) to establish an intelligent prediction model based
on SVM, and (iii) to predict the KCGV by using the
grouting data obtained from the actual grouting pro-
ject. The method is easy to obtain grouting data from
the project site; at the same time, the data source is
reliable, the cost is low, and it has strong engineering
pertinence and obvious technical feasibility

(3) The proposed intelligent prediction method of the
KCGV based on SVM is applied to the typical karst
curtain grouting project—the antiseepage curtain
grouting project of the Panlong lead-zinc mine, a
protective project in the reservoir area of the Dateng-
xia water control project in Guangxi, China. The field
grouting data of grouting areas with different charac-

teristics of karst development are selected to establish
a prediction model. The mean absolute error of the
prediction results is 3.47 L/m, and the mean absolute
percentage error of the prediction results is 5.97%.
The prediction error is within an acceptable range
from an engineering point of view. It shows that the
proposed prediction method has certain rationality
and applicability in the practical application of the
karst curtain grouting engineering

(4) Before the grouting is completed, engineers can easily
and accurately check and verify the actual KCGV by
using the intelligent prediction model of the KCGV
based on SVM and combining it with the main
influencing factors of the KCGV. Thus, the method
can reduce the number of the field tests, improve eco-
nomic benefits, and help engineers to strengthen the
quality control of the karst curtain grouting projects
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