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The medium-sized Daping gold deposit is located in the middle Xuefeng Mountain area of Southern China with gold ores hosted in
sericite phyllite, sericitolite, and mylonite. The auriferous quartz-carbonate-sulfide veins and adjacent alteration rocks are structurally
controlled within the NE (northeast) shear zone with NE, NNE (north-east-east), and NW (northwest) trending at high inclination
angles. The petrogeochemistry analysis results show that the gold ores are characterized by high content values of SiO2, S, and As and
low content values of Al2O3 and Na2O and display strong enrichment of LREE with δEu values ranging from 0.54 to 0.75. Four stages
of mineralization/alteration were identified: the first stage has mineral assemblages of quartz+pyrite+arsenopyrite±carbonate minerals,
the second stage has mineral assemblages of quartz+polymetallic sulfide minerals (pyrite, arsenopyrite, chalcocite, galena, chalcopyrite,
tetrahedrite)±chlorite±carbonate minerals, the third stage has mineral assemblages of quartz and carbonate minerals, and the
supergene stage is characterized by limonite±patina which were formed by the oxidation of metal sulfides. Among them, the first stage
and the second stage are the main gold mineralization stages. The ore-forming fluid inclusions in quartz are mainly composed of
liquid phase (H2O) and gas phase (H2O and CO2), and based on the microthermometric analysis, the first metallogenic stage and
second metallogenic stage yielded average homogenization temperature of 184.5 and 255.8°C and average salinity of 7.64wt.% NaCl
eqv. and 11.35wt.% NaCl eqv., respectively. Thus, the ore-forming fluids belong to H2O-CO2-NaCl, medium-low temperature, and
medium-low salinity fluid. The δDH2O and δ18OH2O values of auriferous quartz are from -51‰ to 62‰ and from -1.44‰ to 5.42‰,
respectively, indicating that the ore-forming fluids may belong to mixing fluids of the magmatic fluid and meteoric hydrothermal
fluid. The values of δ34S of metal sulfides range from -0.94‰ to 1.98‰ (-0.131‰ in average), implying that sulfur may source from
the concealed granite and/or basement metamorphic strata. The Daping gold deposit formed in the Indosinian period under the
tectonic environment of compression between the Cathaysian plate and Yangtze plate and may belong to orogenic gold deposits.

1. Introduction

As one of the crucial gold producers of south China, the
Jiangnan Orogen Belt (JOB) has a total gold reserve of >970
tons [1] and thus attracted more and more attention from

the metallogeny geologists. The middle Xuefeng Mountain
which belongs to the western section of the Jiangnan Orogen
is located in the transitional region between the Cathaysia
plate and the Yangtze plate (Figure 1(a)) [1–8]. At present,
21 gold deposits (points) have been discovered, and among
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them, the Chanziping gold deposit [9–13] and the Daping
gold deposit [14] have a scale of large size and medium size,
respectively. The exploration of the Daping gold deposit
began in 1987 [15] and has proved gold reserves of more
than 10 tons. Previous studies on the geological character-
istics and metallogenic chronology indicate that the Dap-
ing gold deposit belongs to the shear zone type [16, 17]
with ore-forming age of 204.8Ma which belongs to Indo-
sinian [18]. However, the ore-forming fluids, geochemical
characteristics of the main and trace elements, rare earth

elements, and isotopes of the deposit have not been sys-
tematically studied, and its metallogenic mechanism and
process are still unknown.

This paper attempts to reveal the source of metallogenic
materials, metallogenic mechanism, and deposit type of the
Daping gold deposit by petrogeochemistry, H-O-S isotopes,
and ore-forming fluids and provide more metallogenic
information for further exploration and prediction of the
Daping gold deposit and other similar gold deposits with
the same metallogenic characteristics.
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Figure 1: (a) Major tectonic blocks of China. (b) Regional geological sketch map of the middle Xuefeng Mountain (modified after [6–8]): 1:
Quaternary (Q); 2: Palaeogene (E); 3: Ordovician (O); 4: Cambrian (Є); 5: Sinian and Nanhuan (Z+Nh); 6: Gaojian Group (QbG); 7: Early
Triassic granite rocks; 8: Mafic-ultramafic rocks; 9: shear zone; 10: auriferous vein; 11: gold occurring spot; 12: study area.
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2. Regional Geological Setting

Daping gold deposit which is located in the transitional zone
between Yangtze plate and Cathaysia plate belongs to the
middle Xuefeng metallogenic belt (Figure 1(a)). The regional
strata are composed of Quaternary, Palaeogene, Ordovician,
Cambrian, Sinian, Nanhua System, and Gaojian Group of
Qingbaikou System (Figure 1(b)). Among these strata, the
Gaojian Group of the Qingbaikou System and the Nanhua
Systems which belong to low-grade metamorphic greens-
chist facies clastic rocks with high gold-bearing background
values are the main ore-bearing strata in the gold metallo-
genic belt of the middle Xuefeng Mountain [19]. Frequent
acid magmatic activities occurred in this area during the
Indosinian period (e.g., Zhonghuashan granite and Huang-
maoyuan granite, Figure 1(b)). In addition, six NE-

trending or NNE-trending ductile shear zones cross the
middle Xuefeng Mountain gold field with length of 10–
25 km and width of 0.5–2 km.

3. Geological Characteristics of Daping
Gold Deposit

3.1. Deposit Features. The stratum of the Daping gold
deposit is composed of the Gaojian Group of the Qingbai-
kou System and Changan Formation of the Nanhua System,
and the gold-bearing faults are NE-trending, NW-trending
[20, 21], and NNE-trending. Crossing through the middle
part of the study area (Figure 2), the NE-trending ductile-
brittle shear cleavage zone may serve as the ore-forming
fluid passageways as well as auriferous host structures.
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Figure 2: Geological sketch map of the Daping gold deposit (modified after [59]): 1: unconformity boundary; 2: conformity boundary; 3:
Changan Formation (Nhc); 4: Yanmenzhai Formation (Qbym); 5: Jiajiantian Formation (Qbj); 6: Zhuanqiangwan Formation (Qbz); 7:
ductile-brittle shear zone; 8: auriferous vein; 9: sample location; 10: prospecting line. Due to all the samples coming from diamond drills,
only the horizontal positions are shown.
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3.2. The Orebody Characteristics. At present, 23 auriferous
veins were found out with a length of 120–2100m and a
width of 1.30–70m. The auriferous veins which occurred
in the ductile shear zone or adjacent fault segments are
NW-trending of I6, I7, I9, I12, and I19 or NE-NNE-trending
of I17, I20, I21, and I26. The NW-trending veins intersect
the NE-trending vein at a large angle, and both the NE-
trending and NW-trending auriferous veins have inclination
angles of above 70° (Figure 3). At present, 38 ore bodies have
been found out between the elevation of -40m and 340m,
and among them, 7 main ore bodies have lengths of 170–
470m with an average thickness of 1.36–4.85m and an aver-
age grade of 1.63–25.80 ppm. The alteration types of the
Daping gold ores include silicification, sericitization, chlori-

tization, carbonization, and clayization (Figures 4(a), 4(c),
and 4(h)). The intensity of silicification, pyritization, and
sericitization has positive relations with the intensity of gold
mineralization.

3.3. Ore Characteristics. According to the differences of gold-
bearing structures, the Daping gold ores can be divided into
quartz vein type (gold mineralization mainly occurred in
quartz veins and nearby metal sulfides), altered rock type
(gold mineralization mainly occurred in alteration rocks),
and tectonic breccia type (gold mineralization mainly
occurred in tectonic breccia rocks) (Figure 5). The metal
minerals of ores are composed of pyrite, arsenopyrite, chal-
copyrite, galena, sphalerite, and stibnite, and among them,
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Figure 3: Geologic cross-section (prospecting line 135) of the Daping gold deposit (modified after [59]).
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Figure 4: Photomicrographs and microstructures of the Daping gold deposit. (a) The schistose foliation formed by the orientation of sericite
(cross-polarized light). (b) Tensile ductile deformation of the phyllite breccia (cross-polarized light). (c) The silicification belt around the
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Figure 5: Macroscopic images of auriferous veins and deformation characteristics of the Daping gold deposit. (a) Field image of the NW-
trending veins of I12. (b) Macroscopic image of the NE-trending veins of I17 shows distinct features of sinistral shear deformation. (c)
Irregular quartz breccia and sericite slate breccia of I21 vein formed in the tectonic shearing environment. (d) The schistose foliation
formed by the orientation of the sericite shows ductile deformation in the I21. (e) The tensile-shearing space was filled by carbonate
veins. (f) Quartz-carbonate veins show undulating edge of ductile deformation.
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pyrite and arsenopyrite are the main gold-bearing minerals.
The gangue minerals are mainly including quartz, carbonate
minerals, albite, sericite, and muscovite.

According to the mineral assemblages, the metallogenic
process of the Daping gold deposit can be divided into two
periods (metallogenic period and supergene period) and
four stages (Table 1, Figure 4). The first stage has mineral
assemblages of quartz+pyrite+arsenopyrite±carbonate min-
erals and the second stage has mineral assemblages of
quartz+polymetallic sulfide minerals (pyrite, arsenopyrite,
chalcocite, galena, chalcopyrite, tetrahedrite)±chlorite±car-
bonate minerals which are the main gold mineralization
stages. The third stage has mineral assemblages of quartz
and carbonate minerals. The supergene stage is character-
ized by the mineral of limonite±patina which is formed by
the oxidation of metal sulfides.

4. Sampling and Analytical Methods

4.1. Samples. The nineteen samples which were collected
from drill holes are used for the geochemical and metallo-
genic study of the Daping gold deposit. Samples H3, H6,
H7, and H8 from auriferous vein I6 are sericite phyllite with
gold content of 0.26–1.19 ppm. Samples H5, H40, H52, H43,
H46, H62, and H84 from auriferous vein I17 are sericite
phyllite with gold content of 0.61–2.94 ppm. Samples H28,
H34, H51, H22, H10, H16, H26, and H9 from auriferous

vein I21 are sericite phyllite, sericitolite, and mylonite with
gold content of 1.47–10.77 ppm. For detailed sample infor-
mation, see Table 2 and Figure 2.

4.2. Analytical Methods. The major elements and trace ele-
ment of whole rock were tested in samples H3, H5, H6,
H7, H8, H26, H28, H34, H40, H43, H46, H51, H52, H62,
and H84. Hydrogen and oxygen isotopes of mineral quartz
were tested in samples H28, H34, H22, H10, H16, H26,
H9, and H46. Sulfur isotope of arsenopyrite and pyrite was
tested in samples H34, H22, H16, H26, H7, and H46. The
homogenization temperature, freezing temperature, and
laser Raman spectra of the ore-forming fluid inclusions were
tested in samples H7, H10, H21, H28, and H43.

The major elements, trace element, and isotopes of sul-
fur, hydrogen, and oxygen of the Daping gold ore samples
were measured in the Australian Real Analysis Test (Guang-
zhou) Co., Ltd. The major elements were tested by the X-ray
fluorescence instrument of ME-XRF26d with precision and
accuracy better than ±5%. The trace elements and the rare
earth elements are measured by instruments of M61-MS81,
and the relative error is less than 10%. Sulfur isotope was
measured by an instrument of S-ISTP01L with accuracy of
better than 0.02%. Hydrogen isotope was tested by the
instrument of H-ISTP01 with accuracy of better than 0.3%.
The oxygen isotope was measured by the instrument of O-
ISTP01 with accuracy of better than 0.03%. δ18OH2O were
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Figure 6: Primitive standard spider graph of trace elements of Daping gold deposit. The values for primitive mantle are from [62].
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calculated according to the equation suggested by Clayton
et al. [22]: δ18OQ – δ18OH2O ≈ 3:38 × 106/T2 − 3:40.

The homogenization temperature and freezing tempera-
ture testing of the ore-forming fluids were conducted by the
instrument of LINKAMTHMSG600 in the Fluid Inclusion
Laboratory of Chengdu University of Technology with tem-
perature accuracy of ±0.1°C. The salinities of the metallo-
genic fluid inclusions were calculated by using the equation
of [23]: W = 0:00 + 1:78Tm − 0:042Tm

2 + 0:000557Tm
3,

where W is the weight percentage of NaCl (0–23.3% NaCl)
and Tm is the freezing point depression (°C). The laser
Raman spectra of single fluid inclusion were measured by
the instrument of HORIBA LabRAM HR Evolution in the
Raman Lab of Chengdu University of Technology with spa-
tial resolution of 1μm.

5. Analytical Results

5.1. Major Elements. The test results of the major elements
illustrate that the Daping gold ores have a high content of
SiO2 and S and low content of Al2O3, TiO2, CaO, Na2O,
MnO, and K2O (Table 3). With the increasing of gold min-
eralization, the intensity of silicification alteration and sul-
fide mineralization increased significantly.

5.2. Trace Element. The trace element analysis results
(Table 4) show that the samples have w ðUÞ/w ðThÞ ratios
of 0.18–0.24 (0.20 in average), w ðRbÞ/w ðSrÞ ratios of
0.35–1.15 (0.68 in average), w ðCoÞ/w ðNiÞ ratios of 0.45–
0.93 (0.68 in average), and w ðZrÞ/w ðHfÞ ratios of 32.50–
34.26 (33.47 in average). The content values of U, Rb, and
Co in the ores of Daping gold deposit are smaller than Th,
Sr, and Ni. The content value of Zr is greater than Hf. The
original mantle-standardized spider map shows that the ele-
ments of Li, Cr, Ni, Zn, Rb, Th, and Sr enriched obviously,
and on the contrary, the elements of Sc, Co, Cu, Ga, Cs,
Tl, and Zr were depleted (Figure 6).

5.3. Rare Earth Element. Rare earth elements are important
indications for the analysis of the ore-forming material
sources due to their stable chemical properties and the
specificity of distribution [24]. REE testing results
(Table 5) show that the total amount of rare earth element
(ΣREE) of the Daping gold ores is 98.20–218.76 ppm

(160.58 ppm in average), the total amount of LREE is
88.38–192.36 ppm (142.38 ppm in average), the total
amount of HREE is 9.82–26.40 ppm (18.20 ppm in aver-
age), the ratio of w ðLREEÞ/w ðHREEÞ is 6.91–9.00 (7.82
in average), and the ratio of w ðLaÞN /w ðYbÞN is 6.78–
10.20 (7.95 in average). The δEu values ranging from
0.54 to 0.75 and the δCe values ranging from 1.05 to
1.09 show positive Ce anomaly and negative Eu anomaly.
All of the samples have a similar REE pattern of right-
dip type indicating that they may have homologous ori-
gins (Figure 6) [25].

5.4. Hydrogen and Oxygen Isotope. The hydrogen and oxy-
gen isotope testing results (Table 6) of quartz mineral sam-
ples show that the value of δDH2O is from -51‰ to 62‰

(-58.6‰ in average), and the value of δ18OH2O is from
-1.44‰ to 5.42‰ (1.92‰ in average).

5.5. Sulfur Isotope. The sulfur isotope is important for study-
ing the source of ore-forming materials [26, 27]. Six sulfur
isotope samples of metal sulfides (pyrite or arsenopyrite)
were tested, and the testing results (Table 7) show that the
value of δ34S is from -1.00‰ to 1.98‰ (-0.13‰ in average),
which are close to the average S isotope of the magmatic
hydrothermal deposit of 1.68‰ [28, 29].

5.6. Ore-Forming Fluid Inclusion Testing. According to the
microscope observation, the ore-forming fluid inclusions
are in the shape of circle, ellipse, or irregular. The metallo-
genic period of the Daping gold deposit can be divided into
three stages. The inclusions of stage one are two-phase inclu-
sions and liquid phase inclusions. The inclusions of stage

Table 6: Isotopic values of D and O of the Daping gold deposit. The values of the δOH2O are yielded by the equation: δ18OQ – δ18OH2O
≈ 3:38 × 106/T2 − 3:40 [22].

Sample Mineral δD (‰) δOV-SMOW (‰) δOH2O (‰) T (°C)

H28-OH1 Quartz -62 11.4 2.72 255.8

H34-OH1 Quartz -59 14.1 5.42 255.8

H22-OH1 Quartz -61 10.1 1.42 255.8

H10-OH1 Quartz -60 11.3 -1.44 184.5

H16-OH1 Quartz -53 12.9 0.16 184.5

H26-OH1 Quartz -62 16 3.26 184.5

H9-OH1 Quartz -61 13.6 0.86 184.5

H46-OH1 Quartz -51 15.7 2.96 184.5

Table 7: Isotope values of δ34S in the arsenopyrite or pyrite of the
Daping gold deposit.

Sample Mineral δ34S (‰)

H34-S1 Arsenopyrite -0.94

H22-S1 Arsenopyrite -1

H16-S1 Arsenopyrite -0.76

H26-S1 Arsenopyrite -0.67

H7-S1 Pyrite 1.98

H46-S1 Pyrite 0.23
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two are two-phase inclusions, liquid phase inclusions, and
gas inclusions. The inclusions of stage three are two-phase
inclusions and gas phase inclusions. Based on the laser
Raman spectra testing, the composition of the liquid phase
inclusions is H2O, and the composition of the gas phase
inclusions is H2O and CO2. For detailed characteristics of
the fluid inclusions, see Table 1 and Figures 7 and 8.

The first stage of the ore-forming fluid yielded homog-
enization temperature of 218.0–293.1°C (255.8°C in aver-
age) and salinity of 4.98–17.94wt.% NaCl eqv.
(11.35wt.% NaCl eqv. in average). The second stage of
the ore-forming fluid yielded homogenization temperature
of 159.3–240.6°C (184.5°C in average) and salinity of 5.28–
10.59wt.% NaCl eqv. (7.64wt.% NaCl eqv. in average).
The third stage of the ore-forming fluid yielded homogeni-
zation temperature of 138.5–177.1°C (157.3°C in average)
and salinity of 0.71–7.78wt.% NaCl eqv. (4.82wt.% NaCl
eqv. in average). For details of the fluid inclusion testing,
see Table 8 and Figure 9.

6. Discussion

6.1. Source of Ore-Forming Materials and Fluids. The Pre-
Cambrian basement of the middle Xuefeng Mountain area
is composed of Lengjiaxi Group, Gaojian Group, and Nan-
hua System which have average gold content of 19.46 ppb,
41.86 ppb, and 20.51 ppb, respectively [30–32]. The gold
content of the base rocks is 6.5–14 times than the average
bulk continental crust of 3.0 ppb [33] and thus can provide

an abundant initial gold source for the formation of the gold
deposits in the middle Xuefeng Mountain area.

Trace element studies show that the Daping gold ores
enrich in Li, Cr, Ni, Zn, large ion lithophile elements of Rb
and Sr, and high field strength element of Th and deplete
in elements of Sc, Co, Cu, Ga, Cs, Tl, and Zr (Figure 6).
The chondrite standard distributions of REE curves of gold
ores have similar patterns of right-dip indicating that they
probably have the same material sources and origins [25].
The rare earth elements of the gold ores are characterized
by the strong enrichment of LREE (Figure 10). The δEu
values range from 0.54 to 0.75 which show negative Eu
anomaly, indicating that Daping gold deposit may form in
the reducing environment [24, 34].

On the diagram of δ18OH2O vs. δDH2O (Figure 11), aurif-
erous quartz of the Daping gold ores is mainly located
between the magmatic water and meteoric water and partly
located at magmatic water, which indicates that the metallo-
genic fluids may be the mixing fluids of magmatic waters
and meteoric water. Considering that the Zhonghuashan
granite and Huangmaoyuan granite (belonging to Baima-
shan complex granites) (Figure 1) are only a few kilometers
away from Daping gold deposit and have δ18O value of
9.74–11.2‰ [35] which overlap partially with δ18O value
of 10.1–15.7‰ of the Daping gold-bearing quart, this indi-
cates that the metallogenic fluids may partly come from
the deep concealed granite with mixing of the meteoric
water, which is similar to the Chanziping deposit
(Figure 12). The δ34S‰ values of sulfide isotope from metal
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Figure 7: Photomicrographs of the typical fluid inclusions of the Daping gold deposit. (a) Two-phase and liquid phase of the first ore-
forming stage. (b) Two-phase inclusions of the first ore-forming stage. (c) Two-phase, liquid phase, and gas phase inclusions of the
second ore-forming stage. (d) Two-phase and gas phase inclusions of the third ore-forming stage. Abbreviation: LH2O: liquid H2O; GH2O:
vapor H2O; GCO2

: vapor CO2.

14 Geofluids



sulfides of the Daping gold deposit range from -1 to 1.98,
which are consistent with the granite; Gaojian Group
(Figure 12) implied that both the granite and Gaojian Group
may contribute to the sulfur sources.

Most granites in middle Xuefeng Mountain and adjacent
regions belong to S-type granites [35–37] and have low gold
contents (e.g., the Baimashan complex granites have average
gold content of 1.25 ppb [38]). Considering that the magma
source of the granites have gold contents of 19.46–41.86 ppb
which are much higher than the 1.25 ppb of granites, thus,

the gold element may aggregate in the magmatic hydrother-
mal fluids and may partly contribute to the formation of
Mesozoic regional gold deposits.

6.2. Metallogenic Mechanism. Based on Rb-Sr dating of
quartz, the Daping gold deposit and Chanziping gold
deposit occurred in 204.8Ma and 205.6Ma, respectively
[18]. Large-scale regional thrusting nappe structures and
associated acid magma intrusion activities occurred at 225–
201Ma of the Indosinian period [18, 36, 37]. Thus, the

Table 8: Microthermometric data of fluid inclusions of the metallogenic period in the Daping gold deposit.

Stage
Host

mineral
Counts Th (°C)

Average Th
(°C)

Tm (ice) (°C)
Average Tm
(ice) (°C)

Salinity (wt.%
NaCl eqv.)

Average salinity (wt.%
NaCl eqv.)

The first
stage

Quartz 9
218.0–
293.1

255.8
From -13.7 to

-3.0
-7.6 4.98–17.94 11.35

The second
stage

Quartz 39
159.3–
240.6

184.5
From -7.0 to

-3.2
-4.8 5.28–10.59 7.64

The third
stage

Quartz 8
138.5–
177.1

157.3
From -4.9 to

-0.4
-2.9 0.71–7.78 4.82

Th: homogenization temperature; Tm (ice): melting temperature of ice. The salinity and density of the fluid inclusions are calculated by the equation of [23].
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Figure 8: Microstructures and laser Raman spectra for fluid inclusions in Daping gold deposit.
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metallogenic epoch of regional gold mineralization is a little
younger than the intrusion time of granites.

The tectonic schistose foliation developed in auriferous
veins (for example, I17 and I21) and ductile deformation of
auriferous quartz veins (Figures 5(b), 5(d), and 5(e)) pro-
vides important evidence for the existence of brittle and duc-
tile shear zones. The development of tectonic schistose
foliation structure provides a migration channel for ore-
forming fluids and serves as the main place for the precipita-
tion and enrichment of ore-forming materials [39]. Driven
by the thermal gradient of concealed granite, the gold metal-
logenic fluids migrate along the brittle and ductile shear
zones, and in this process, the gold element of the adjacent

stratum also adds to the fluids. When the ore-forming fluids
reach the shallow stratum, and under the environment of
depressurizing and fluid immiscibility, the thermodynamic
equilibrium of CO2 and oxygen fugacity were destroyed,
and thus, the gold element precipitated in the quartz and
metal sulfides to form the gold ores [16].

6.3. Ore Genetic Type. As an important type of gold deposits
in the world, the orogenic gold deposits provide at least 30%
of global gold reserves [40], and 17 giant gold deposits
(>500 t Au) around the world belong to the orogenic gold
type. Since the evolutionary history of the orogenic belt
can be recorded in the formation of the orogenic gold
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Figure 9: (a) Frequency histogram of the homogenization temperature of the Daping metallogenic fluids. (b) Frequency histogram of the
freezing temperature of metallogenic fluids. The homogenization temperature data and freezing temperature data are from
microthermometric analysis of the fluid inclusions (this study).
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deposits [41], the study of the ore-forming process and gen-
esis of the orogenic gold deposits can provide valuable infor-
mation of metamorphism and uplift-erosion process of the
orogenic belt and thus attracted more and more geologists
to conduct research on such type of gold deposits. Before
the jargon of orogenic gold deposits was proposed, the clas-
sification of the gold deposits which occurred in the orogenic
belts or greenstone belts was in chaos. For instance, based on
the differences of the surrounding rocks, the gold deposits
were classified into green belt type, turbidite type, and BIF
(banded iron formation) type [42]; based on the differences
of mineralization characteristics, the gold deposits were clas-
sified into quartz vein type, altered rock type, and breccia
type [43]; based on the differences of ore-controlling factors,
the gold deposits were classified as shear zone type [44].
Groves et al. [45] proposed that the gold deposit formed in
the tectonic environment of the squeezing or compression
in the convergence region of the plates and has close genetic
relationship with the orogenic process which can be classi-
fied as orogenic gold deposit, and thus, the gold types men-
tioned above should be classified as one type of orogenic
gold deposit.

The middle Xuefeng Mountain area is located in the
transition zone between Cathaysian plate and Yangtze plate
and had undergone many periods of crustal tectonic move-
ment and forms a large number of faults and folds as well

as a series of ductile-brittle shear zone structures and multi-
ple metallogenic episodes including Paleozoic (e.g., Zixi gold
deposit of 425Ma [46]) and Late Triassic (e.g., Chanziping
and Daping gold deposit). In the Indosinian period, due to
the strong NW-SE compression tectonic activities and the
intrusion activities of regional acidic magmas, the magmatic
hydrothermal fluids upwelled along the shear zone, and the
gold elements in the stratum were activated, migrated, and
gradually precipitated and enriched in the proper weak tec-
tonic structures (for instance, ductile-brittle shear
structures).

Similar Mesozoic gold deposits were also reported in the
Jiangnan Orogen, e.g., Yanlinsi, Hengjiangchong, Wangu,
Huangjindong, Jinjing, Mali, Fenshuiao, and Dayan [1, 4,
47–52]. And generally speaking, its gold mineralization has
close spatial relations with regional granitic intrusions [1].
H–O–C–S–Pb isotopic data of ore-forming fluids indicate
that its ore-forming materials mainly source from granitic
magma and minor from basement metamorphic stratum
([1] and references therein). The ore-controlling structure
of the shear zone of Daping gold deposit is similar to many
world typical orogenic gold deposits [53–58]. In addition,
the Daping gold deposit has many similar characteristics to
the typical orogenic gold deposits (Table 9), for instance,
the tectonic background of orogen, the ore-bearing rocks
of semideep sea or deep sea sediments, the ore-type of quartz
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vein with metal sulfides, the alteration of silicification and
carbonization, and the ore-forming fluids of CO2-H2O-
NaCl. In summary, the Daping gold deposit may belong to
an orogenic type.

7. Conclusions

(1) The Daping gold ores have features of high content
values of SiO2, S, and As and low content values of
Al2O3 and Na2O and have intense alteration of silic-
ification and sericitization. The gold ores are
enriched in Li, Cr, Ni, Zn, Rb, Th, and Sr and
depleted in Sc, Co, Cu, Ga, Cs, Tl, and Zr. The chon-
drite REE distribution patterns of the gold ores dis-
play strong enrichment of LREE with δEu values
ranging from 0.54 to 0.75

(2) Four ore-forming stages were identified: the first
stage has mineral assemblages of quartz+pyrite
+arsenopyrite±carbonate minerals, the second

stage has mineral assemblages of quartz+polyme-
tallic sulfide minerals (pyrite, arsenopyrite, chal-
cocite, galena, chalcopyrite, tetrahedrite)±chlorite
±carbonate minerals, the third stage has mineral
assemblages of quartz and carbonate minerals,
and the supergene stage is characterized by limo-
nite±patina which were formed by the oxidation
of metal sulfides. Among them, the first stage
and the second stage are the main gold mineral-
ization stages

(3) The ore-forming fluid inclusions from quartz are com-
posed of liquid phase (H2O) and gas phase (H2O and
CO2). The main gold mineralization stages of the first
stage and second stage yielded average homogenization
temperature of 184.5 and 255.8°C and average salinity
of 7.64wt.% NaCl eqv. and 11.35wt.% NaCl eqv.,
respectively. Thus, the ore-forming fluids may belong
to H2O-CO2-NaCl, medium-low temperature, and
medium-low salinity fluids

Table 9: The comparison of geological features between the Daping gold deposit and typical orogenic gold deposits.

Geological features
Typical orogenic gold deposits (Groves et al. [45]; Wang
et al. [46]; Qiu et al. [60]; Xu et al. [1]; Lu et al. [61])

Daping gold deposit

Tectonic
background

Tectonic compression environment of the orogenic belt
The Daping gold deposit is located in the transitional
region of Xuefengshan orogenic belt between the

Cathaysia plate and the Yangtze plate

Ore-bearing rocks

Most of the Archaean gold deposits occur in greenstone
belts, and the ore-hosting rocks are mainly tholeiitic
volcanic rocks. Phanerozoic gold deposits are mainly
hosted in semideep sea or deep sea turbidite. The host

rocks generally underwent shallow-medium
metamorphism of greenschist facies and amphibolite

facies

The wall rocks of the Daping gold ores are deep sea and
semideep sea tuffaceous flysch formations of the

Qingbaikou System with lithology assemblages mainly
including slate, sandy slate, and sericite slate

Ore-controlling
structure

The first-level fault is a large tectonic belt which cuts
through the crust with a length of more than 100 km; the
second-level fault has length of 1–10 km, and gold ore
bodies are often located in the secondary level tectonic
zones. The gold mineralization often occurred in the

shear fracture and tension fracture

The Daping gold deposit is located in ca. 10 km southeast
of the first-level deep fault of Anhua-Liping (about
350 km long). And second-level tectonics of the NE-
trending ductile-brittle shear deformation zone of F8
(about 20 km long) cross through the Daping gold

deposit from the middle. The mineralization structures
are shear fracture of NW trend and tension fracture of

the NE trend

Ore-type
The gold mainly occurred in the quartz veins with 3–5%

metal sulfides

The gold mineralization mainly occurred in quartz veins
and nearby metal sulfides, alteration rocks, and tectonic

breccia rocks

Alteration type
K-feldspathization, silicification, sericitization,

carbonization, and sulfidation
Silicification, sericitization, chloritization, carbonization,

clayization, and sulfidation

Ore-forming fluids
Mantle-derived fluid, magmatic fluid, metamorphic

fluid, and atmospheric water. The ore-forming fluids are
characterized by CO2-H2O-NaCl±CH4 and rich in CO2

Magmatic fluid and atmospheric water. The ore-forming
fluids are characterized by CO2-H2O-NaCl

Metallogenic
temperature of the
ore-forming fluids

150°C–700°C 157.3°C–255.8°C

Salinity of the ore-
forming fluids

3–10 wt.% NaCl eqv. 4.57–10.93% (NaCl eqv.)

Assemblage of the
metal elements

Au, Ag, ±As, Sb, Te, W, Bi Au, As, ±Sb, ±Cu, ±Pb

Metallogenetic era From the Neoarchaean to the Cenozoic era The gold mineralization occurred in Indosinian era
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(4) The values of δ34S of metal sulfides in Daping gold
deposit range from -0.94‰ to 1.98‰ (-0.131‰ in
average), the δDH2O and δ18OH2O values of aurifer-
ous quartz are from -51‰ to 62‰ and from
-1.44‰ to 5.42‰, respectively, indicating that the
sulfur may source from the concealed granite and/or
Gaojian Group, and the ore-forming fluids may
belong to mixing fluids of the magmatic fluid and
meteoric hydrothermal fluid

(5) The Daping gold deposit formed in Indosinian
period under the tectonic environment of compres-
sion between the Cathaysian plate and Yangtze plate
and has similar features of the ore-bearing rocks,
ore-controlling structures, alteration, and minerali-
zation styles with typical orogenic gold deposits
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