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The identification of primary geochemical haloes can be used to predict mineral resources in deep-seated orebodies through
the delineation of element distributions. The Jiama deposits a typical skarn–porphyry Cu–polymetallic deposit in the
Gangdese metallogenic belt of Tibet. The Cu–polymetallic skarn, Cu–Mo hornfels, and Mo±Cu porphyry mineralization
there exhibit superimposed geochemical haloes at depth. Three-dimensional (3D) primary geochemical halo modeling was
undertaken for the deposit with the aim of providing geochemical data to describe element distributions in 3D space. An
overall geochemical zonation of Zn(Pb)→Au→Cu(Ag)→Mo gained from geochemical cross-sections, together with dip-
direction skarn zonation Pb–Zn(Cu)→Cu(Au–Ag–Mo)→Mo(Cu)→Cu–Mo(Au–Ag) and vertical zonation Cu–(Pb–
Zn)→Mo–(Cu)→Mo–Cu–(Ag–Au–Pb–Zn)→Mo in the #24 exploration profile, indicates potential mineralization at
depth. Integrated geochemical anomalies were extracted by kernel principal component analysis, which has the advantage
of accommodating nonlinear data. A maximum-entropy model was constructed for deep mineral resources of uncertainty
prediction. Three potential deep mineral targets are proposed on the basis of the obtained geochemical information and
background.

1. Introduction

Primary geochemical halo identification is a key approach for
detecting mineral deposits near or below the ground surface
[1]. A primary geochemical halo is an area of rocks surround-
ing mineral deposits (orebodies) enriched in ore-forming ele-
ments [2]. Primary geochemical characteristics of mineral
deposits provide important information for predicting deep
mineral resources, as they reflect the geochemical processes
of metal precipitation and mineral formation. Many methods
have been used to identify primary halo characteristics of
mineral deposits, including vertical element zonation [3–5],
element ratios vectoring toward ore zones [6–8], Pearce ele-
ment ratios [1, 9–12], and alteration indices [13–21]. Amajor

aspect of these methods is the determination of spatial distri-
butions of single elements and/or element associations.

Within the Jiama Cu–polymetallic deposit in Tibet, pre-
vious studies focused on element zonation based on lithogeo-
chemical data for surface samples and those from orebodies
to build an exploration model for deep mineral resources
[22–29]. Primary geochemical zonation and elemental distri-
butions have thus been proved to be valid methods for esti-
mating mineral resources at Jiama. Three-dimensional (3D)
modeling is also an efficient approach that has been widely
applied in deep mineral exploration [30–33], with 3D visual-
izations of primary geochemical haloes directly reflecting the
spatial distribution of elements [34, 35]. A 3D model of pri-
mary haloes can be useful in geochemical studies of mineral
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deposits because it provides insights into mineralization sys-
tems, with important implications for exploration. In this
study, 3D halo modeling was undertaken to extend geochem-
ical zonation to stereoscopic space to provide more informa-
tion on deep mineral resources.

Lithogeochemical data from sources such as drill cores
usually have nonlinear features that require processing by
nonlinear algorithms. Kernel principal component analysis
(KPCA) has been identified as a useful method for extracting
integrated information from multielement drill-core data
[36, 37]. KPCA is a type of nonlinear PCA developed by
extension of the kernel method [38] and involves the transfer
of original inputs to a high-dimensional feature space by the
kernel method with PCA of that space [39]. KPCA has been
used in remote-sensing image classification [36, 37], multidi-
mensional space uncertainty modeling [40], anomaly detec-
tion in hyperspectral imagery [41], and volcanic reservoir
fracture discrimination [42].

Machine learning (ML) has provided a new means of
building models based on large data volumes [43–45]. ML
algorithms that consider relationships between prediction
and response variables through direct modeling have proved
effective in capturing complex nonlinear relationships
between geochemical models and mineralization [44, 46],
including the use of logic regression [43], neural networks
[47], support vector machine [45], random forest [48], and
maximum-entropy (MaxEnt) model [49, 50]. A MaxEnt
model is a high-performance statistical model often used in
probabilistic estimation. It is suitable for classification prob-
lems and shows a performance superior to that of other
methods, especially with limited sample data [51, 52]. Max-
Ent modeling has been widely applied in such fields as natu-
ral language processing [53, 54], economic prediction [55],
the geographical distribution of animal and plant species
[56], and mineral resource prediction [49, 50].

In this study, lithogeochemical data from drill cores were
used to build a 3D primary geochemical halo model through
spatial interpolation, aiming to describe element distribu-
tions at depth in the Jiama deposit. The cutting of cross-
sections and vertical profiles was applied to investigate spatial
variations in different elements, and the KPCA method was
used to produce profile integrated geochemical information,
with MaxEnt modeling being applied to predict exploration
targets.

2. Materials and Methods

2.1. Geological Setting. The Jiama deposit is one of the most
economically significant Cu deposits in Tibet and lies in the
Gangdese metallogenic belt within the eastern Tethyan
metallogenic domain [24, 28, 29, 57] (Figure 1). Collision of
the India–Asia plates during the Paleocene and ensuing
post-collisional magmatism during the Miocene caused the
formation of the Gangdese belt, which hosts several giant
porphyry Cu deposits [57–62] and is highly prospective for
Cu–polymetallic deposits, containing >18Mt of Cu resources
[35, 59]. Proven resources of the Jiama deposit include 7.4Mt
Cu, 0.6Mt Mo, 1.8Mt (Pb+Zn), 6.65Moz Au, and
360.32Moz Ag [23].

Jiama stratigraphy comprises Upper Jurassic Duodigou
Formation (J3d) limestone and marble and overlying Lower
Cretaceous Linbuzong Formation (K1l) sandstone, siltstone,
and shale. Intrusive rocks cropping out in and around the
deposit include granite porphyry, granodiorite porphyry,
quartz–albitite porphyry, and fine-grained granite. Plutonic
rocks (in drill holes) are dikes intruding hornfels and
include dolerite, quartz diorite porphyry, granodiorite por-
phyry, monzonite to quartz monzonitic porphyry, and mon-
zonitic granite porphyry [22, 25, 27, 28, 35, 57, 63–65]
(Figure 1).

Geological structures at Jiama are controlled by collision
of the India and Eurasia plates and constitute E-trending
strike-slip faults and related secondary NW-trending thrusts,
including a major thrust nappe structure associated with a
series of overturned folds and a gliding nappe covering
~4 km2. These structures contributed to the formation of
the Jiama Cu–polymetallic system [23, 63, 66].

Thermal and hydrothermal alteration has occurred in
the Jiama deposit, with the former generating hornfels
and marble [67] and the latter being related to porphyry
and skarn alteration. Porphyry alteration (with porphyry
as the center) changed from the proximal potassic zone
(hydrothermal biotite + quartz + K-feldspar) to the middle
phyllic zone (quartz + sericite + phengite) and then the
peripheral propylitic zone (chlorite + epidote + calcite +
quartz). Skarn alteration includes endoskarn and exoskarn,
with the former occurring mainly as epidote alteration and
the latter including garnet–pyroxene and wollastonite
skarn [22, 23, 28, 63].

On the basis of its different host rocks, the Jiama orebody
can be divided into Cu–polymetallic skarn (orebodiesI and
II), Cu–Mo hornfels (orebody III), and Mo±Cu porphyry
mineralization (orebody IV) [23]. Skarn orebody is regard
as the most important orebody type at present as it consti-
tutes over 70% of the reserves. In addition, porphyry orebody
has raised much attention for its high mineral prospectivity
[22, 28, 35, 57].

2.2. Data. The dataset included 71,434 samples from 381 drill
holes and 10 trenches, collected by the Huatailong Mining
Industry Development Co. Ltd., Tibet. The average drill-
hole spacing was 100m, with sampling elevation of 3800–
5400m and drill-core sample lengths of 0.8–3m. The average
trench spacing was 100m, with depths of 10–25m and
lengths of 6.6–66.4m. The elements analyzed were Au, Ag,
Cu, Mo, Pb, and Zn, with sample preparation, analysis, and
quality control methods following Chinese Geochemical
Survey Specifications DZ0130−94.

2.3. KPCA. KPCA was originally developed by Scholkopf
et al. [38] and is aimed at converting original nonlinear
inputs into a high-dimensional feature space through the
kernel method, with PCA applied to this space [39].
Details of the fundamental theory of the method have
been given by Scholkopf et al. [38, 68]. Extraction of geo-
chemical integrated information by KPCA follows the
steps given below.
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The lithogeochemical sample-data input dataset can be
described as matrix Amncomprising n elements and m
samples:

Amn =
a11 ⋯ a1n

⋮ ⋱ ⋮

am1 ⋯ amn

0
BB@

1
CCA: ð1Þ

(1) The Gaussian kernel (a classic kernel; [69]) is used to
calculate the kernel matrix,K :

K xi, xj
� �

= exp −
x − xik2
��

σ2

 !
σ ∈ R+: ð2Þ

(2) Eigenvalues λ1,⋯, λn of the kernel matrix and corre-
sponding eigenvectors,ν1,⋯, νn, are calculated

(3) Descending-order eigenvalues provide the eigenvec-
tors ν′1,⋯, ν′n

(4) Centralization and orthogonalization to the eigen-
vectors ν′1,⋯, ν′n gives the feature
vectors,α1,⋯, αn
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Figure 1: Geological maps of (a) the geo-tectonic background of the region surrounding Jiama and (b) the Jiama polymetallic deposit
(modified from [23, 28, 29, 57]).
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(5) Calculation of the projection of K by Y = KL × α
where L is the eigenvalue matrix and Y is the inte-
grated geochemical information extraction by KPCA

2.4. MaxEnt Model. The concept of information entropy was
first introduced by Shannon [70] and represents the expected
value of information contained in messages [71]. As a mea-
sure of the uncertainty of random events, the information
entropy can be expressed as

H pð Þ = −〠
n

i=1
pi log pið Þ, ð3Þ

where HðpÞ represents the information entropy and pi is the
probability of the ith random event. The probability distribu-
tion that best represents the current state of knowledge has

the highest entropy, based on the MaxEnt principle [72].
The MaxEnt model is constructed according to this principle,
together with a log–linear ML-based model. This model can
set constraints flexibly and has been successfully applied in
mineral resource prediction [49, 50].

3. Results

3.1. 3D Primary Geochemical Halo Modeling of the
Jiama Deposit

3.1.1. 3D Primary Geochemical Halo Modeling. Geochemical
halo modeling is aimed at building a 3D dataset of primary
geochemical haloes to allow visualization of elemental spatial
distributions. Elemental content is considered at a particular
position with geochemical data varying stereoscopically
around it in all directions, rather than involving interpolation
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Figure 2: 3D model of (a) the primary geochemical halo of Cu and (b) its cross-section cuttings in the Jiama deposit.
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within a fixed section. In the case of the Jiama deposit data,
the modeling involved the following steps.

(1) Designing a spatial range with 1148m length N–S,
920m width E–W, and 1735.15m height, encom-
passing the entire mineral deposit area

(2) Setting sampling blocks of 20m × 20m × 20m cubes
within this spatial range, totaling 2,134,788 cubes

(3) Assigning elemental data to corresponding cubes

(4) Considering the 3D configuration of orebodies
including strike, dip direction, and dip angle to build
a 3D interpolation ellipsoid, with the search direction
set by the strike of orebodies, and the search radius
determined by sampling distribution and interval

(5) Interpolating values into unsampled cubes using the
inverse distance weighting (IDW) algorithm [73]
based on the search ellipsoid

(6) Using different colors to highlight changes in pri-
mary geochemical haloes (Figure 2)

3.1.2. Primary Halo Cross-Sections and Its Geochemical
Zonation. Areal metal productivities in each potential area
of mineralization can be estimated by section cutting based
on the 3D primary geochemical halo model.

Analysis of the top-to-bottom distribution of elements
involved 200m equidistant cross-sections over an altitude
range of 4050–5250m (Figure 2(b)). The areal metal produc-
tivity for each element in each layer was calculated. The nor-
malized areal metal productivities were used to compare
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Figure 3: Elevation versus elemental relative abundance.

Table 1: Normalized areal metal productivities at different levels.

Elevation Cu Ag Au Mo Pb Zn

5250m 0.0521 0.0269 0.0414 0.0398 0.0087 0.0141

5050m 0.1487 0.1185 0.0587 0.0864 0.2665 0.1972

4850m 0.1213 0.0888 0.0537 0.1052 0.3074 0.3583

4650m 0.0966 0.0878 0.0670 0.1172 0.2061 0.1316

4450m 0.2021 0.2376 0.3114 0.1930 0.0885 0.0927

4250m 0.2083 0.2603 0.2878 0.2192 0.0708 0.1126

4050m 0.1292 0.1278 0.1130 0.2231 0.0230 0.0514
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element enrichments at different depths (Figure 2 and
Table 1).

Sequences of primary haloes indicate elemental zonation
in the deposit, as determined by comparison of elemental
distributions.

The data presented in Figure 3 and Table 1 indicate a
systematic vertical zonation pattern of Zn(Pb)→Au→ -
Cu(Ag)→Mo from surface to depth in the Jiama deposit.
This zonation pattern also indicates two distinct parts of
the deposit either side of ~4650m elevation, with Pb and
Zn concentrated above and Au, Ag, Cu, and Mo below. This
is consistent with the observed spatial distribution of differ-
ent types of mineralization (Figure 4).

3.2. Mineral Prediction at Depth

3.2.1. Elemental Distributions in the Profile. The interpolation
of values within 3D space provides a more reasonable value
than interpolating over a profile. Furthermore, a profile of
interest can be cut to investigate the distribution of elements
in a certain region. Here, the #24 exploration profile is con-
sidered as an example, with a vertical data profile being cut
to study elemental distributions.

The #24 exploration profile is typical one of the Jiama
deposit as it contains all the orebody types, with hornfels
mineralization in its upper part (4300–5200m elevation);

porphyry mineralization below 5000m elevation as a cone
shape amid the hornfels orebody; and skarn mineralization
at the contact between porphyry and marble, and in the
interlayer detachment zone between Linbuzong Formation
hornfels and Duodigou Formation marble. The skarn ore-
body occurs in lamellar form or as thick plates and is found
mainly at elevations of 4000–5000m [23, 24] (Figure 4).

A total of 7423 pieces of data were obtained from the pro-
file cutting, with results indicating typical nonlinear features
with high skewness, kurtosis, and coefficients of variation
(Table 2).

In the #24 exploration profile, hornfels and porphyry
mineralization occur at elevations of >~4700m, spatially
consistent with the upper orebodies III and IV, respectively.
Skarn mineralization at 4200–4700m corresponds to ore-
body I. Molybdenite mineralization below 4700m includes
skarn, hornfels, and porphyry mineralization, which are
related to orebodiesI, III, and IV, respectively. Lead and Zn
mineralization occurs within Cu mineralization, mainly in
the upper skarn orebody I. Au and Ag are hosted mainly
within Cu mineralization as by-products of Cu extraction
in the skarn orebody I [22–24, 27–29] (Figures 4 and 5).

The geochemical profiles of Cu, Mo, Pb, Zn, Au, and Ag
are shown in Figure 5. In skarn, the Cu grade is generally
>1% and the Mo grade 0.08%–0.15%, compared with
0.15%–0.4% and ~0.05%, respectively, in porphyry. There is
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Figure 4: The #24 geological profile of the Jiama deposit (modified from [23, 24]).
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Figure 5: Distributions of different elements in the #24 exploration profile.

Table 2: Statistical numerical distribution parameters for the #24 exploration profile (SD: standard deviation; CV: coefficient of variation).

Cu (%) Ag (g/t) Au (g/t) Mo (%) Pb (%) Zn (%)

Mean 0.25 3.14 0.06 0.03 0.02 0.02

Median 0.19 1.06 0.03 0.02 0.0001 0.01

SD 0.36 7.26 0.35 0.03 0.08 0.05

Kurtosis 982.1 721.59 1595.7 22.33 584.9 956.6

Skewness 26.54 21.59 37.67 2.94 19.55 26.46

Minimum 0.01 0.46 0 0 0 0

Maximum 16.21 302.83 17.79 0.43 3.37 2.36

CV 1.446 2.311 5.457 0.921 4.381 3.365
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a much higher mineralization intensity in skarn, which
causes the Cu and Mo anomalies to be concealed in por-
phyry. Especially, the left part below skarn orebody I has
high-grade Cu-Zn-Au-Ag mineralization, in which the drill
holes in the #24 exploration profile did not reach. This anom-
aly is deduced from 3D interpolation, using data from the
drill holes next to #24 exploration profiles. In such circum-
stances, geochemical zonation may be helpful in metal min-
eralization studies.

In skarn Cu–polymetallic orebody I, Pb and Zn are con-
centrated mainly in the upper left of the profile, Au and Ag
along the orebody dip direction, and Mo in the distal part
of dip direction (Figure 5). The Cu content is lower where
skarn orebody I and porphyry orebody IV intersect. The
sequence Pb–Zn(Cu)→Cu(Au–Ag–Mo)→Mo(Cu)→Cu–
Mo(Au–Ag) thus applies to the skarn orebody (Figure 5).

Hornfels and porphyry orebodies III and IV clearly dis-
criminate the upper Cu and lower Mo at an elevation of

Table 3: Normalized linear metal productivities at different elevations.

Cu Ag Au Mo Pb Zn

5150m 0.118302 0.052047 0.095314 0.013156 0.029841 0.037884

5050m 0.112563 0.050876 0.071186 0.024542 0.048724 0.046239

4950m 0.114106 0.054056 0.042499 0.033158 0.083269 0.083759

4850m 0.084857 0.049415 0.039516 0.044863 0.076262 0.08756

4750m 0.082904 0.042812 0.031637 0.104643 0.069689 0.077148

4650m 0.098615 0.04874 0.065079 0.089729 0.057122 0.0603

4550m 0.059823 0.045364 0.047652 0.097557 0.07686 0.070141

4450m 0.065125 0.078542 0.063225 0.129823 0.096916 0.099025

4350m 0.075965 0.165661 0.160413 0.126215 0.113091 0.10536

4250m 0.085481 0.196438 0.195658 0.117067 0.1299 0.139239

4150m 0.070164 0.16103 0.146513 0.104968 0.155222 0.103943

4050m 0.032097 0.055019 0.041309 0.114279 0.063105 0.089402
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Figure 6: Results of integrated geochemical mapping using KPCA.
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~4750m, consistent with the trends in Cu and Mo minerali-
zation. Overall, the geochemical map and linear metal pro-
ductivities in the #24 profile (Table 3) indicate elemental
zonation of Cu(Pb–Zn)→Mo(Cu)→Mo–Cu(Ag–Au–Pb–
Zn)→Mo from top to bottom. Linear productivity reflects
the geochemical anomaly at a particular elevation and was
calculated using

P = 〠
n

i=1
Cai − Cbð Þ × di, ð4Þ

where P is linear productivity, Cai is the value of the geo-
chemical anomaly at aparticular location, di is the length
where Cai occurs (20m here), Cb is the value of the geochem-
ical background, and n is the number of samples at the corre-
sponding elevation.

3.2.2. Integrated Distribution in the #24 Exploration Profile.
Taking into account the nonlinear characteristics of the pri-
mary geochemical halo data (Table 2), the KPCA method
was used to extract integrated multielement information for
the #24 profile, with principal component 1 explaining
43.46% of the total variance of the kernel-transformed data
(Figure 6).

Figure 6 highlights the two parts of the #24 profile, one
with the upper of hornfels orebody above ~4700m and the
other around the skarn orebody. The upper unit is character-
ized by Cu mineralization in hornfels above 4700m, and the
lower unit is associated with Cu–polymetallic mineralization
in skarn.

3.2.3. Deep Mineral Resource Prediction for the #24 Profile.
The zonation of 3D primary geochemical haloes obtained
from cross-section cutting (Section 3.1.2), Zn(Pb)→Au→ -
Cu(Ag)→Mo, is typical of elemental zonation in porphyry
Cu mineralization systems, consistent with earlier findings
[35, 74], and may be useful for predicting element distribu-
tions at greater depth.

The zonation along the skarn orebody reflects Pb–
Zn(Cu)→Cu(Au–Ag–Mo)→Mo(Cu)→Cu–Mo(Au–Ag)
from upper left to bottom (Figure 5), consistent with the dis-
tribution of associated elements around the porphyry intru-
sions. The skarn orebody I formed in the interlayer
detachment zone between the Linbuzong and Duodigou for-
mations and is confined to the contact between porphyry and
marble. It dips NE and is ~3000m long, with a tendency to
extended mineralization [23, 24] (Figures 4–6). Moreover,
the zonation along the skarn orebody is incomplete and
should include an association of Cu–Au–Ag or Cu–Pb–Zn,
indicating potential Cu–polymetallic mineralization.

The zonation of element associations from top to bottom
of the #24 exploration profile, Cu(Pb–Zn)→Mo(Cu)→Mo–
Cu(Ag–Au–Pb–Zn)→Mo, is affected by the different miner-
alization types. The Cu(Pb–Zn) association is derived from
the skarn orebody at an elevation of ~4750m, the Mo(Cu)
association involves the hornfels orebody at ~4650m, the
Mo–Cu(Ag–Au–Pb–Zn) association reflects the composition
of the skarn orebody at ~4400m, and the Mo anomaly at the
bottommay indicate deep porphyry molybdenite mineraliza-

tion. This is especially the case for the profile across the cen-
ter of the porphyry and hornfels orebodies, where zonation
may be an important indicator of deep mineral resources.

The MaxEnt model was applied to the analysis of
uncertainties in mineral resource prediction based on ele-
mental distribution (Figure 5), integrated anomalies
(Figure 6), and the locations of orebodies. The MaxEnt
software was used to establish a prediction model for pro-
spective mineral resource areas (MaxEnt 3.3.3k; http://
biodiversityinformatics.amnh.org/open_source/maxent/),
with model parameters as given in Table 4. In this simula-
tion, 75% of the data were randomly selected as ML train-
ing data and the remaining 25% as test data. The MaxEnt
software performed 20 replicated simulations on the opti-
mal model to provide the average value of the model eval-
uation with the test AUC ðAreaUnder CurveÞ = 0:929
(Figure 7), which indicates that the model was able to suc-
cessfully associate the probability of multivariate geochem-
ical anomalies with mineralizations. As shown in Figure 8,
mineralizations in #24 profile are spatially consistent with
the high anomaly probability zone (red), which could be
used as evidence in predicting the location of concealed
orebodies with consideration of uncertainty.

The above analysis, in combination with geochemical
mapping and geological background (Figures 5 and 6),
yielded three prediction targets, namely, 24-1, 24-2, and 24-
3 (Figure 8), as discussed below.

4. Discussion

Target 24-1 lies below borehole ZK2409 at an elevation of
~4250m and is indicated by both multielement anomalies
and an integrated KPCA anomaly (Table 1; Figures 5 and
6). The MaxEnt model indicates that this target has a high
probability of containingmineral resources and warrants fur-
ther investigation, as it may be related to a deep porphyry
edge or second concealed skarn layer (Figure 8).

Target 24-2 lies under porphyry orebody IV, where a
high-Mo anomaly is evident with increasing Mo concentra-
tion with depth (Figure 5 and Table 1). The geochemical
zonation from top to bottom of the #24 exploration profile,
Cu(Pb–Zn)→Mo(Cu)→Mo–Cu(Ag–Au–Pb–Zn)→Mo,
provides strong support for this target. From a geological per-
spective, the extensive deep porphyry suggests a significant
prediction direction for as-yet-unidentified porphyry Mo(Cu)
mineralizations. A high probability of mineralization that
shows in Figure 8 provides the reference of mineral location.

Table 4: MaxEnt parameters used in the Jiamacase study.

Parameter Value

Random test percentage 25%

Regularization multiplier 2.5

Max. number of background points 10000

Maximum iterations 500

Convergence threshold 0.00001

Default prevalence 0.5

Output format Logistic
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Target 24-3 lies in the northeastern extension of the skarn
orebody I, according to zonation along the skarn orebody I
and the distribution of skarn. In the geological point, there
should be a tendency to skarn dip direction (Figure 4). In
the geochemical point, the geochemical zonation, Pb–

Zn(Cu)→Cu(Au–Ag–Mo)→Mo(Cu)→Cu–Mo(Au–Ag),
indicates a Cu–polymetallic mineralization (Figure 8).

Especially, the overall geochemical vertical zonation of
Zn(Pb)→Au→Cu(Ag)→Mo from surface to depth is a
typical geochemical pattern of porphyry mineralization,
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providing a strong support for the targets above. The MaxEnt
model can evaluate the uncertainty of the predicted targets of
24-1 and 24-2, which is also a quantitative evidence for min-
eralization (Figure 8).

5. Conclusions

(1) In this study, 3D primary geochemical halo modeling
was used to build a geochemical data volume by 3D
spatial interpolation. In this approach, information
was obtained from all directions in 3D space, which
is an improvement over interpolation on a fixed
surface

(2) Three different geochemical zonations were indicated
by the primary geochemical haloes. The cross-section
cutting indicated an overall zonation of
Zn(Pb)→Au→Cu(Ag)→Mo, reflecting differences
in element concentrations from top to bottom,
consistent with earlier findings [35, 74]. The profile
cutting indicates two different zonations in the #24
profile: one along the dip direction of skarn from
surface to depth (Pb–Zn(Cu)→Cu(Au–Ag–
Mo)→Mo(Cu)→Cu–Mo(Au–Ag)) indicating
skarn orebody extension, and the other (Cu(Pb–
Zn)→Mo(Cu)→Mo–Cu(Ag–Au–Pb–Zn)→Mo)
gained from linear metal productivities from top to
bottom indicating deep porphyry molybdenite
mineralization

(3) During the analysis process, an integrated geochemi-
cal map was generated by KPCA, and a MaxEnt
model was built by combining six single-element
geochemical anomalies and an integrated geochemi-
cal anomaly for deep mineral resource uncertainty
prediction. Finally, three deep-seated mineral targets
were identified by the geological and geochemical
information extracted from the 3D primary geo-
chemical halo modeling

Data Availability

The data used to support the findings of this study were sup-
plied by Huatailong mining industry development Co., Ltd.
and so cannot be made freely available. Requests for access
to these data should be made to Huatailong mining industry
development Co., Ltd.

Conflicts of Interest

The authors declare no conflicts of interest.

Authors’ Contributions

Z.T., B.L., and K.G. contributed to the ideas. B.L. and Z.T
contributed to the methodology. Z.T., B.L., C.L., Y.X., and
Y.L. contributed to the writing for the original draft prepara-
tion. B.L. contributed to the writing involving review and
editing. N.G. and C.L. contributed to the modeling. K.G. con-

tributed to the supervision. All authors read and agreed to the
published version of the manuscript.

Acknowledgments

We are grateful to the Huatailong Mining Industry Develop-
ment Co. Ltd. for their support. This research was supported
by the National Key R&D Program of China
(2016YFC0600604), the Chinese National Natural Science
Foundation (41602334 and 41672325), the fund from the
Key Laboratory of Geochemical Exploration, Ministry of
Natural Resources (AS2019P02-01), and the Opening Fund
of Geomathematics Key Laboratory of Sichuan Province
(scsxdz2018zd03 and scsxdz2020yb06).

References

[1] E. J. M. Carranza and M. Sadeghi, “Primary geochemical char-
acteristics of mineral deposits – implications for exploration,”
Ore Geology Reviews, vol. 45, pp. 1–4, 2012.

[2] N. I. Safronov, “Dispersion haloes of ore deposits and their use
in exploration,” Problemy Sovetskoy Geologii, vol. 4, pp. 41–53,
1936.

[3] V. V. Distler, M. A. Yudovskaya, G. L. Mitrofanov, V. Y. Pro-
kof'Ev, and E. N. Lishnevskii, “Geology, composition, and gen-
esis of the Sukhoi Log noble metals deposit, Russia,” Ore
Geology Reviews, vol. 24, no. 1-2, pp. 7–44, 2004.

[4] G. M. Gundobin, “Peculiarities in the zoning of primary
halos,” Journal of Geochemical Exploration, vol. 21, no. 1-3,
pp. 193–200, 1984.

[5] M. Ziaii, E. J. M. Carranza, and M. Ziaei, “Application of geo-
chemical zonality coefficients in mineral prospectivity map-
ping,” Computational Geosciences, vol. 37, no. 12, pp. 1935–
1945, 2011.

[6] P. C. Goodell and U. Petersen, “Julcani mining district, Peru: a
study of metal ratios,” Economic Geology, vol. 69, no. 3,
pp. 347–361, 1974.

[7] B. K. Jones, “Application of metal zoning to gold exploration
in porphyry copper systems,” Journal of Geochemical Explora-
tion, vol. 43, no. 2, pp. 127–155, 1992.

[8] F. Pirajno and R. H. Smithies, “The FeO/(FeO+MgO) ratio of
tourmaline: a useful indicator of spatial variations in granite-
related hydrothermal mineral deposits,” Journal of Geochemi-
cal Exploration, vol. 42, no. 2-3, pp. 371–381, 1992.

[9] M. G. Kreĭn and F. È. Melik-Adamjan, “An integrated litho-
geochemical approach to detecting and interpreting cryptic
alteration around the Elura Zn-Pb-Ag deposit, New South
Wales, Australia,” Geochemistry: Exploration, Environment,
Analysis, vol. 11, pp. 233–246, 2011.

[10] T. H. Pearce, “A contribution to the theory of variation dia-
grams,” Contributions to Mineralogy and Petrology, vol. 19,
no. 2, pp. 142–157, 1968.

[11] C. R. Stanley and H. E. Madeisky, “Lithogeochemical Explora-
tion for Hydrothermal Ore Deposits Using Molar Element
Ratio Analysis,” in Alteration and Alteration Processes Associ-
ated with Ore-Forming Systems: Short Course Notes, D. R.
Lentz, Ed., vol. 11, pp. 193–211, Geological Association of
Canada, 1994.

[12] E. Urqueta, T. K. Kyser, A. H. Clark, C. R. Stanley, and C. J.
Oates, “Lithogeochemistry of the Collahuasi porphyry Cu-
Mo and epithermal Cu-Ag (-Au) cluster, northern Chile:

11Geofluids



Pearce element ratio vectors to ore,” Geochemistry: Explora-
tion, Environment, Analysis, vol. 9, pp. 9–17, 2009.

[13] C. T. Barrie, “Petrochemistry of shoshonitic rocks associated
with porphyry copper-gold deposits of central Quesnellia,
British Columbia Canada,” Journal of Geochemical Explora-
tion, vol. 48, p. 258, 1993.

[14] J. Date, T. Watanabe, and Y. Saeki, “Zonal alteration around
the Fukazawa kuroko deposits, Akita prefecture, northern
Japan,” Economic Geology, vol. 5, pp. 365–386, 1983.

[15] Y. Ishikawa, T. Sawaguchi, S. Iwaya, and M. Horiuchi, “Delin-
eation of prospecting targets for Kuroko deposits based on
modes of volcanism of underlying dacite and alteration
haloes,” Mining Geology, vol. 26, pp. 105–117, 1976.

[16] A. Kishida and R. Kerrich, “Hydrothermal alteration zoning
and gold concentration at the Kerr–Addison Archean lode
gold deposit, Kirkland Lake, Ontario,” Economic Geology,
vol. 82, no. 3, pp. 649–690, 1987.

[17] R. R. Large and P. J. Mcgoldrick, “Lithogeochemical halos and
geochemical vectors to stratiform sediment hosted Zn-Pb-Ag
deposits: part 2. HYC deposit, McArthur River, Northern Ter-
ritory Queensland,” Journal of Geochemical Exploration,
vol. 68, no. 1-2, pp. 105–126, 2000.

[18] R. R. Large, J. McPhie, J. B. Gemmell, W. Herrmann, and G. J.
Davidson, “The spectrum of ore deposit types, volcanic envi-
ronments, alteration halos, and related exploration vectors in
submarine volcanic successions: some examples from Austra-
lia,” Economic Geology, vol. 96, no. 5, pp. 913–938, 2001.

[19] M. Piché and M. Jébrak, “Normative minerals and alteration
indices developed for mineral exploration,” Journal of Geo-
chemical Exploration, vol. 82, no. 1-3, pp. 59–77, 2004.

[20] K. Prendergast, “Application of lithogeochemistry to gold
exploration in the St Ives Goldfield, Western Australia,” Geo-
chemistry: Exploration, Environment, Analysis, vol. 7, pp. 99–
108, 2007.

[21] L. Wang, J. Percival, J. W. Hedenquist, K. Hattori, and K. Z.
Qin, “Alteration mineralogy of the Zhengguang Au-Zn
deposit, Northeast China: interpretation of shortwave infrared
analyses during mineral exploration and assessment,” Eco-
nomic Geology, vol. 116, no. 2, pp. 389–406, 2021.

[22] W. Zheng, Y. Chen, J. Tang et al., “Discovery of the tubular ore
body in Jiama ore district, Tibet and its geological signifi-
cance,” Mineral Deposits, vol. 30, pp. 207–217, 2011.

[23] W. Zheng, J. Tang, K. Zhong et al., “Geology of the Jiama por-
phyry copper-polymetallic system, Lhasa Region, China,” Ore
Geology Reviews, vol. 74, pp. 151–169, 2016.

[24] B. Lin, J. Tang, P. Tang et al., “Polycentric complex mineraliza-
tion model of porphyry system: a case study of Jiamasuper-
large deposit in Tibet,” Mineral Deposits, vol. 38, pp. 1204–
1222, 2019.

[25] Y. Y. Wang, W. B. Zheng, Y. C. Chen et al., “Discussion on the
mechanism of seperation of copper and molybdenum in Jiama
porphyry deposit system,” Acta Petrologica Sinica, vol. 33,
pp. 495–514, 2017.

[26] B. Zou, B. Lin, W. B. Zheng et al., “The characteristics of alter-
ation and mineralization and geochronology of ore-bearing
porphyry in south pit of Jiama copper-polymetallic deposit,”
Tibet. Acta Petrologica Sinica, vol. 35, pp. 953–967, 2019.

[27] J. Tang, L. Zhang, Y. Huang et al., “40Ar /39Ar isotope ages of
main geological bodies in Xiongcun copper-gold deposit ,Xie-
tongmen County , Tibet , and their geological significance,”
Mineral deposit, vol. 28, pp. 759–769, 2009.

[28] J. Tang, D. Wang, X. Wang, K. Zhong, L. Ying, and W. Zheng,
“Geological features and metallogenic model of the Jiama
copper-polymetallic deposit in Tibet,” Acta Geoscientia Sinica,
vol. 31, pp. 495–506, 2010.

[29] J. Tang, S. Deng, and W. Zheng, “An exploration model for
Jiama copper polymetallic deposit in Maizhokunggar County,
Tibet,” Mineral Deposits, vol. 30, pp. 179–195, 2011.

[30] E. J. Hill, N. H. S. Oliver, J. S. Cleverley, M. J. Nugus,
J. Carswell, and F. Clark, “Characterisation and 3D modelling
of a nuggety, vein-hosted gold ore body, Sunrise Dam, West-
ern Australia,” Journal of Structural Geology, vol. 67,
pp. 222–234, 2014.

[31] E. A. D. Kemp, T. Monecke, M. Sheshpari, E. Girard, and
G. Bellefleur, “3D GIS as a support for mineral discovery,”
Geochemistry: Exploration, Environment, Analysis, vol. 11,
pp. 117–128, 2011.

[32] S. H. H. Nielsen, F. Cunningham, R. Hay, G. Partington, and
M. Stokes, “3D prospectivity modelling of orogenic gold in
the Marymia Inlier, Western Australia,” Ore Geology Reviews,
vol. 71, pp. 578–591, 2015.

[33] G. Wang, S. Zhang, C. Yan et al., “Mineral potential targeting
and resource assessment based on 3D geological modeling in
Luanchuan region, China,” Computers & Geosciences, vol. 37,
no. 12, pp. 1976–1988, 2011.

[34] J. Chen, P. Lu, W. Wu, J. Zhao, and Q. Hu, “A 3-D prediction
method for blind orebody based on 3-D visualization model
and its application,” Earth Science Frontiers, vol. 14, no. 5,
pp. 54–61, 2007.

[35] K. Xiao, N. Li, A. Porwal, E. J. Holden, L. Bagas, and Y. Lu,
“GIS-based 3D prospectivity mapping: a case study of Jiama
copper-polymetallic deposit in Tibet, China,” Ore Geology
Reviews, vol. 71, pp. 611–632, 2015.

[36] A. Romero, C. Gatta, and G. Camps-Valls, “Unsupervised
deep feature extraction for remote sensing image classifica-
tion,” IEEE Transactions on Geoscience & Remote Sensing,
vol. 54, no. 3, pp. 1349–1362, 2016.

[37] J. Xia, N. Falco, J. A. Benediktsson, P. Du, and J. Chanussot,
“Hyperspectral image classification with rotation random for-
est via KPCA,” IEEE Journal of Selected Topics in Applied Earth
Observations & Remote Sensing, vol. 10, pp. 1601–1609, 2017.

[38] B. Scholkopf, A. J. Smola, and K. R. Müller, “Nonlinear com-
ponent analysis as a kernel eigenvalue problem,” Neural Com-
putation, vol. 10, no. 5, pp. 1299–1319, 1998.

[39] L. J. Cao, K. S. Chua, W. K. Chong, H. P. Lee, and Q. M. Gu, “A
comparison of PCA, KPCA and ICA for dimensionality reduc-
tion in support vector machine,” Neurocomputing, vol. 55,
no. 1-2, pp. 321–336, 2003.

[40] C. Scheidt and J. Caers, “Representing spatial uncertainty
using distances and kernels,” Mathematical Geoscience,
vol. 41, no. 4, pp. 397–419, 2009.

[41] Y. Gu, L. Ying, and Z. Ye, “A selective KPCA algorithm based
on high-order statistics for anomaly detection in hyperspectral
imagery,” IEEE Geoscience & Remote Sensing Letters, vol. 5,
no. 1, pp. 43–47, 2008.

[42] X. Ge, Y. Fan, X. Zhu, S. Deng, and Y.Wang, “Amethod to dif-
ferentiate degree of volcanic reservoir fracture development
using conventional well logging data—an application of kernel
principal component analysis (KPCA) and multifractal
detrended fluctuation analysis (MFDFA),” IEEE Journal of
Selected Topics in Applied Earth Observations & Remote Sens-
ing, vol. 7, pp. 4972–4978, 2015.

12 Geofluids



[43] E. J. M. Carranza and M. Hale, “Logistic regression for geolog-
ically constrained mapping of gold potential, Baguio district,
Philippines,” Exploration and Mining Geology, vol. 10, no. 3,
pp. 165–175, 2001.

[44] A. Porwal, E. J. M. Carranza, and M. Hale, “Artificial neural
networks for nineral-potential mapping: a case study from
Aravalli Province Western India,” Natural resources research,
vol. 12, no. 3, pp. 155–171, 2003.

[45] R. Zuo and E. J. M. Carranza, “Support vector machine: a tool
for mapping mineral prospectivity,” Computational Geos-
ciences, vol. 37, no. 12, pp. 1967–1975, 2011.

[46] R. Zuo, Y. Xiong, J. Wang, and E. J. M. Carranza, “Deep learn-
ing and its application in geochemical mapping,” Earth-Sci-
ence Reviews, vol. 192, pp. 1–14, 2019.

[47] T. Sun, H. Li, K. Wu, F. Chen, Z. Zhu, and Z. Hu, “Data-driven
predictive modelling of mineral prospectivity using machine
learning and deep learning methods: a case study from south-
ern Jiangxi Province, China,” Minerals, vol. 10, no. 2, p. 102,
2020.

[48] J. Xiang, K. Xiao, E. Carranza, J. Chen, and S. Li, “3D mineral
Prospectivity mapping with random forests: a case study of
Tongling, Anhui China,” Natural Resources Research, vol. 29,
pp. 1–20, 2019.

[49] B. Li, B. Liu, K. Guo, C. Li, and B. Wang, “Application of a
maximum entropy model for mineral prospectivity maps,”
Minerals, vol. 9, no. 9, p. 556, 2019.

[50] B. Li, B. Liu, G. Wang, L. Chen, and K. Guo, “Using geostatis-
tics and maximum entropy model to identify geochemical
anomalies: a case study in Mila Mountain region, southern
Tibet,” Applied Geochemistry, vol. 124, p. 104843, 2021.

[51] S. J. Phillips, R. P. Anderson, and R. E. Schapire, “Maximum
entropy modeling of species geographic distributions,” Ecolog-
ical Modelling, vol. 190, no. 3-4, pp. 231–259, 2006.

[52] S. J. Phillips and E. Jane, “On estimating probability of pres-
ence from use-availability or presence-background data,” Ecol-
ogy, vol. 94, no. 6, pp. 1409–1419, 2013.

[53] A. L. Berger, S. A. D. Pietra, and V. J. D. Pietra, “A maximum
entropy approach to natural language processing,” Computa-
tional Linguistics, vol. 22, pp. 39–71, 2002.

[54] Y. Dong, G. E. Hinton, N. Morgan, J. T. Chien, and
S. Sagayama, “Introduction to the special section on deep
learning for speech and language processing,” IEEE Transac-
tions on Audio, Speech, and Language Processing, vol. 20,
pp. 4–6, 2012.

[55] Y. Xu, Z. Wu, J. Long, and X. Song, “A maximum entropy
method for a robust portfolio problem,” Entropy, vol. 16,
no. 6, pp. 3401–3415, 2014.

[56] B. Wang, Y. Xu, and J. Ran, “Predicting suitable habitat of the
Chinese monal (Lophophorus lhuysii) using ecological niche
modeling in the Qionglai Mountains, China,” Peerj, vol. 5, arti-
cle e3477, 2017.

[57] N. Guo, C. Thomas, J. Tang, and Q. Tong, “Mapping white
mica alteration associated with the Jiama porphyry-skarn Cu
deposit, central Tibet using field SWIR spectrometry,” Ore
Geology Reviews, vol. 108, pp. 147–157, 2019.

[58] S. Chung, J. Ji, D. Liu, M. Chu, and Q. Zhang, “Adakites from
continental collision zones: melting of thickened lower crust
beneath southern Tibet,” Geology, vol. 31, no. 11, pp. 1021–
1024, 2003.

[59] Z. Hou, Z. Yang, X. Qu et al., “The Miocene Gangdese por-
phyry copper belt generated during post-collisional extension

in the Tibetan Orogen,” Ore Geology Reviews, vol. 36, no. 1-
3, pp. 25–51, 2009.

[60] C. Miller, R. Schuster, U. Klötzli, W. Frank, and F. Purtscheller,
“Post-collisional potassic and ultrapotassic magmatism in SW
Tibet: geochemical and Sr–Nd–Pb–O isotopic constraints for
mantle source characteristics and petrogenesis,” Journal of
Petrology, vol. 40, pp. 699–715, 1999.

[61] G. Pan, X. Mo, Z. Hou et al., “Spatial-temporal framework of
the Gangdese Orogenic Belt and its evolution,” Acta Petrolo-
gica Sinica, vol. 22, pp. 521–533, 2006.

[62] S. Turner, C. Hawkesworth, J. Liu, N. Rogers, S. Kelley, and
C. P. Van, “Timing of Tibetan uplift constrained by analysis
of volcanic rocks,” Nature, vol. 364, no. 6432, pp. 50–54, 1993.

[63] K. Zhong, D. Yao, J. Duo et al., “Structural features of Yebatec-
tonite group in Jiama(Gyama)- Qulong area of Tibet,” Acta
Geoscientia Sinica, vol. 34, pp. 75–86, 2013.

[64] Z. P. Qin, X. W. Wang, J. Dor, J. X. Tang, Y. Zhou, and H. J.
Peng, “LA-ICP-MS U-Pb zircon age of intermediate–acidic
intrusive rocks in Jiama of Tibet and its metallogenic signifi-
cance,” Mineral Deposits, vol. 30, pp. 339–349, 2011.

[65] W. P. Wang and J. X. Tang, “Rock types and genetic signifi-
cance of hornfels and location prediction of concealed por-
phyry bodies in Jiama copper polymetallic deposit Tibet,”
Mineral Deposits, vol. 30, pp. 1017–1038, 2011.

[66] K. Zhong, L. Li, H. Zhou et al., “Features of Jiama(Gyama)-
Kajunguo thrust-gliding nappe tectonic system in Tibet,” Acta
Geoscientia Sinica, vol. 33, pp. 411–423, 2012.

[67] B. Scholkopf, S. Mika, C. C. Burges et al., “Input space versus
feature space in kernel-based methods,” IEEE Transactions
on Neural Networks, vol. 10, no. 5, pp. 1000–1017, 1999.

[68] J. Yang, A. F. Frangi, J. Y. Yang, D. D. Zhang, and Z. Jin,
“KPCA plus LDA: a complete kernel fisher discriminant
framework for feature extraction and recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 27, no. 2, pp. 230–244, 2005.

[69] M. Fauvel, J. Chanussot, and J. A. Benediktsson, “Kernel prin-
cipal component analysis for the classification of hyperspectral
remote sensing data over urban areas,” Eurasip Journal on
Advances in Signal Processing, vol. 2009, no. 1, 2009.

[70] C. E. Shannon, “A mathematical theory of communication,”
Bell Labs Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[71] C. Ge, Z. Zhang, M. Kyebambe, and N. Kimbugwe, “Predicting
the outcome of NBA playoffs based on the maximum entropy
principle,” Entropy, vol. 18, no. 12, p. 450, 2016.

[72] E. T. Jaynes, “Information theory and statistical mechanics,”
Physical Review, vol. 106, no. 4, pp. 620–630, 1957.

[73] D. Shepard, “A two-dimensional interpolation function for
irregularly-spaced data,” in Proceedings of the 1968 23rd
ACM national conference, pp. 517–524, 1968.

[74] W. B. Zheng, The Study on Metallogenic Model and Prospect-
ing Pattern for Jiama Polymetallic Copper Deposit, Tibet,
China, CAGS, New York, 2012.

13Geofluids


	3D Primary Geochemical Halo Modeling and Its Application to the Ore Prediction of the Jiama Polymetallic Deposit, Tibet, China
	1. Introduction
	2. Materials and Methods
	2.1. Geological Setting
	2.2. Data
	2.3. KPCA
	2.4. MaxEnt Model

	3. Results
	3.1. 3D Primary Geochemical Halo Modeling of the Jiama Deposit
	3.1.1. 3D Primary Geochemical Halo Modeling
	3.1.2. Primary Halo Cross-Sections and Its Geochemical Zonation

	3.2. Mineral Prediction at Depth
	3.2.1. Elemental Distributions in the Profile
	3.2.2. Integrated Distribution in the #24 Exploration Profile
	3.2.3. Deep Mineral Resource Prediction for the #24 Profile


	4. Discussion
	5. Conclusions
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments

