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The total organic carbon content (TOC) is a core indicator for shale gas reservoir evaluations. Machine learning-based models
can quickly and accurately predict TOC, which is of great significance for the production of shale gas. Based on conventional
logs, the measured TOC values, and other data of 9 typical wells in the Jiaoshiba area of the Sichuan Basin, this paper
performed a Bayesian linear regression and applied a random forest machine learning model to predict TOC values of the
shale from the Wufeng Formation and the lower part of the Longmaxi Formation. The results showed that the TOC value
prediction accuracy was improved by more than 50% by using the well-trained machine learning models compared with
the traditional ΔLogR method in an overmature and tight shale. Using the halving random search cross-validation method
to optimize hyperparameters can greatly improve the speed of building the model. Furthermore, excluding the factors that
affect the log value other than the TOC and taking the corrected data as input data for training could improve the
prediction accuracy of the random forest model by approximately 5%. Data can be easily updated with machine learning
models, which is of primary importance for improving the efficiency of shale gas exploration and development.

1. Introduction

Shale gas is a very important unconventional energy. Shale
gas production in the United States constitutes a major part
of its energy structure, and China has also made break-
throughs in the shale gas field in recent years [1]. Quickly
identifying sweet spots where oil and gas are enriched in
shale formation has an important impact on guiding the eco-
nomic and effective exploitation of shale oil and gas resources
[2–4]. The total organic matter content (TOC) is an impor-
tant index for evaluating the enrichment of oil and gas
resources, which can effectively indicate the organic matter
enrichment intervals in shale formation [5]. The TOC values
are often obtained through laboratory testing of cores. How-

ever, shale formation has strong heterogeneity, and it is lim-
ited by sedimentary space, material source supply, and other
factors [6]. Moreover, in the early stage of shale oil and gas
resource exploration, the continuity and integrity of core data
cannot be guaranteed. As a result, the use of discrete mea-
sured TOC values from the core test may lead to a misunder-
standing of organic matter-rich intervals. In contrast, the
geophysical log data are complete and continuous. Continu-
ous vertical TOC values can be obtained by using log data,
and then, the distribution of organic enrichment layers can
be predicted [7–10].

In the 1980s, Schmoker first discovered the relationship
between log data and organic matter abundance, and the
density log value was used to calculate the organic carbon
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content. With the continuous development of technology,
many methods using log information to predict TOC values
have been found, such as the log curve superposition evalu-
ation method (ΔLogR method and its modification method)
[11–13], multiple linear regression evaluation methods [14],
machine learning, and other mathematical analysis evalua-
tion methods [15–17]. However, different methods have dif-
ferent scopes. The ΔLogR method has a comparably wide
range of applications among these methods because it is
driven by the physical model. Nevertheless, neither the tradi-
tional ΔLogR method nor the improved method can fully
cover a variety of different formation conditions (such as
abnormal fluid pressure, overmaturity, and tight reservoirs).
In addition, most TOC evaluation methods based on ΔLogR
need to manually determine the baseline value of the poros-
ity curve and the resistivity curve, which is a relatively cum-
bersome process.

In recent years, machine learning methods have become
a useful tool for building prediction models, which can
reveal hidden patterns and unknown correlations between
independent variables and dependent variables [18, 19]. In
the machine learning model, TOC prediction is a multiple
regression problem. The machine learning algorithm can
automatically determine the comprehensive relationship
between the TOC values and the corresponding log values
through the learning of samples. Machine learning methods
are driven by data and thus are not subject to changes in
geological conditions. A large amount of stratum informa-
tion can be better used to comprehensively predict TOC
values, so the accuracy will not be greatly reduced due to
the distortion of a certain curve [20, 21]. The disadvantages
of machine learning-based models are that they may have
multiple solutions and overfit with a limited number of sam-
ples. In recent years, some machine learning methods have
shown good application effects and prospects in TOC pre-
diction of source rocks. Zhao et al. [22] used Bayesian
methods to predict TOC values and achieved good results.
Handhal et al. [23] used integrated learning methods which
not only guaranteed the accuracy of the model but also
solved the problems of overlearning and improved the
generalization ability of the model.

This paper takes the shale of the Wufeng Formation and
the lower part of the Longmaxi Formation in the Jiaoshiba
area of the Sichuan Basin as the main research object. Based
on a large amount of measured TOC values from drilling
cuttings and cores in this area, Bayesian linear regression
and the relatively stable random forest algorithm are selected
to predict the TOC values. Comparing the results with the
traditional ΔLogR method, this paper discusses which
method is more suitable for TOC prediction in this area
and how to improve the calculation speed and accuracy
based on existing methods.

2. Data and Methods

2.1. Geological Background and Data Source. The shale of the
Upper Ordovician Wufeng Formation and the Lower Silu-
rian Longmaxi Formation in the southeastern Sichuan Basin
is a shelf deposit that was maintained over a long time in a

deep-water anoxic environment. Black shale and silty shale
with stable thickness and wide distribution are deposited,
and they have high siliceous contents and are rich in grapto-
lite. The organic matter content is mainly derived from high-
productivity marine organisms and has a high degree of
thermal evolution. Its Ro value is approximately 2.0% to
3.5% [24]. This basin is currently the most important shale
gas reservoir in China [25, 26]. The first shale gas field in
China was built in the Jiaoshiba area (Figure 1), and the
main production layer of this shale gas field is the black shale
section of the Wufeng Formation and the lower part of
Longmaxi Formation. The geothermal field is relatively sta-
ble. The roof and floor plates constitute excellent sealing
units, and the damage of faults is limited. Overall, it has
good preservation conditions, which are conducive to the
enrichment and storage of shale gas [26–28]. However, the
black shale in the Wufeng Formation and the lower part of
the Longmaxi Formation was once buried to a depth of
6000m. The diagenesis of the shale was relatively thorough,
which led to changes in the porosity log values under the
effect of many factors. The application effect of the TOC pre-
diction method is not ideal [29]. In this paper, the Jiaoshiba
area is the research object used to investigate prediction
effect of the TOC values with different machine learning
methods based on log data and the measured TOC values
from 9 typical wells (JY1, JY2, JY3, JY4, JY5, JY6, JY7, JY8,
and JY9) in this area. Among them, the data from wells
JY1, JY3, JY4, JY5, JY8, and JY9 are used for model establish-
ment and verification. The data from wells JY2, JY6, and JY7
are used to verify the universality of the model.

2.2. Methods

2.2.1. Traditional ΔLogR Method. The traditional ΔLogR
method was proposed by Passey et al. [11]. This method uses
the porosity curve, deep lateral resistivity curve, and matu-
rity parameters to predict the TOC values. Normally, the
porosity curve (usually the acoustic transit time log curve)
and the resistivity curve overlap in the fine-grained
organic-poor texture layer but show an amplitude difference
(defined as ΔLogR) in the organic-rich texture layer. This
amplitude difference has a linear relationship with the
TOC values and is a function of maturity, which can be used
to calculate TOC values.

The formula for calculating the amplitude difference
from the acoustic transit time and resistivity is as follows:

ΔLogR = lg R
Rb

� �
+ 0:02 ∗ Δt − Δtbð Þ, ð1Þ

where ΔLogR is the curve amplitude difference measured in
logarithmic resistivity units; R is the deep lateral resistivity,
and the unit is Ω·m; Δt is the acoustic transit time, and the
unit is μs/ft; Rb and Δtb are the baseline values of the resis-
tivity curve and the acoustic transit time curve, respectively,
which correspond to the overlapping section of the two in
the fine-grained organic-poor texture layer; and 0.02 is the
calibration coefficient.
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The TOC value is obtained by the following empirical
relationship:

TOC = ΔLogR ∗ 10 2:297−0:1688∗LOMð Þ, ð2Þ

where TOC is the total organic carbon content (%) and
LOM is the maturity parameter, which can be replaced with
the Ro value.

2.2.2. Bayesian Linear Regression Method. Bayesian linear
regression model is based on Bayesian inference in statistics
[31, 32]. It regards the parameters of the linear model as ran-
dom variables and finds the posterior by the prior of the
model parameters (weight coefficients). This model has the
basic properties of a Bayesian statistical model and can
obtain the probability density function of the weight coeffi-
cient. In addition, it can carry out online learning and model
hypothesis testing based on Bayesian factors [32, 33].

The purpose of Bayesian linear regression is not to find
the single best value of the model parameters but to deter-
mine the posterior distribution of the model parameters.
The response variables as well as the model parameters are
from the probability distribution. The posterior distribution
of the model parameters is based on the input and output of
the training data [34]:

P β ∣ y, Xð Þ = P y ∣ β, Xð Þ ∗ P β ∣ Xð Þ
P y ∣ Xð Þ , ð3Þ

where Pðβ ∣ y, XÞ is the posterior probability distribution of
the model parameters based on the input and output, Pðy ∣
β, XÞ is the likelihood probability of the output, Pðβ ∣ XÞ is

the prior probability of the parameter β based on the input,
and Pðy ∣ XÞ is the normalization constant. This formula is a
simple expression of the Bayesian theorem, which is the
basis of Bayesian inference.

The probability density function of the parameter poste-
rior distribution is as follows:

lnp w ∣ yð Þ = −
α

2
〠
N

n=1
yn −wTϕ xnð Þ� �2 −

λ

2
wTw + const: ð4Þ

In the formula, w is the weight coefficient of each vector
of the model, α is the noise variance, λ is an individual
hyperparameter that can measure the accuracy of w, y is
the real target value, xn is the vector value of each log, wTϕ
ðxnÞ is the model prediction value, and const is the constant
[35, 36].

For the TOC prediction problem, accurate prior infor-
mation is not available for the weight proportion of each
log vector; thus, the noninformation prior must be intro-
duced. That is, the probability distribution of the prior
parameter w is obtained by using the spherical Gaussian dis-
tribution. After that, the specific process is as follows. (1)
Use the training data to build the model. In this process,
parameters α and λ can be obtained by maximum likelihood
estimation. Another method is to artificially specify an initial
value and then update them continuously until the maxi-
mum log marginal likelihood is obtained. At this time, the
model is most consistent with the actual situation. (2) Use
the validation data to verify the accuracy of the model. In
this process, the grid search method is used to optimize
the hyperparameters of the gamma distribution that α and

N
0

0

20

40

60

80

100

20 40

60

20

40

60
80
100

Chuanzhong Dome 

Qianzhong Dome 
Xuefeng Dome 

Chengdu

WK1

Shizhu

Fuling
Chongqing

Yibin

Xishui

Pengshui

HY1

PY1

JY1

DS1

Y101

N201

DYS1

0 2 4 kmN

Changba

Mugenput

Xinlichang

Taihechang

Fuling

Baima

Pingqiao
xi fa

ult

Qiyu
es

ha
n 

Fa
ul

t

Sh
im

en
 N

o.
2 F

au
lt

JY5

JY9

JY7

JY6

Shale thickness (m)

100 km

Bazhong

D
aershan fault

JY8

Fa
ng

do
us

ha
n f

au
lt

Shim
en No.1 FaultJY4

JY3
JY2

JY1 Jiaoshiba
Diao

shuiyan No.2 Fault

Tian
tai

 N
o.2 

Fau
lt

Tian
tai

 N
o.1 F

au
lt

Xinlic
han

g F
au

lt

W
ujiang Fault

Diao
shuiya

n No.1 Fault

Silurian pinnacle line

Boundary of the basin

Work area

Location

Well

Fault

Figure 1: Geological background and distribution of study wells in the Jiaoshiba area (revised according to Wang et al. [30]).
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λ obey to, so as to obtain the optimal model. (3) Use the
optimal model to predict the test data. If the minimum accu-
racy is met, then the model parameters are returned and the
whole dataset is trained to fit the final model. (4) Use the
final model to predict the TOC values of other sections or
wells.

Bayesian linear regression can solve the problem of over-
fitting in maximum likelihood estimation because the
parameters are regarded as unknown fixed values in the
maximum likelihood estimation linear regression, while they
are regarded as random variables in the Bayesian linear
regression, which is widely used in the field of machine
learning. The utilization rate of the data samples is 100%
by the Bayesian linear regression method, and the complex-
ity of the model can be effectively and accurately determined
by using training samples only. This method is suitable for
processing small datasets like log values [37]. It has been
applied in lithology recognition, fluid classification, etc.,
which has achieved good results [38, 39].

2.2.3. Random Forest Method. Random forest method is an
integrated learning method for classification, regression,
and other tasks, and it uses the prediction results of multiple
decision trees to determine the final classification results and
regression values. It is essentially a bagging method that uses
limited data to obtain many new samples through repeated
sampling, constructs multiple independent estimators, and
takes the average results for overall prediction. When deter-
mining the final output, multiple decision trees are com-
bined. Although a single decision tree has a large variance,
the variance of the final comprehensive result can be very
low since each decision tree is perfectly trained for a specific
sample.

The corresponding basic steps of the algorithm are as
follows: (1) Bootstrap sampling with return is carried out
from the training data to generate several datasets. Each
dataset generates a decision tree through training. (2)
When the decision tree is divided into nodes, it is neces-
sary to randomly select several features from all log vec-
tors and make the branches of the optimal feature grow
fully until they cannot regenerate. Pruning is not per-
formed in this process. (3) Use out-of-bag data (unselected
data) to test the effect and generalization ability of the
model, determine the optimal number of decision trees,
and rebuild the model. (4) Use the determined model to
predict the new data [20, 40].

The main advantage of the random forest algorithm is
that each decision tree only uses part of the samples and only
extracts some of the attributes for modelling, which
enhances the diversity of learners, corrects the habit of the
decision tree for overadapting to its training set, and
improves the generalization of the model [41]. Especially
for the high-dimensional regression problem like TOC pre-
diction, the stability and generalization of the model are
more important than the small deviation to some extent. It
has been successfully applied in many aspects, such as lithol-
ogy identification [42], source rock prediction [43], and seis-
mic reservoir prediction [44], and it has the advantages of
simplicity and interpretability.

3. Results and Analysis

3.1. Traditional ΔLogR Method. According to the results of
previous studies [45], the TOC values predicted by the Δ
LogR method have a poor correlation with the measured
TOC values. The predicted results cannot objectively reflect
the actual total organic carbon content (Figure 2).

3.2. Machine Learning Methods. The machine learning
models used for TOC prediction include four steps: data
preprocessing, log series selection, hyperparameter selection
and model establishment, and model verification and appli-
cation [46–49]. The specific workflow is as follows: find
enough data points and preprocess the data, including deep
homing, data cleaning, and data resampling; divide the data
into the training set, validation set, and test set; use the train-
ing set to optimize the hyperparameters before the learning
process because these parameters will affect the performance
of the model and cannot be learned by machine learning
algorithm; use the optimized hyperparameters to build the
model; use the well-trained model to evaluate test set; and
extrapolate and apply the evaluated model.

3.2.1. Data Preprocessing. There is often a deviation between
the core and log depth because of the low core recovery rate
and inaccurate estimation of the core depth, which leads to
inconsistencies between the geological characteristics
recorded by the core and the log records, which affects the
accuracy of geological feature recognition by log data. Under
actual geological conditions, the depth of the log records is
more accurate than that of the cores. Therefore, the core
depth needs to be corrected so that the TOC test sampling
points can be calibrated to the log depth.

It is currently believed that the minimum resolution of
the log data is 0.1m, and it is impossible to distinguish two
TOC test sampling points that are less than 0.1m apart. In
addition, some data not meeting the statistical significance
often have an impact on the establishment of the model;
thus, it is necessary to screen the TOC data. This study uses
the DataFrames function of the Pandas tripartite library in
Python to screen the TOC test points whose depth difference
is less than 0.1m and the invalid values beyond the mean
value plus or minus 3 times the variance.

The log data are sampled uniformly and densely
throughout the well section, which can be approximately
regarded as a continuous variable, while the measured
TOC values are discrete data with a fixed depth. There is a
certain mismatch between the two in the sampling depth.
A resampling operation is required for two kinds of data
with different sampling intervals. At present, the commonly
used resampling methods in the field of log technology
include fast Fourier transform, Gaussian convolution, win-
dow data shift, linear transformation, and linear antialiasing
[50, 51]. Considering that the log data generally present con-
tinuous linear transformation on the well section, this paper
chose the linear transformation reprocessing method in the
implementation process and set the maximum interval to
0.25m (2 log intervals), which avoids the subjectiveness of
manually selecting data.
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After preprocessing, 386 groups of modelling data from
JY1, JY3, JY4, JY5, JY8, and JY9 and 242 groups of predic-
tion test data from JY2, JY6, and JY7 are finally obtained.
Each group of data includes RT, GR, AC, CAL, CNL,
DEN, and SP log values and corresponding measured TOC
value. Their statistical information is shown in Table 1 and
Table 2. Statistical analyses show that most measured TOC
values are less than 6%, which is generally low. Individual
values exceeding this range are regarded as outliers and
removed.

3.2.2. Log Series Selection. The accuracy of the machine
learning methods used to predict the TOC values largely
depends on the input data. If the correlation between the
log and TOC values is weak or too complicated, then it is
easy for the algorithm to learn the wrong function relation-
ship with small numbers of samples, which may result in
oversimulation. Therefore, it is necessary to analyze the cor-
relation between the log data and the TOC values before
building the machine learning model. Generally, more
selected features correspond to more log series, more infor-
mation that can be covered, and a more accurate model.
However, redundant features will also affect the accuracy
of the calculation and the generalization of the model.

Considering the difficulty of acquiring log data, this
paper mainly uses the commonly available conventional
log parameters (GR, SP, CAL, DEN, CNL, AC, and RT) to
predict the TOC. Before modelling, it is necessary to per-
form a preliminary correlation analysis on the selected log
series and the measured TOC values. This process can avoid
overfitting caused by weak correlation or complex relation-
ships between the log and TOC values. In statistical analyses,
the Pearson product-moment correlation coefficient (Pear-
son’s r) is widely used to measure the degree of linear corre-
lation between two variables, and its value is between -1 and
1. A positive number indicates a positive correlation, and a
negative number indicates a negative correlation. The closer
the absolute value is to 1, the higher the correlation between
the two variables [52]. The Pearson matrix can be used to
analyze the correlation between different log curves and

the measured TOC (Figure 3). In Figure 3, the number in
each block is the Pearson’s r of the two variables correspond-
ing to the row and column. The Pearson’s r values of the
measured TOC value and GR, DEN, AC, and CNL are
0.65, -0.9, 0.48, and -0.67, respectively, which have relatively
good correlations. For the regression prediction model,
redundant information with low correlation needs to be
excluded. According to the actual condition in the work
area, the prediction of TOC is carried out by using log series
with correlation coefficients greater than or equal to 0.2 as
the input data, including GR, SP, DEN, AC, and CNL.

3.2.3. Hyperparameter Selection and Model Establishment.
To enhance the generalization ability of the machine learn-
ing models, it is necessary to use cross-validation methods
to optimize the hyperparameters. Then, the selected optimal
hyperparameters are used to overcome overlearning and
improve the prediction performance [53]. In this paper,
the modelling data are divided into a training dataset, verifi-
cation dataset, and test dataset at a ratio of 6 : 3 : 1. The TOC
distribution of different datasets is similar to ensure that the
results obtained from cross-validation are meaningful. The
training data are the initial learning data for building the
model. The verification data are used to test the accuracy
of the model with different hyperparameters and screen
the best hyperparameter. The test data will not participate
in the establishment of the model or the selection of the
model, although they will be used to test the accuracy of
the final model. The accuracy of the model obtained by the
test datasets can reflect the extrapolation ability of the model
to a certain extent, which increases the credibility of the
model.

The loss functions commonly used in cross-validation
are the mean square error (MSE), mean absolute error
(MAE), explained variance score (EVS), and coefficient of
determination (R2) [54]. The calculation needs to be
repeated many times in the cross-validation. To save calcula-
tion costs and avoid losing accuracy, the mean absolute error
(MAE) is used as the loss function in this paper. The formula
is as follows [55]:

MAE y, ŷð Þ = 1
nsamples

〠
nsamples−1

i=0
yi − ŷij j, ð5Þ

where y is the real target value, ŷ is the estimated target
value, nsamples is the number of samples, yi is the real target
value of the i-th sample, and ŷi is the estimated target value
of the i-th sample.

Moreover, the coefficient of determination (R2) is used
as the standard for evaluation in the test set. A value closer
to 1 corresponds to a better final regression prediction result,
and a value closer to 0 corresponds to a worse regression
prediction result. The formula is as follows [56]:

R2 y, ŷð Þ = 1 −
∑

nsamples−1
i=0 yi − y∧ið Þ2
∑

nsamples−1
i=0 yi − �yð Þ2

, ð6Þ
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Figure 2: Correlation between the measured TOC and the
predicted TOC by the traditional ΔLogR method [45].
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where y is the true target value, ŷ is the estimated target
value, nsamples is the number of samples, yi is the true target
value of the i-th sample, ŷi is the estimated target value of
the i-th sample, and �y is the average value of the true target
value.

In general, it is important to choose the initial value of
the regularization parameter (α, λ) when fitting a curve to
a polynomial by Bayesian linear regression method because
the regularization parameter is determined by an iterative
process that depends on the initial value [57]. Whether the
regularization parameters are the default values

(α init = 0:74, λ init = 1:00) or the relative extreme values
(α init = 100:00, λ init = 0:001), the training results are
good. The sample data can be considered relatively consis-
tent with the Gaussian prior; therefore, the results do not
depend on the initial values. Moreover, a comparison
between the test set and the training set (Figure 4) shows
that the generalization of the model is relatively good, with
an R2 score of 0.8997.

The random forest regression model also uses the cross-
validation to optimize the hyperparameters. However, the
difference is that the random forest method has too many

Table 1: Statistical information of the input data for building the model.

Statistical information RT (Ω·m) GR (API) AC (μs/ft) CAL (inch) CNL (%) DEN (g/cm3) SP (mV) TOC (%)

Maximum value 137.11 247.88 88.29 13.39 25.06 2.74 137.21 6.02

Minimum value 5.78 100.52 60.53 8.34 7.70 2.47 5.43 0.01

Average value 41.07 162.66 73.57 9.78 16.92 2.64 63.92 1.92

Standard deviation 21.13 25.72 4.39 1.84 3.18 0.06 36.17 1.21

Table 2: Statistical information of the input data for verifying the universality of the model.

Statistical information RT (Ω·m) GR (API) AC (μs/ft) CAL (inch) CNL (%) DEN (g/cm3) SP (mV) TOC (%)

Maximum value 351.04 253.64 89.72 12.20 23.87 2.74 96.68 5.43

Minimum value 6.33 110.41 62.57 8.63 9.87 2.43 18.51 0.26

Average value 74.44 169.31 72.40 8.89 16.27 2.65 47.36 2.11

Standard deviation 54.00 18.66 6.27 0.46 3.13 0.07 21.92 1.12
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Figure 3: Heat map of Pearson’s correlation coefficients.
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hyperparameters, such as the maximum depth of the tree
(max_depth), the minimum number of samples required to
split the internal nodes (min_sample_split), the maximum
number of features to be considered when looking for the
best split (max_features), and the number of samples for
training each basic estimator (max_samples) [33]. Conven-
tional search methods, such as grid search algorithms, can
exhaust all parameter combinations. However, the efficiency
is too low, which will cause a waste of computing power.
Therefore, it is necessary to use a randomized search algo-
rithm for optimization. Randomized search cross-
validation samples a fixed number of hyperparameters from
a given distribution. Because not all the parameters are sam-
pled, it can improve the speed of operation. However, the
speed of searching for a good combination of parameters is
still not ideal, which takes approximately 20 minutes.

To solve this problem, previous studies proposed the
halving random search cross-validation [58, 59], which is
an iterative selection process in which all parameter combi-
nations (replaced with candidates in the following part) use
a small amount of resources for the evaluation in the first
iteration and only some candidates are selected in the next
iteration; therefore, more resources will be allocated. In
other words, the search strategy begins to use a small
amount of resources to evaluate all candidates and uses an
increasing number of resources to iteratively select the best
candidate. The resource usually refers to the number of
training samples and can also be any numeral parameters,
such as the number of basic estimators in the random forest
algorithm.

As shown in Figure 5, in the first iteration, a small
amount of resources (the number of samples) were used to
evaluate all candidates. In the second iteration, only the bet-
ter half of the previous candidates were evaluated, while the
number of resources allocated doubled. This process was

repeated until the last iteration, in which only 2 candidates
remained. With the iteration and the increase of input sam-
ples, different candidates were eliminated according to the
score of the verification set, and then, the hyperparameters
were optimized. The line segments with different colors in
Figure 5 represent different candidates (parameter combina-
tions), thus reflecting the score changes in their verification
sets during the iterative process. As the number of iterations
(abscissa) increases, candidates with low scores (ordinate)
are eliminated, and candidates with high scores continue to
participate in the next iteration. Only one candidate will
remain until the end of the iteration process. The best
parameter candidate is the one with the highest score in
the last iteration (the black line), resulting in the best hyper-
parameter combination: {‘bootstrap’: False, ‘criterion’: ‘mae’,
‘max_depth’: None, ‘max_features’: 1, ‘min_samples_split’:
4}. In this case, R2 of the verification set is 0.9464.

The performance of the halving random search cross-
validation method in the test set was statistically analyzed.
As shown in Figure 6, the best R2 value is approximately
0.9 and the lowest MAE is approximately 0.3. The whole
search was completed in only 19.2 seconds, and the speed
increased by more than 60 times.

However, the prediction effect of the above random for-
est model is not ideal. Especially when the TOC value is less
than 0.6%, the relative error between the predicted value and
the measured value is large. After excluding certain factors,
such as algorithms and parameters, they are considered
related to the input data structure. In the process of the log
data acquisition, noise will be inevitably generated due to
interference from the environment and random factors,
which brings errors to the calculation of geological parame-
ters [60]. In addition to the TOC variation, the factors that
affect the changes in log values include abnormal fluid pres-
sure, hydrocarbons, tight reservoirs, overmature organic
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Figure 4: Training and testing results of the Bayesian linear regression model with different hyperparameters.
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matter, and other formation information [61]. The fluctua-
tion of log values caused by these factors may cover the
log variation caused by the TOC, especially when the
TOC value is small. The contribution of other formation
information to the variation in log values may be much
greater than that of the TOC, resulting in inaccurate pre-
diction results. Therefore, when using log data to predict
the TOC values, it is better to exclude the interference of
unrelated factors in advance. Referring to previous
research work [45], the log base value corresponding to
the TOC of 0% should be found based on the correlation
between the log values and the measured TOC values, and
then, the input data should be changed to the absolute
value after the actual log value minus the log base value.
For example, the relationship between the GR value and
the measured TOC value of well JY1 is shown in
Figure 7, which can be expressed as the following formula:

GR = 14:66 × TOC + 124 R2 = 0:7226
� �

: ð7Þ

As a result, the base value GRb is 124 API with the
TOC value of 0%. If the input value of this part of well
JY1 is defined as GR′, then GR′ = ∣GR −GRb ∣ = ∣GR −
124 ∣ . If a measured TOC value is not available to confirm
the base value where TOC is 0%, the average value of the
predicted shale interval with a relatively small GR, AC,
and RT, relatively large DEN and CNL, and no obvious
changes in log value is taken as the base value. According
to the above method, the modelling process is repeated
after reprocessing the input data. The result is shown in
Figure 8. R2 increased by approximately 5%, and the large
error when the TOC value is less than 0.6% has been
reduced.

3.2.4. Extrapolation and Application of the Model. Based on
the models established by the two machine learning
methods, TOC prediction of the other three wells JY2, JY6,
and JY7 in the study area was carried out. The comprehen-
sive results are shown in Figure 9. R2 is above 0.85, the mean
absolute error (MAE) is approximately 0.3, and the mean
relative error (MRE) is approximately 0.2 (Table 3). The
values with large relative error mainly occur in the part
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where the TOC value is less than 0.6% because the log values
of this part are greatly disturbed by factors other than the
TOC. However, on the whole, the model has strong extrap-
olation ability and good generalization.

In addition, a comparison of the two machine learning
methods with the traditional ΔLogR method by extrapola-
tion (Figure 10) showed that these two machine learning
methods lead to great accuracy improvements in the results.

4. Discussion

The greatest advantage of the traditional ΔLogR method is
that it can eliminate the influence of porosity on the log
response of organic carbon. However, it is not reasonable
to use a fixed empirical coefficient with many limitations
to predict TOC [62, 63]. In addition, the amplitude differ-
ence of only two log curves is used to calculate the organic
matter content, and other important log information may
be ignored, resulting in poor anti-interference ability of the
model. Machine learning-based methods can synthesize a
variety of log information to predict TOC. The results show
that a large amount of geophysical information can reflect
the changes in the composition of materials in formations
from different physical quantities. The method integrated
from a variety of information has a relatively better anti-
interference ability.

In this study, using a variety of shale data from the
Wufeng Formation and the lower part of the Longmaxi For-
mation in the Sichuan Basin, the accuracy of TOC predic-
tion by Bayesian linear regression and the random forest
method is more than 50% higher than that by the traditional
ΔLogR method. Of the two, the Bayesian linear regression
model is more accurate. This method includes relevant
domain knowledge and the guess of the model parameters.
It assumes that not all the required parameter information
will be provided by the available data, breaking through
the limitations from data itself. If there are no prediction
in advance, no prior information can be used for the param-
eters, which facilitates the construction of the model.

In the field of machine learning, the random forest
method is more suitable for regression problems than other
common algorithms, especially the problem of nonlinear or
complex relationships between elements and labels similar
to TOC prediction problem. It uses a set of irrelevant deci-
sion trees on the subsamples of the data and improves the
prediction accuracy and reduces the variance by averaging.
It is insensitive to the noise in the training set and thus is
more conducive to obtaining a robust model to avoid over-
fitting. However, due to the need to connect a large number
of decision trees together, general parameter optimization
methods require considerable training time. Therefore,
attention should be given to the method of parameter opti-
mization in TOC prediction. In this paper, the halving ran-
dom search cross-validation method was used to optimize
the hyperparameters in the random forest model, which
greatly improved the learning efficiency and increased the
calculation speed by more than 60 times. In other words,
the use of a well-trained machine learning model can quickly
and easily predict the organic carbon content of shale.
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Table 3: Evaluation table of the TOC prediction results of two
machine learning methods.

Evaluation index
Random
forest

Bayesian linear
regression

MAE 0.3338 0.3241

MRE 0.2161 0.2064

R2 0.8529 0.8684

Maximum relative
error

1.4195 1.4181

Minimum relative
error

0.0013 0.0006
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In addition, the machine learning model can be updated
conveniently. If there is a new dataset, the machine learning
model can be upgraded and provide broader applications.
Therefore, compared with traditional methods, machine
learning models are data-driven based, thereby avoiding a
large number of theoretical assumptions and mathematical
derivations. Moreover, it should be noted that the input data
structure has a great impact on the building of the machine
learning model, so the data preprocessing is very important
before training. In response to TOC prediction, this paper
provided a new data preprocessing strategy. It was to elimi-
nate the log value changes caused by factors other than TOC
before inputting, which improved the prediction accuracy by
approximately 5%.

The machine learning models proposed in this paper can
provide more accurate prediction results using both training
data and test data with reasonable extrapolation. However,
from the perspective of application, it has certain limitations.
First, the data used in this paper are from the same research
area with similar geological conditions. Thus, the reliability
of the model needs to be further verified in other areas with
large differences in geological conditions. Second, due to the
frequent changes of sedimentary water properties in geolog-
ical history, the heterogeneity of shale strata is strong, and

the TOC values vary greatly. The limited TOC values may
not fully reflect the relevant characteristics of the entire for-
mation. The applicability of the model is unknown for strata
that are not covered by the TOC test. In addition, the mea-
sured TOC values used in this study range from 0.01% to
6.02%. The applicability of the model in the case of higher
TOC values is not discussed. For areas with a TOC value less
than 0.6%, it is necessary to perform further research to
improve the prediction accuracy. In this regard, it can be
considered to collect the TOC test data and corresponding
log data from different basins, sedimentary environments,
and structural backgrounds, and a more comprehensive
model should be built in a large numerical framework.
Therefore, the general relationship between the TOC value
and log value can be found by this method.

5. Conclusion

This paper uses Bayesian linear regression and random for-
est algorithms to predict TOC values. Compared with the
ΔLogRmethod, both machine learning methods have higher
TOC prediction accuracy and better generalization in over-
mature and tight shale in the study area. When the random
forest method is used for modelling, the halving random
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search cross-validation can be applied to find the optimal
hyperparameters and improve the training speed. The log
data with the corresponding log base value removed can be
taken as the input data for modelling. Thus, the factors other
than TOC that affect the log values can be avoided to ensure
the accuracy of the predicted results. In addition, if a new
dataset is provided, the machine learning model can be
updated more conveniently, which is of great significance
for improving the efficiency of shale gas exploration and
development.
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