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In order to improve the prediction accuracy of foundation pit deformation, an improved optimization algorithm of supply and
demand-exponential power product foundation pit deformation prediction model (ISDO-EPP model) is proposed. Through six
standard test functions and three application examples, the optimization ability of the ISDO algorithm is verified, and the
optimization results are compared with those of basic supply demand optimization algorithm (SDO), whale optimization
algorithm (WOA), grey wolf optimization algorithm (GWO), moth swarm algorithm (MSA), and particle swarm optimization
algorithm (PSO). Taking the settlement prediction of three foundation pits as an example, the delay time and embedding
dimension of each case are determined by autocorrelation function method and false nearest neighbor method, and input and
output vectors are constructed to train and predict each model. The results show that the search ability of the ISDO algorithm
is better than that of SDO and other five algorithms, and the ISDO algorithm has better search accuracy, global search ability,
and robustness. The absolute values of average relative errors of the ISDO-EPP model for three cases are 0.73%, 3.36%, and
1.33%, respectively, which are better than ISDO-SVM and ISDO-BP models. It shows that the ISDO algorithm can effectively
optimize the parameters of the EPP model, and the ISDO-EPP model is feasible and effective for deformation prediction.

1. Introduction

Effectively improving the prediction accuracy of foundation
pit deformation is of great significance for judging the stabil-
ity of foundation pit, predicting the damage degree of sur-
rounding buildings, and scientifically grasping the future
deformation trend of foundation pit. At present, the methods
used in deformation prediction include grey prediction
method [1, 2], regression method [3, 4], extreme learning
machine method [5, 6], support vector machine method [7,
8], artificial neural network method [9-11], and combination
prediction method [12, 13], all of which have achieved cer-
tain prediction effect in the application of foundation pit
deformation prediction, but there are also some shortcom-
ings: the grey prediction method has a high degree of depen-
dence on the original data, and the short-term prediction
effect is poor. The regression method is sensitive to outliers
and easy to over fit. The application of extreme learning
machine is limited by the random determination or artificial
customization of connection weights and thresholds between

hidden layer nodes. Support vector machine is difficult to
select parameters such as penalty factor and kernel function
[12]. BP, Elman, and other artificial neural networks are dif-
ficult to select the key parameters such as existence weight
and threshold and are restricted by the number of samples.
The combination forecasting model is too complex, and the
weight of each model is difficult to determine. Exponential
power product (EPP) is a forecasting model based on the
exponential power product relationship between forecasting
factors and some influence factors. It has good fitting and
forecasting effect for high-dimensional and nonlinear sys-
tems, but its disadvantage lies in the reasonable selection of
index parameters of influence factors. At present, the EPP
model is seldom used in regression prediction.

Choi et al. [14] established the uncertainty model of
underground space risk assessment based on fuzzy theory.
Kepaptsoglou et al. [15] used analytic hierarchy process
(AHP) to evaluate the construction safety risk of Athens
metro station. Huang and Bian [16] determined the risk
level of deep foundation pit from two aspects: the probability
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of occurrence of risk events and the loss consequences.
Based on fuzzy membership function and expert scoring
method, Lan et al. [17] determined the risk level of deep
foundation pit construction. Chen and Guo [18] put forward
the method of grey AHP to evaluate the construction safety
of subway station. Zhao et al. [19] combined rough set and
prior knowledge and determined the weight of safety evalu-
ation index for deep foundation pit construction of subway
station. Guo et al. [20] used the expert investigation method
to determine the evaluation index affecting the safety of sub-
way deep foundation pit construction and used fuzzy math-
ematics to determine the safety level. Kang and Wang [21]
used data envelopment analysis (DEA) to solve the problem
of subjectivity in index weight solving process.

Through the analysis of a large number of foundation pit
monitoring data, some scholars summarized and put for-
ward the deformation law and treatment model of founda-
tion pit deformation. In reference [22], the law of
deformation of foundation pit and excavation depth in the
process of foundation pit construction is studied. In refer-
ence [23], the constitutive model was used to study the influ-
ence of foundation pit excavation stability. In references [24,
25], based on the analysis of the horizontal displacement and
axial force deformation of the support in the foundation pit
monitoring of a subway station and Forest Park Station in
Beijing, the specific form of the foundation pit supporting
structure and the foundation pit deformation monitoring
scheme of a subway station in Beijing are proposed, and
the deformation law of the maintenance structure in the pro-
cess of foundation pit excavation is preliminarily obtained.
In references [26, 27], the foundation pit of a station in
Zhengzhou was monitored during construction, and the
monitoring data were processed. According to the local geo-
logical conditions, the layout law of monitoring points was
analyzed, and the deformation law of foundation pit was
studied. In reference [28], the foundation pit construction
of a subway station in Nanjing was monitored, and the mon-
itoring results of horizontal displacement of supporting
structure, horizontal displacement of pile (wall), ground set-
tlement, pipeline settlement, and support axial force were
analyzed. Reference [29] analyzes the important role of pile
(wall) horizontal displacement monitoring in foundation
pit construction safety and designs the monitoring standard
and frequency of pile (wall) horizontal displacement. On the
basis of a large number of case studies of deep foundation pit
monitoring and through the comparative analysis of differ-
ent foundation pits, the main factors of deformation of
buildings around the foundation pit are summarized in ref-
erence [30].

In order to further improve the accuracy of foundation
pit deformation prediction and expand the foundation pit
deformation prediction model and method, based on the
exponential power product relationship between foundation
pit deformation prediction factors and influence factors [12],
an improved supply-demand-based optimization algorithm
EPP foundation pit deformation prediction model (ISDO-
EPP model) is proposed, In order to verify the feasibility
and effectiveness of the ISDO-EPP model in foundation pit
deformation prediction, three examples of foundation pit
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deformation prediction in references [31-33] are used to test
the model.

2. ISDO-EPP Model

2.1. Improved Supply and Demand Optimization Algorithm.
Supply and demand optimization (SDO) algorithm is a
new metaheuristic optimization algorithm proposed by
Zhao et al. [34] in 2019 inspired by economic supply and
demand mechanism. The algorithm simulates the demand
relationship of consumers and the supply relationship of
producers mathematically. By introducing the stable mode
and unstable mode of supply and demand mechanism into
the SDO algorithm, the two modes are used to perform local
search and global search in a given space to solve the prob-
lem to be optimized. Compared with the traditional swarm
intelligence algorithm, the SDO algorithm has the advan-
tages of fast convergence speed, high optimization accuracy,
less adjustment parameters, and better exploration and
development ability.

The mathematical description of the SDO algorithm is as
follows:

(a)SDO Algorithm Initialization. Suppose there are n
markets, each market has d different commodities, and each
commodity has a certain quantity and price. The price of d
commodities in the market represents a group of candidate
solutions of the d-dimensional variables of the optimization
problem. At the same time, the quantity of d commodities in
the market is evaluated as a group of feasible solutions. If the
feasible solution is better than the candidate solution, the
feasible solution replaces the candidate solution. The price
and quantity of commodities in n markets are represented
by two matrices: X and Y, respectively.

Xy X1 X ot X
X X1 X v Xyg
X: = >
X X x X
L3 L*nl n2 nd
I (1)
V1 Yu Yo o D
V2 Ya Y o Vo
Y = = s
LY5 ] LV Y2 " Vnd

where x; and y, are the price and quantity of the i com-
modity, respectively, and x;; and y;; are the price and quan-
tity of the j commodity in the i market, respectively.

The fitness function is used to evaluate the price and
quantity of goods in each market, for n markets, the fitness
of commodity price and quantity are as follows:

{Fx:(Fxl’FxZ > T Fxn)’ (2)
F,=(Fuy o Epo»oon By

(b)Equilibrium  Quantity and  Equilibrium  Price.
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Assuming that the equilibrium price x, and equilibrium
quantity y, of each commodity are variable in each iteration
process, a commodity quantity is selected from the com-
modity quantity set of each market as its quantity equilib-
rium vector. The larger the market fitness value is, the
greater the probability of the selected commodity quantity
in each market is. At the same time, each market can also
choose a commodity price from the commodity price set
according to its probability or take the average value of all
market commodity prices as the equilibrium price. The equi-
librium quantity of goods y, is expressed as follows:

Yo =yik=R(Q),
F 14 (3)
- _ 2 4
b
1/1+ f(y; )>0
where F, = { J05) S 0) .where f(y,) is the fit-

V1-f(y) fl)<0
ness value of commodity quantity y;, and R(.) is roulette
wheel selection.

The commodity equilibrium price x, is expressed as fol-
lows:

n
"X,
r—z’:1 ! r, <0.5,
Xp = n
xk,k:R(P) r >0.5, (4)
F, 1<
Pzzzl:] in_E;in’

1/1 +f(x,') f(xi) >0 ‘where f(xi) is the fit-

where F; = { )
V1=-f(x;) f(x)<0
ness value of commodity price x; and r and r, are the ran-
dom numbers in [0,1].
(c)Supply Function and Demand Function. According to
equilibrium quantity y, and equilibrium price x,, supply
function and demand function are given, respectively:

Virr1 =Yo — &(Xip = Xo)s (5)

Xity1 =Xo T ﬁ(yi,Hl _)’o)’ (6)

where x;, and y;, are the price and quantity of the i com-
modity in the ¢t iteration, respectively, and « and f are
demand weight and supply weight, respectively. Update the
equilibrium price and equilibrium quantity by adjusting «
and f.

If Equation (5) is inserted into Equation (6), the demand
formula can be rewritten as follows:

Xipe1 = Xo — af(X; — Xo)s (7)

The supply weight « and demand weight f are as fol-

3
lows:

a= Z(T_—Tt”) sin (277), (8)

B =2 cos (27r), ©)

where T is the maximum number of iterations. The var-
iable L is produced by the weight supply « and the demand
weight 3. We can get the following results:

L=af= LTH-I) sin (27tr) cos (27r). (10)
The variable L is helpful to the smooth transition of the
SDO algorithm between exploration and development. |L|
<1 is a stable mode, and by adjusting the supply weight o
and demand weight S, different commodity prices around
the equilibrium price x, are obtained. These commodity
prices can change randomly between the current price and
the equilibrium price through the random number r. The
stable mode mechanism emphasizes “development” to
improve the local exploration ability of the SDO algorithm.
|L| <1 is an unstable mode, which allows the commodity
price in any market to be far away from the equilibrium
price. The mechanism of unstable mode forces each market
to “explore” the unknown area in the search space to
improve the global search ability of the SDO algorithm.

In order to speed up the convergence speed of the SDO
algorithm and further improve the local exploration perfor-
mance and global search ability of SDO, the weights are sup-
plied a. The improved operator is as follows:

T—t41\00-T)
a=2 <%> sin (277). (11)

2.2. Exponential Power Product Model. The results show that
there is an exponential power product (EPP) relationship
between the prediction factors and the influence factors of
foundation pit deformation as shown in Equation (12) [35]:

P o

j=1

where y' is the normalized value of foundation pit deforma-
tion prediction factor, x; is the normalized value of influence
factor related to the prediction factor of foundation pit
deformation, a; is the index parameter to be optimized,
and m is the number of predictive impact factors.

2.3. Implementation Steps of ISDO-EPP Model Prediction.
The implementation steps of ISDO-EPP model prediction
are summarized as follows:

Step 1. Determine the delay time and embedding dimension
of the foundation pit settlement data by AFM and FNN,
construct the input and output vectors of the EPP model,
reasonably divide the training samples and prediction



samples, and normalize the case data series by formula (13).

Set the search range of the EPP model index parameters a;.

x/ _ (x_o'sxmin) , (13)
(I.meax - O.SXmm)

! . . . . .
where x' is the normalized data, x is the original data, and
Xmax and x, ;. are the maximum and minimum values in
the sequence, respectively.

Step 2. Determine the optimization objective function. The
mean square error is selected as the optimization objective
function:

M
min f(ay, @y a,,) = > (= )

s.t ae [amin’ amax]’

(14)

where y. is the prediction output of the i sample, y, is the
monitoring value of the i sample, and M is the number of
training samples.

Step 3. Set the number of SDO market groups N, the maxi-
mum number of iterations T, the problem dimension, and
the search space. Initialize the commodity price x; and quan-
tity y, randomly, so that the current iteration number T = 0.

Step 4. Calculate the fitness values F,; and F; of commodity
price x; and commodity quantity y, based on Equation (14).
If F; is better than F,;, y; is used instead of x; and save xj,,
as the current optimal solution.

Step 5. Use Equation (11) and Equation (13) to determine
the supply weight & and demand weight f.

Step 6. For each market, use Equation (3) to determine the
equilibrium quantity y,. Use Equation (4) to determine the
equilibrium price x,.

Step 7. Update the quantity of goods y, by formula (5). Use
formula (6) to update commodity price x;. The fitness values
F,; and F; of commodity price x; and commodity quantity
y; are calculated based on formula (14). If F; is better than
F,;, y; is used instead of x;, and x is saved as the current
optimal solution.

Step 8. Where t =t + 1, judge whether the algorithm reaches
the termination condition, and if so, output the optimal
solution xp., and the algorithm ends. Otherwise, repeat
Steps 5-8.

Step 9. Output the SDO algorithm global optimal solution
Xpestr ANd Xpeq is the best index parameter a; of the EPP

model. The index parameter g; is substituted into the EPP

model to predict the deformation of foundation pit.
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FIGURE 1: Results of false neighbor method for foundation pit
monitoring data.

3. Example Application

3.1. Data Sources and Analysis. In this paper, three examples
of foundation pit deformation prediction in reference
[14-16] are used for verification. Firstly, AFM is used to
determine the delay time of settlement data. After analysis,
when the delay time is 1, the autocorrelation coefficients of
the three cases are the largest, which are 0.938, 0.779, and
0.786, respectively. Therefore, the delay time of settlement
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TaBLE 1: Comparison results of function optimization.

Average value

Standard deviation

Function Algorithm 30 dimensions 5 dimensions 30 dimensions 5 dimensions
ISDO 4.03 % 107118 7.40 % 10712 8.55 % 107118 1.33 % 1071
SDO 8.42 % 107 2.22 % 107 1.98 % 107 4.40 % 107
N WOA 3.38 % 1072 2.67 %107 7.20 % 107%° 5.71 % 1077
Sphere
P GWO 6.01 % 10 = ! 3.34 % 107% 7.47 %« 1071 7.38 % 107%
MSA 5.16 % 10772 1.68 % 107%¢ 1.25 % 10771 6.59 % 1075
PSO 8.29 % 102 4.01 %1074 2.46 * 107 7.56 % 107
ISDO 5.36 % 1072 7.99 % 107% 8.19 x 107 1.02 % 107%
SDO 1.04 % 107% 9.19 % 1073 1.34 % 107% 1.05 % 1073
howetel WOA 3.57 % 1072 3.19 % 1072 4.55 %1074 5.51 % 10724
Schwefel 2.22
GWO 3.70 = 1077 7.67 % 1072° 1.71 % 1077 1.62 %1075
MSA 1.41 %1078 5.31 % 107% 2.58 % 1078 7.37 % 1074
PSO 36.6 2.87 % 107 24.7 1.43 %107
ISDO 1.46 % 107! 3.27 % 107120 3.55 % 10711 7.83 % 107120
SDO 1.26 % 10738 5.16 * 107! 2.71 %1078 1.11 % 107
WOA 6.33 % 10* 61.8 1.38 % 10* 86.7
Schwefel 2.21 24 24
GWO 36.7 4.12 % 10” 45.7 9.54 % 10~
MSA 5.03 % 1072 1.78 % 1079 1.22 % 107! 3.81 %1079
PSO 1.43 % 10* 56.2 8.09 * 10° 76.1
ISDO 0 0 0 0
SDO 0 7.61 % 1071 0 1.83 %107
Gricwank WOA 1.51 % 107" 10.3 3.56 % 107" 13.4
riewan
GWO 7.59 % 1072 5.97 % 1072 1.08 % 1072 6.32 % 1072
MSA 0 0 0 0
PSO 4.52 % 10? 2.83 % 10! 3.29 10! 1.18 % 10
ISDO 0 0 0 0
SDO 0 0 0 0
N WOA 5.16 % 107" 3.66 1.26 % 1074 6.51
astrigin
8 GWO 1.23 8.55 % 1074 4.59 1.80 % 1074
MSA 0 0 0 0
PSO 423 2.62 9.42 1.24
ISDO 8.88 % 10— 16 8.88 % 10— 16 1.97 % 10 - 31 1.97 % 10 - 31
SDO 8.88 % 10— 16 8.88 % 10— 16 1.97 % 10 - 31 1.97 % 10 - 31
WOA 9.93 % 10— 15 7.83% 10— 15 3.81%10-15 482 %10-15
Ackley
GWO 1.35%10-6 5.41 %1015 6.21 x10-7 1.54 % 10 - 15
MSA 3.15% 10— 15 2.82%10-15 1.69 % 10 — 15 1.77 10 — 15
PSO 2.01 4.09 %10 -4 1.25 2.81%10-4

data is 1. Secondly, when the delay time is 1, FNN is used to
determine the embedding dimension of settlement data, as
shown in Figure 1. It can be seen from Figure 1 that when
the embedding dimensions are 3, 4, and 2, the proportion
of false nearest neighbors of the three instances is 0, which
is less than 1%, indicating that the reconstructed attractor

determined by the embedding dimension will no longer
overlap due to projection into the low dimensional space,
that is, when the delay time is 1 and the embedding
dimensions are 3, 4, and 2, the three instances have the
best prediction effect. Finally, when the delay time is 1
and the embedding dimension is 3, 4, and 2, respectively,
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TaBLE 2: Comparison results of objective function optimization of application examples.
Algorithm =200 L T'=500 -
Average value Standard deviation Average value Standard deviation
ISDO 4.3678 7.99 %107 4.3678 8.88 x 10716
SDO 4.3679 2.18 %107 4.3678 3.02% 107
Example 1 WOA 90.0952 75.4986 36.4155 45.4613
GWO 4.8315 422 4.6506 31.3
MSA 7.3969 3.1339 5.3188 1.2160
PSO 4.3733 8.23 %107 4.3679 1.75 % 107*
ISDO 2.0595 2.93%107° 2.0595 1.33% 107"
SDO 2.0595 2.85%107° 2.0595 7.74 % 10 % 8
Example 2 WOA 45.6086 40.2625 30.6689 24.5341
GWO 6.4553 3.6920 5.4012 2.2957
MSA 7.1709 2.3879 5.1287 1.1907
PSO 2.0762 1.58 + 1072 2.0603 9.83 %107
ISDO 2.0020 0 2.0020 0
SDO 2.0020 0 2.0020 0
WOA 14.4174 16.8726 2.7690 1.1773
Example 3 GWO 2.0557 13.1 2.0020 2.13%10°
MSA 2.0032 1.99 %1073 2.0020 3.72%10°°
PSO 2.0020 5.80 % 1077 2.0020 0

the foundation pit settlement values of the first three periods
of case 1, the first four periods of case 2, and the first two
periods of case 3 are predicted by using the monitoring data
of the first three periods of case 1, the fifth period of case 2,
and the third period of case 3, and the measured data of the
first 32 periods and the first 11 periods of case 1, case 2, and
case 3 are selected as the training samples, and the last five
periods are selected as the prediction samples. In case 3, the
first 10 periods of measured data are selected as training sam-
ples, and the last three periods of data are selected as predic-
tion samples. Limited to space, the input and output matrix
of foundation pit deformation prediction factor and influence
factor is omitted.

3.2. Algorithm Verification

3.2.1. Simulation Verification of Standard Test Function. In
order to verify the optimization ability of the ISDO algo-
rithm in high-dimensional (30 dimensions) and low dimen-
sional (5 dimensions) conditions, the ISDO algorithm is
used to simulate Sphere, Schwefel 2.22, Schwefel 2.21, Grie-
wank, Rastrigin, and Ackley 6 typical test functions, and the
simulation results are compared with SDO, WOA, GWO,
MSA, and PSO algorithms. The value ranges of the above
6 function variables are, respectively [-100, 100], [-10, 10],
[-100, 100], [-600, 600], [-5.12, 5.12], and [-32, 32], with
dimensions of 30 and 5, and the theoretical optimal solution
values are all 0. Among them, Sphere, Schwefel 2.22, and
Schwefel 2.21 are unimodal functions, which are mainly
used to test the optimization accuracy of the algorithm.

The functions Griewank, Rastrigin, and Ackley are multi-
modal functions, which are mainly used to test the global
search ability of the algorithm. Based on MATLAB 2018a M
language, 6 algorithms are implemented to optimize 6 typical
test functions 20 times and evaluated from two aspects of aver-
age value and standard deviation, as shown in Table 1. The
experimental parameters are set as follows: the maximum
number of iterations of the six algorithms is T' = 200, and the
number of groups is N = 50. The shape constant of WOA log-
arithmic helix b = 2. The number of exploration moths MSA
n,=5. The inertia weight of the PSO algorithm w,,,, and
w,,;, are 0.9 and 0.6, respectively, and the self-learning factor
¢, and social learning factor ¢, are 2.0. Other parameters adopt
the default values of each algorithm.

(a) For Sphere and Schwefel 2.22 of unimodal function,
the ISDO algorithm is slightly better than MSA,
SDO, WOA, and GWO algorithms and far better
than the PSO algorithm in high and low dimensions.
For the gradient function Schwefel 2.21, the ISDO
algorithm is superior to MSA and SDO algorithms
in 20 times of optimization accuracy in high dimen-
sion and is far superior to WOA, GWO, and PSO
algorithms. Under the condition of low dimension,
the ISDO algorithm is slightly better than MSA and
SDO algorithms, better than the GWO algorithm,
and far better than WOA and PSO algorithms. For
unimodal functions, the ISDO algorithm shows good
optimization accuracy in both high and low dimen-
sional conditions
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TaBLE 3: Comparison of deformation prediction models of each foundation pit.
Example Model Periods Measured value/mm  Estimate/mm  Absolute error/%  Relative error/% MRE/% MAE/mm
36 22.24 22.27 -0.1 -0.45
37 22.96 23.19 0.23 1
ISDO-EPP 38 23.75 23.68 -0.07 -0.29 0.73 0.17
39 24.45 24.57 0.12 0.47
40 24.84 25.19 0.35 1.42
36 22.24 22.12 -0.22 -0.97
37 22.96 23.02 0.06 0.26
1 ISDO-SVM 38 23.75 23.65 -0.1 -0.43 0.81 0.19
39 24.45 24.57 0.12 0.48
40 24.84 25.32 0.48 1.92
36 22.24 22.26 -0.08 -0.34
37 22.96 23.25 0.25 1.25
ISDO-BP 38 23.75 23.74 -0.01 -0.04 0.87 0.21
39 24.45 24.66 0.21 0.87
40 24.84 25.29 0.45 1.83
16 11.3 11.14 -0.16 -1.44
17 12.1 11.76 -0.34 -2.79
ISDO-EPP 18 12.3 12.72 0.42 3.42 3.36 0.43
19 13.5 12.48 -1.02 -7.55
20 14.7 14.47 -0.23 -1.59
16 11.3 11.49 0.19 1.67
17 12.1 11.75 -0.35 -2.82
2 ISDO-SVM 18 12.3 12.52 0.22 1.81 3.83 0.51
19 13.5 12.72 -0.78 -5.81
20 14.7 13.68 -1.02 -6.92
16 11.3 11.19 -0.11 -1.01
17 12.1 11.39 -0.71 -5.86
ISDO-BP 18 12.3 12.11 -0.19 -1.58 5.96 0.81
19 13.5 12.17 -1.33 -9.87
20 14.7 13.01 -1.69 -11.48
13 13.86 13.81 -0.05 -0.35
ISDO-EPP 14 15.12 15.19 0.07 0.49 1.33 0.22
15 16.84 16.31 -0.53 -3.14
13 13.86 13.04 -0.82 -5.9
3 ISDO-SVM 14 15.12 14.46 -0.66 -4.36 5.83 0.90
15 16.84 15.62 -1.22 24
13 13.86 12.79 -1.07 -7.75
ISDO-BP 14 15.12 14.12 -1 -6.61 8.01 1.23
15 16.84 15.21 -1.63 -9.66

(b) For the multimodal function Griewank, ISDO and

WOA, GWO, and PSO. For continuous rotation

MSA all obtain the theoretical optimal value of 0
in the case of high dimension and low dimension.
The optimization accuracy is better than the SDO
algorithm and far better than WOA, GWO, and
PSO algorithms. For the multimodal function Ras-
trigin which is easy to fall into local extremum,
ISDO, SDO, and MSA all obtain the theoretical
optimal value 0 in high and low dimensions, and
the optimization accuracy is much better than

nonseparable multimodal function Ackley, ISDO
algorithm and SDO algorithm all obtain the rela-
tive theoretical optimal value 8.88 x 1071¢ after 20
times of optimization, and the optimization accu-
racy is better than MSA, WOA, and GWO algo-
rithms and far better than the PSO algorithm.
For multimodal functions, the ISDO algorithm
has better global search ability in both high and
low dimensions
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(c) From the simulation results of 6 standard test func-
tions, the optimization accuracy of ISDO, MSA,
and SDO algorithms is not affected by dimension.
For the more difficult to optimize Schwefel 2.21,
Griewank, and Rasrigin functions, the optimization
accuracy of WOA, GWO, and PSO algorithms is
greatly affected by dimension changes. In a word,
the 6 algorithms have the following order: ISDO,
MSA, SDO, GWO, WOA, and PSO

3.2.2. Example Objective Function Optimization Verification.
In order to verify the optimization performance of ISDO,
SDO, WOA, GWO, MSA, and PSO algorithms in practical
application, the optimization performance of ISDO and
other 6 algorithms is verified by using the three optimization
objective functions constructed above, namely, Equation
(14). Among them, the search range of the EPP model
parameters is [-5,5], the maximum number of iterations T
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FIGURE 4: Absolute error of three models in example 3.

is set to 200 and 500, and other parameter settings and eval-
uation indexes are the same as above. The example optimi-
zation results are shown in Table 2.

For example 1, for the ISDO algorithm, the optimal
value of the objective function is 4.3678, and the standard
deviation is less than 8.88 x 107%, which is better than the
SDO algorithm under the same conditions, better than
PSO and GWO algorithm, and far better than MSA and
WOA. For example 2, the minimum value of the objective
function of ISDO and SDO algorithms is 2.0595 under dif-
ferent iteration conditions, which is better than the PSO
algorithm and much better than GWO, MSA, and WOA
algorithms. For example 3, because the sequence is short
and the dimension to be optimized is low, the minimum
value of the objective function of ISDO, SDO, and PSO algo-
rithms for 20 times of optimization is 2.0020, and the stan-
dard deviation is 0. The optimization effect is better than
MSA and GWO algorithms under the same conditions and
far better than WOA.

MSA, GWO, and WOA, which have good performance
in the above 6 standard test functions, have poor perfor-
mance in the optimization of the three examples, and the
optimization effect is even lower than that of the PSO algo-
rithm, which can be considered as a failure. The “no free
lunch theorem” is verified by an example of optimal param-
eter optimization, that is, no algorithm can solve all optimi-
zation problems. In summary, the order of the optimization
accuracy of the six algorithms in the application example is
ISDO, SDO, PSO, MSA, GWO, and WOA.

It can be seen that the improved ISDO algorithm based
on supply weight can further improve the balance ability of
the SDO algorithm between exploration and development
and improve the convergence speed and global search per-
formance of the SDO algorithm; the ISDO algorithm not
only has better convergence accuracy and global search abil-
ity under high and low dimensional conditions of standard
test function, but also shows good optimization effect and
robustness in the case of objective function optimization.
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3.3. Example Prediction and Analysis. ISDO-EPP, ISDO-
SVM, and ISDO-BP models are constructed, respectively,
to predict the deformation of the foundation pit of the above
three examples under the condition that the maximum
number of iterations is 200. MRE and MAE are selected as
evaluation indexes, and three models are used to predict
the foundation pit deformation of three examples. The
results are shown in Table 3, and the effect chart of training
prediction relative error is given, as shown in Figure 2. The
parameters of SVM and BP are set as follows: SVM model
penalty factor C € [0.1,1000], kernel function parameter g
€[0.1, 1000], insensitive coeflicient € € [0.001, 0.1], and the
fold number of cross validation V =3. Three examples of
BP model network structure were set as 3-5-1, 4-7-1, and
2-3-1, the transfer functions of hidden layer and output layer
were logsig and purelin, the training functions were trainlm,
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Number of periods
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—a— ISDO-BP

FIGURE 7: Relative error of three models in example 3.

the expected error was 0.001, the maximum training cycle
was 100 times, and the search space was [-1, 1].

According to Tables 2 and 3 and Figures 2-7, the follow-
ing conclusions can be drawn:

(a) The MRE of the ISDO-EPP model for three cases
is 0.73%, 3.83%, and 1.33%, respectively, and the
accuracy is 9.9%, 12.3%, and 77.2% higher than
the ISDO-SVM model and 16.1%, 43.6%, and
83.4% higher than the ISDO-BP model. The
MAE of the three examples is 0.17 mm, 0.51 mm,
and 0.22 mm, respectively. The accuracy is 10.5%,
15.7%, and 75.6% higher than that of the ISDO-
SVM model and 19.0%, 46.9%, and 82.1% higher
than that of the ISDO-BP model. The results show
that the ISDO algorithm can effectively optimize
the index parameters of the EPP model, and the
ISDO-EPP model is feasible and effective for foun-
dation pit deformation prediction; the model and
method can provide a new way and method for
dam deformation prediction

(b) From Figure 2 and Tables 2 and 3, the fitting accu-
racy (optimization result of objective function) and
prediction accuracy of the ISDO-EPP model are bet-
ter than ISDO-SVM and ISDO-BP models, which
shows that the ISDO-EPP model has better fitting
and prediction accuracy; It can be seen from
Table 2 that the results of ISDO algorithm’s 20 times
of optimization of EPP model’s objective function
are the same, that is, the results of optimization
parameters are the same, which indicates that the
ISDO-EPP model has good robustness

(c) According to the comparative analysis of the predic-
tion results of three models on three cases, the
ISDO-EPP model has good applicability and predic-
tion effect, and the prediction results are credible and
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reasonable. The prediction effect of the ISDO-BP
model is not very ideal because there are too few
training samples to fully train the model, and it is
easy to appear “over fitting” or “under fitting” phe-
nomenon in the process of practical application,

resulting in poor practical performance of the model

4. Conclusion

(1) An improved supply and demand optimization
(ISDO) algorithm is proposed. The optimization
ability of the ISDO algorithm is verified by six typical
test functions in high and low dimensions and three
example objective functions, and the optimization
results are compared with SDO, WOA, GWO,
MSA, and PSO algorithms. The results show that
the ISDO algorithm not only has better convergence
accuracy and global search ability under the high
and low dimensional conditions of the standard test
function, but also shows good optimization effect
and robust performance in the case of objective
function optimization

(2) Based on AFM and FNN, the delay time and embed-
ding dimension of settlement data are determined,
and the input and output vectors of foundation pit
deformation prediction are constructed; the ISDO
algorithm is used to optimize the index parameters
of the EPP model, and the ISDO-EPP model is pro-
posed. ISDO-SVM and ISDO-BP models are con-
structed as comparison models. Three examples of
foundation pit deformation prediction are compared
and verified. The results show that the prediction
accuracy and effect of the ISDO-EPP model are bet-
ter than those of ISDO-SVM and ISDO-BP models,
and it has better fitting prediction accuracy and
robustness. It shows that the ISDO algorithm can
effectively optimize the index parameters of the
EPP model, and the ISDO-EPP model is feasible
and effective for foundation pit deformation
prediction

(3) The verification shows that MSA, GWO, and WOA,
which perform better in the standard test function,
perform worse in the optimization of three exam-
ples, and the optimization effect is even lower than
that of the PSO algorithm, so it can be considered
that the optimization fails. The “no free lunch theo-
rem” is verified again, that is, no algorithm can solve
all optimization problems
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