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Water resources in the Yongding River basin (YRB) are one of the important fundamental conditions in supporting regional water
conservation and ecological development. However, the historical changes in water resources under recent human activities remain
unknown due to very limited observation data. In this study, terrestrial water storage anomalies (TWSA) as well as multiple
precipitation and actual evapotranspiration products from satellites were collected, and the accuracy of the data was verified by
observed data or pairwise comparisons. The TWSA during 1980-2016 was reconstructed by using the water balance method,
and the reconstructed TWSA was verified using GRACE-observed TWSA, the average depth to groundwater in the Beijing Plain
from historical document records and the observed runoff from Guanting Reservoir. The reconstructed TWSA data indicated
that the significant decrease occurred during 2000–2016 and the average rate of decreasing trend was -11mm/year, which may
have been caused by a decrease in groundwater storage due to agricultural development. However, the reconstructed TWSA
decreased slightly during 1980-1999. The establishment of the water storage deficit index (WSDI) showed that there was no
drought or mild drought during 1980-1999; however, the water resource shortage during 2000-2016 was more serious due to
groundwater storage decreases caused by agricultural development. The WSDI was verified by using the commonly used self-
calibrated Palmer drought severity index. The findings are valuable for sustainable water resource management in the YRB.

1. Introduction

Water resources play an important role in human life and
ecosystem maintenance worldwide. Terrestrial water storage
(TWS) is a critical element of the global and continental
water resource cycles, including groundwater storage
(GWS), surface water storage (SWS, including lakes, wet-
lands, reservoirs, and canopy interception), soil moisture
storage (SMS), and snow water equivalent (SWE). Therefore,
the accurate estimation of TWS is an important issue for
understanding the behavior of the hydrological cycle under
the influence of human activities. The quantitative study of
TWS has been mostly based on hydrological models for the
past few decades. Hydrological models often require a large

amount of field observation data to construct. However, field
observations are often inadequate or uneven for most regions
[1, 2] and are constrained by difficulties related to access,
cost, and logistics [3]. Moreover, the construction of the
model is time- and money-consuming [4].

Satellite remote sensing methods with wide spatial
resolutions and consistent data records provide new ways
to measure TWS or hydrological flux and are widely used in
areas where observed data are scarce [5, 6]. The Gravity
Recovery and Climate Experiment (GRACE), launched in
March 2002, can measure the change in the gravity field
caused by large variations in a water mass. To date, GRACE
provides the first and most unique method to detect TWS
anomalies (TWSA) [7], and many studies have demonstrated
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the accuracy and effectiveness of TWSA fromGRACE [8–11].
GWS anomalies (GWSA) can be derived by assimilating other
data products to GRACE-observed TWSA and have also been
proven to have high accuracies in evaluating groundwater
reserves in the North China Plain [12]. Although GRACE
provides an available solution for measuring TWSA, the
short lifetime of GRACE means that it cannot provide
long-term TWSA variability information. Hence, to obtain
the long-term TWS variations, the water balance method
is often used [4, 13]. Remote sensing products provide a
more convenient method to obtain precipitation, actual
evapotranspiration (AET), and runoff when compared with
in situ observations. For example, the Tropical Rainfall
Measuring Mission product (TRMM) and Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) provide datasets
independent from ground observations.

The Yongding River basin (YRB) is an important water
conservation area and ecological barrier in the Beijing-
Tianjin-Hebei region of China. However, water resources
are gradually decreasing due to excessive utilization [14].
The average total amount of water resources during 2001-
2014 decreased by 21% compared with that during 1956-
2010, and the river channel began to dry up in the lower
reaches of the YRB after 1996 according to historical docu-
ment records [15]. The Chinese government issued the
General scheme of comprehensive treatment and ecological
restoration of the Yongding River in 2016. The scheme
required that measurements be taken to restore the ecological
function of the river as well as water resource utilization [15].
It is very important to evaluate the long-term change in TWS
in the YRB and identify the main characteristics to improve
water resource management and scheme implementation.
However, due to the lack of long-term monitoring data such
as groundwater level, the knowledge of change patterns of the
water resources in the basin and in the historical period since
1980 is limited to documentary records.

The objective of this paper was to estimate the long-term
change in TWSA in the YRB. First, the accuracy of multiple
remote sensing products, such as TWSA, precipitation, and
AET data, was validated using observed data and pairwise
comparisons. Then, the TWSA over the period from 1980
to 2016 were reconstructed by the water balance method
using selected precipitation and AET product. The TWSA
from GRACE observations, the average depth to groundwa-
ter in the Beijing Plain from historical document records,
and the runoff from the Guanting Reservoir were used to
verify the accuracy of the reconstructed TWSA. Finally, the
changes and characterization in the reconstructed TWSA
and the water resource shortage characteristics were dis-
cussed. The results will improve our understanding of why
the water resources in the YRB have changed in recent years.

2. Material and Methods

2.1. Study Area. The YRB is located in North China Plain.
The longitude is 112°-117°45′E, and the latitude is 39°-
41°20′N. The area is 47 thousand km2. Sanjiadian station is
the boundary between the mountain area and the plain area,
of which the mountain area is approximately 4.51 thousand

km2 and the plain area is 1953 km2. The altitude of the
mountain area is above 1500m. The YRB (Figure 1) includes
two major branches: the northern branch (Yang River) and
the southern branch (Sanggan River). The two branches
converge and then flow into the Beijing Plain (called the
Yongding River). The study area has a temperate continental
monsoon climate. The annual average temperature and
precipitation are 6.9°C and 360-650mm, respectively. Over
seventy percent of the precipitation is concentrated in the
period from June to September.

2.2. Data Sources. The data used in this study are listed in
Table 1, mainly including precipitation, AET, TWSA, and
other hydrological flux data from remote sensing and
observed data. The observation wells are shown in Figure 1
and are mainly distributed on the plain. Observed runoff data
for the Yongding River at Guanting Reservoir and the aver-
age depth to groundwater in the Beijing Plain were collected
from historical document records.

2.2.1. Precipitation Products. Monthly precipitation datasets
(0:5° × 0:5°) from the China Meteorological Administration
(CMA) and TRMM 3B43 (0:25° × 0:25°) were used to verify
their consistency. Then, a suitable set of precipitation prod-
ucts were selected to calculate the reconstructed TWSA.
The gridded CMA precipitation dataset was spatially inter-
polated based on the 2472 gauge stations in China [16], with
a time span from 1961 to the present. TRMM 3B43 is a stan-
dard monthly precipitation product that has high resolution,
high credibility, and good consistency and is widely used in
climatological applications [17]. The time span of TRMM
3B43 is from 1998 to the present.

2.2.2. Evapotranspiration Products. Four kinds of AET
monthly dataset products were selected in this study, includ-
ing Noah AET (1° × 1°) data (Noah-AET), MODIS16 global
AET data (MODIS-AET, 1 km), Global Land Evaporation
Amsterdam Model (GLEAM) AET data (GLEAM-AET,
0:25° × 0:25°), and ERA5-AET data (ERA-AET, 0:25° ×
0:25°). The MODIS-AET data were estimated using the
Penman-Monteith equation [18–20] with the time span from
2003 to the present. GLEAM is a set of algorithms driven by
satellite-based observations that separately estimate daily
global AET changes [21, 22] over the time span from 1980 to
the present. ERA5 is the 5th generationof global climate reanal-
ysis data released by the European Centre for Medium-Range
Weather Forecast with a time span from 1979 to the present.

2.2.3. GRACE Data. The monthly 0:5° × 0:5° gridded GRACE
level-3 mascon (mass concentration) datasets are available
from the RL06 time-variable gravity field model, which is
provided by the Jet Propulsion Laboratory (JPL). In this
study, the monthly TWSA from January 2003 to December
2016 covering 168 months were used. Data of 17 months
are not available during the study period. The missing values
were filled by the linear difference method that is averaging
the values of the two months before and after the month
[23]. For the convenience of analysis, the 0.5°of GRACE data
was averaged to 1°.
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2.2.4. GLDAS Products. As a global, high-resolution, offline
terrestrial modeling system, the global land data assimilation
system (GLDAS) incorporates satellite and ground-based
observations to produce optimal fields of land surface states
and fluxes in near-real-time. It includes a series of land sur-
face states (e.g., soil moisture) and fluxes (e.g., AET) [24,
25]. Currently, GLDAS drives four land surface models:
Mosaic, Noah, CLM, and VIC, and is widely used [26, 27].
In this study, the monthly AET (Noah-AET), SWS (includ-
ing surface runoff and canopy interception), SWE, and SMS
(within 2m from the surface) from the Noah model in

GLDAS-2.1 with a spatial resolution of 1° × 1° and time span
from 2000 to present were selected.

2.2.5. Land Cover Products. The MODIS land cover type
product (MCD12Q1) provides global maps of land cover at
a yearly scale with a spatial resolution of 500m for 2001-
present. This product extracts the type of land cover based
on the Terra and Aqua data after processing. MCD12Q1
contains 13 scientific datasets, and LC_Type1 (annual IGBP
classification) was selected for use in this study. Cropland
and urban and built-up land were abstracted from LC_
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Figure 1: Topography of the study area and locations of rivers, gauging stations, meteorological stations, and observation wells.

Table 1: List of data sources used in this study.

Category Data
Spatial and temporal

resolution
Time span Source

Depth to
groundwater

Observation
wells

Monthly 2005-2014 —

Runoff
Gauging
reservoir

Yearly 1980-2016 —

Precipitation
CMA 0.5°, monthly 1961-present http://www.nmic.cn/

TRMM
3B43

0.25°, monthly 1998-present http://www.hwcc.gov.cn/

AET

Noah model
v2.1

1°, monthly 2000-present https://disc.sci.gsfc.nasa.gov/

MODIS 16 1 km, monthly 2003-present http://files.ntsg.umt.edu/data/MOD16_TP/

GLEAM
v3.1a

0.25, monthly 1980-present https://www.gleam.eu/

ERA5 0.25, monthly 1979-present https://www.ecmwf.int/en/forecasts/datasets

SMS, SWS, and
SWE

Noah model
v2.1

1°, monthly 2000-present https://disc.sci.gsfc.nasa.gov/

TWSA from
GRACE

JPL-mascon 0.5°, monthly 2002-2017
https://podaac-opendap.jpl.nasa.gov/opendap/allData/tellus/L3/

mascon/RL06/JPL/v02/CRI/netcdf/

Land cover from
MODIS

MCD12C1 500m, yearly 2001-present https://lpdaac.usgs.gov/products/mcd12q1v006/

scPDSI CRU TS 4.04 0.5°, monthly 1901-2019 https://crudata.uea.ac.uk/cru/data/drought/#global
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Type1. Cropland means that at least 60% of the area is culti-
vated cropland. Urban and built-up land means there is at
least 30% impervious surface area, including building mate-
rials, asphalt, and vehicles.

2.2.6. scPDSI. The self-calibrated Palmer drought severity
index (scPDSI) is compared with the water storage deficit
index (WSDI). The scPDSI was developed based on the orig-
inal Palmer drought severity index [28], which is a drought
index based on the relationship between water supply and
demand. When the local water supply is less than the
demand, it represents a drought; otherwise, it is humid. The
scPDSI not only considers the current water condition but
also considers the water condition and duration at an earlier
time, which can effectively characterize the severity and dura-
tion of water resource storage [29, 30]. The global scPDSI
grid data were directly used in this paper with a spatial reso-
lution of 0:5° × 0:5°. The time span of scPDSI is from 1901 to
2019. A lower value indicates a more serious drought. The
scPDSI categories are listed in Table 2.

2.3. Methods

2.3.1. Water Balance Method. The change in water resource
storage can be written as Equation (1), which reflects that
the water balance results in accumulated precipitation,
evapotranspiration, surface runoff, and subsurface runoff
within a given area [31]:

P − ET − R =
dTWSA

dt
=
TWSA t + 1ð Þ − TWSA tð Þ

t
, ð1Þ

where dTWSA/dt represents the change rate of TWSA, P is
the monthly precipitation, ET is the evapotranspiration,
and R represents the surface runoff and subsurface runoff
and is always assumed to be negligible due to their small
values [32].

According to the principle of water balance, GWSA can
be isolated from TWSA by Equation (2). SMS, SWS, and
SWE can be estimated from GLDAS Noah 2.1. TWSA
time-series data obtained from GRACE are the monthly
difference between the actual TWS and the average TWS of
January 2004 to December 2009. To be consistent with
TWSA data, the SMS, SWS, and SWE data were processed
based on similar operations to obtain SMS anomalies
(SMSA), SWS anomalies (SWSA), and SWE anomalies
(SWEA). The GWSA calculated by Equation (2) is actually
the difference between the actual values and the average value
of January 2004 to December 2009.

GWSA = TWSA − SMSA + SWSA + SWEAð Þ: ð2Þ

2.3.2. Water Storage Deficit Estimation. We used WSDI to
estimate the situation of water resource shortages. The water
storage deficit (WSD) is represented as the residuals by
subtracting the climatology from the reconstructed TWSA
time series [33]. The climatology was calculated by averaging
the TWSA of each month of the reconstructed record (e.g.,
averaging the values of each January in the whole data
record), which is shown in

WSDi,j = TWSAi,j − TWSAj, ð3Þ

where TWSAi,j is the reconstructed time series of TWSA for
month j in year i. TWSAj is the climatology of reconstructed
TWSA. WSD is normalized to the WSDI using the zero-
mean normalization method as follows:

WSDI = WSD − μ

σ
, ð4Þ

where μ is the mean WSD and σ is the standard deviation
of the WSD. The lower the value is, the more serious the
water resource shortage is [34]. The WSDI categories are
listed in Table 3.

2.3.3. Mann-Kendall Trend Analysis. The change trend was
analyzed by the Mann-Kendall (MK) trend test [36, 37].
The MK trend test is applied to effectively distinguish
whether the change of time-series data is in natural fluctua-
tion or has a certain obvious trend. If there is a certain obvi-
ous trend, the change rate of this trend can be calculated by
the MK method. For a set of time series X = ðx1, x2,⋯, xnÞ,
the S statistic is calculated as

S = 〠
n−1

i=1
〠
n

j=i+1
sgn xj − xi

� �
sgn xj − xi

� �
=

1 xj − xi
� �

> 0

0 xj − xi
� �

= 0

−1 xj − xi
� �

< 0

8>><
>>:

9>>=
>>;
,

ð5Þ

where n is the number of data and xj and xi are the corre-
sponding values of times j and i ðj > iÞ. Variance V ðSÞ is
defined as

VAR Sð Þ = 1
18

n n − 1ð Þ 2n + 5ð Þ − 〠
q

p−1
tp tp − 1
� �

2tp + 5
� �" #

:

ð6Þ

When n > 10, the standardized calculation of test statistic
Zs is shown in

Zs =

S − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR Sð Þp S > 0

0 S = 0
S + 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR Sð Þp S < 0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: ð7Þ

Zs > 0 means that the time-series data show an increasing
trend; conversely, the time series data show a decreasing
trend. If there is a change trend in the time-series data, the
change rate (β) can be estimated by Equation (8) [38]:

β =median
xi − xj
i − j

� �
: ð8Þ
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2.3.4. Evaluation Index. The root mean square error (RMSE)
and the correlation coefficient (r), which are expressed in
Equation (9) and Equation (10), respectively, were used to
quantitatively assess the differences in the datasets. The
RMSE describes the global discrepancy between the observed
and simulated time-series data and is more sensitive to erro-
neous data. A smaller RMSE denotes a better model perfor-
mance. The r value measures the degree of correlation
among different datasets, and a higher absolute value of r
indicates a higher degree of correlation [17]. In addition,
Nash coefficient (NSE, dimensionless) which is expressed in
Equation (11) was used to assess the performance of recon-
structed TWSA. The closer the NSE value is to the maximum
value of 1, the higher the simulation accuracy is.

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 xi − yið Þ2
n

r
, ð9Þ

r =
∑n

i=1 yi − �yð Þ xi − �xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 yi − �yð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑N
i=1 xi − �xð Þ2

q , ð10Þ

NSE = 1 −
∑n

i=1 xi − yið Þ2
∑n

i=1 xi − �xð Þ2 ,
ð11Þ

where xi or yi is the observed (simulated) value, i is the serial
number, n is the total number of samples, and �xð�yÞ is the
average value over n for x ðyÞ.

The uncertain of the reconstructed TWSA results is
mainly caused by propagating of the errors from water
budget components and can be calculated according to Gauss-
ian error propagation [39] and the expressed is shown in

σReconstructed−TWSA =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σP2 + σAET2

p
, ð12Þ

where σ is the standard deviation of each component.

3. Results and Discussion

3.1. Validation and Analysis of Groundwater Storage Data.
The observed depth to groundwater can be compared with
the GWSA estimated from the GRACE-observed TWSA by
subtracting the SWSA, SWEA, and SMSA. Four observation
wells distributed in the plain area of four grids (shown in
Figure 1) with better time continuity and good consistency
with other adjacent wells were used to represent the depth
to groundwater in the grid. Generally, the smaller the GWSA

value is, the larger the value of depth to groundwater is,
indicating that the depth to groundwater has a negative
correlation with the GWSA. As shown in Figure 2, the nega-
tive correlation coefficients between the GWSA and the
depth to groundwater were all above 0.6 (p < 0:01). The
results showed a good negative correlation between the
GWSA and the depth to groundwater and provided some
confidence in the accuracy of the TWSA from GRACE.
Figure 2 also shows that the GWSA decreased from 2003 to
2016. Compared with 2016, the average GWSA decreased
by 193mm, with a decreasing trend of -14mm/year passing
the MK test in seven grid blocks (shown in Figure 1). The
value of GWSA is the multiply of changes in groundwater
levels with specific yield, which usually ranges from 0.001
to 0.02. Thus, the changing amplitude of GWSA is smaller
than those of depth of groundwater.

3.2. Comparison of Different Precipitation and
Evapotranspiration Data

3.2.1. Comparison of Different Precipitation Data. The time-
series data of CMA and TRMM during 2003-2016 were com-
pared. Themonthly time-series data (Figure 3(a)) indicated that
theCMAandTRMMdatawere basically consistent in the trend
of periodic change, with a high correlation coefficient (r = 0:99)
andanRMSEof 6.5mm.The correlation coefficient between the
TRMM and CMA data reached 0.93, and the RMSE was
37.3mm on a yearly scale (Figure 3(b)). The yearly averaged
precipitation estimated by TRMM and CMA during 2003-
2016 is 481.2 and 453.3mm, respectively. Both the two datasets
show the drought condition in 2005-2007, 2009, 2011, and 2014
and no drought condition in other years. The largest difference
between the TRMM and CMA data appeared in 2013
(74.6mm) which may be mainly caused by overestimating of
TRMMin rainy seasonon themonthly scale.Ona seasonal scale
(Figure 3(c)), the correlation coefficient and the RMSE between
the TRMMandCMAdatawere 0.998 and 3.2mm, respectively.
Both datasets of precipitation reached a maximum in July, with
108.6mm in CMA and 113.6mm in TRMM. Precipitation
mainly occurs from June to September, accounting for approx-
imately 72%of the annual precipitation,which is consistentwith
the CMA observations (73%). These results provide confidence
in the CMA data over the study area. Hence, the CMA precipi-
tation data are used for later discussion.

3.2.2. Comparison of Different Evapotranspiration Products.
The time-series data of MODIS-AET, GLEAM-AET, ERA-

Table 2: scPDSI categories [29].

Index No drought Mild drought Moderate drought Severe drought Extreme drought

scPDSI scPDSI > −1 −1 ≥ scPDSI > −2 −2 ≥ scPDSI > −3 −3 ≥ scPDSI > −4 scPDSI ≤ −4

Table 3: WSDI categories [35].

Index No drought Mild drought Moderate drought Severe drought Extreme drought

WSDI WSDI > 0 0 ≥WSDI > −1 −1 ≥WSDI > −2 −2 ≥WSDI > −3 WSDI ≤ −3
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AET, and Noah-AET during 2003-2016 were compared. The
correlation coefficients of MODIS-AET, GLEAM-AET, and
ERA-AET with Noah-AET were 0.93, 0.94, and 0.96, respec-
tively. The RMSEs ofMODIS-AET, GLEAM-AET, and ERA-
AET with Noah-AET were 12.4mm, 14.6mm, and 10.2mm,
respectively (Figure 4(a)). MODIS-AET, GLEAM-AET, and
ERA-AET showed trends and periodic changes similar to
those of Noah-AET. On a yearly scale (Figure 4(b)), the aver-
age MODIS-AET, GLEAM-AET, ERA-AET, and Noah-AET
were 452.8, 389.3, 493.8, and 456.5mm, respectively. The
GLEAM-AET data were much lower, and the reason may
be that GLEAM underestimated the peak value of AET
(Figure 4(a)). The correlation coefficients of MODIS-AET,
GLEAM-AET, and ERA-AET with Noah-AET were 0.46,
0.85, and 0.38, respectively. The GLEAM-AET data had the
highest correlation coefficient with the Noah-AET data on
the yearly scale. On the seasonal scale (Figure 4(c)), the
correlation coefficients of MODIS-AET, GLEAM-AET, and
ERA-AET with Noah-ET were higher than 0.96, and the peak
value was in July. More than 75% of the seasonal AET occurs
fromMarch to September. The peak value of Noah-AET data
was higher than that of MODIS-AET, GLEAM-AET, and
ERA-AET. In summary, the phase and amplitude from the
four datasets were consistent, and the GLEAM-AET data
showed the best correlation coefficient (>0.8) with the
Noah-AET data at the monthly, yearly, or seasonal scales.

3.3. Reconstruction of Long-Term Terrestrial Water Storage
Anomalies. The TWSA was reconstructed by using the
monthly CMA precipitation and MODIS-AET, GLEAM-
AET, ERA-AET, or Noah-AET data over the YRB based on
the water balance method (Equation (1)) from 2003 to
2016. Among the four reconstructed TWSA from MODIS-
AET, GLEAM-AET, ERA-AET, and Noah-AET data, the
reconstructed TWSA based on the Noah-AET and CMA

precipitation had the best agreement with the GRACE-
observed TWSA, with a correlation coefficient of 0.82 and
an RMSE of 58.2mm. However, the Noah-AET data only
start in 2000. Considering that the GLEAM-AET data have
a high correlation coefficient with the Noah-AET data from
the former discussion, a revised scaling factor was used for
the GLEAM-AET data by multiplying a coefficient to match
the Noah-AET data for the period from 2003 to 2016, and
this value was 1.205 based on the least-squares regression
method. The reconstructed TWSA calculated by the CMA
and scaled GLEAM-AET data on a yearly scale during
1980-2016 is shown in Figure 5(a), with a correlation coeffi-
cient of 0.86, an RMSE of 39mm, and a NSE of 0.9 when
compared with the GRACE-observed TWSA during 2003-
2016. The uncertainties in precipitation and scaled
GLEAM-AET are 63.4mm and 48.4mm, respectively. Then,
the uncertainty in reconstructed TWSA is 79.8mm which is
estimated according to Equation (12).

The reconstructed TWSA during 1980-2016 showed a
significant period of decreasing trends after 2000 with a
decreasing trend of -11mm/year passing the MK test
(Figure 5(a)). The average depth to groundwater in the
Beijing Plain from historical document records and the
runoff from the Guanting Reservoir approximately represent
the changes in groundwater and surface water, respectively.
The average depth to groundwater and runoff showed a
similar pattern (r = −0:76), and both decreased significantly
after 2000 (Figure 5(b)). The annual average precipitation
during 2000-2016 was 434mm and was lower than the
annual average precipitation during 1980-2016 (440mm),
which contributed to the decrease in TWSA in terms of mete-
orology. However, another important reason is the decrease
in the GWSA. As shown in Figure 6, the GWSA also signifi-
cantly decreased during this period. The correlation coeffi-
cient between the GWSA and the reconstructed TWSA
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during 2003-2016 was 0.93, and the high relevance demon-
strated that the decrease in the TWSA in the study area was
mainly caused by the decrease in the GWSA. Rapid economic
development occurred in the YRB during 2001-2016. As
shown in Figure 6, cropland increased from 6174 km2 in
2001 to 8476 km2 in 2016 (an increment of 2301 km2), and
the agricultural area increased by nearly one-third. Ground-
water in this area sustains approximately 70% of irrigation,
mainly for wheat production in the dry seasons of winter
and spring [40]. The correlation coefficients of cropland area
with the GWSA and reconstructed TWSA were -0.87 and
-0.78, respectively, which proved that the rapid development
of agriculture led to an increase in groundwater consumption
and a decrease in GWSA. In addition, urban and built-up
land increased from 1364 km2 in 2001 to 1448 km2 in 2016
(an increase of 84 km2). The development of cities has also
led to an increase in water consumption.

It should also be noted that the reconstructed TWSA
decreased slightly during the period from 1980 to 1999, with
a decreasing trend of -1mm/year passing the MK test
(Figure 5(a)). As shown in Figure 5(b), both the depth to
groundwater in the Beijing Plain from historical document
records and the runoff from the Guanting Reservoir

decreased slightly during 1980-1999 probably because of
the construction of dam and reservoirs in the upper reaches
of the basin. The annual average annual precipitation during
1980-1999 was 445mm, which was slightly higher than that
during 1980-2016 (440mm), and precipitation was suffi-
cient. Both the depth to groundwater and the runoff demon-
strated the results from the reconstructed TWSA that
although water resources decreased in this period, the
decreasing trend was very small.

Figure 5(a) also shows that the change in reconstructed
TWSA had a time-lag effect on the change in precipitation.
For example, the precipitation reached a peak in 1995
(601mm); however, the reconstructed TWSA peaked in the
next year, and the runoff and depth to groundwater also
showed the same time-lag effect. The time-lag effect of
TWSA changes in response to precipitation was also clearly
observed in 1993. The time-lag effect may be caused by the
fact that it usually takes much time for the infiltration of
precipitation and rivers to reach the groundwater through
the relatively thick vadose zone.

3.4. Water Shortage of Water Resources. The changes in the
WSDI calculated by the reconstructed TWSA are shown in
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Figure 7, and the scPDSI was used to verify the accuracy of
the WSDI over the YRB during 1980-2016. From 1980-
1999, the water resource shortage estimated from the WSDI
was almost no drought or mild drought. The average WSDI
was 0.34, which indicated a no drought situation in terms
of the water resources during this period. The drought in
1994 was the most serious, which may have been caused by
the scarce precipitation in the previous year (Figure 5(a)).
The water resource shortage from the scPDSI also indicated
no drought or mild drought and occurred at low values in
1994 during 1980~1999. The average scPDSI was -1.08,
which indicated a mild drought situation in water storage
and was one level different from the WSDI. Although mod-
erate drought years were observed from the scPDSI (1981,
1984, and 1993), the value of the scPDSI was small, and
the drought situation was not serious. The scPDSI proves
that the WSDI estimation was very accurate during this
period. Water resource shortages were not serious, and pre-

cipitation was sufficient (analyzed in Section 3.3) during this
period. The supply and demand of water resources were
relatively balanced.

From 2000 to 2016, the water resource shortage esti-
mated by the WSDI changed from no drought to severe
drought. Differences of approximately one or two levels were
present between the WSDI and the scPDSI in this period. In
particular, in 2002 and 2007, the difference between the
scPDSI and the WSDI was three levels, where the WSDI
result was no drought but the scPDSI result was severe
drought. The reason may be that the scPDSI was heavily
affected by current and previous precipitation. The annual
precipitation in 1999-2002 and 2005-2007 was continuously
less than the annual average precipitation (Figure 5(a)),
which may lead to the estimation results of serious drought
conditions. However, both theWSDI and the scPDSI showed
more serious water resource storage than that in 1980-1999.
As discussed in Section 3.3, the TWS (especially GWS)
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significantly decreased during this period, which contributed
to the drought conditions. That is, human activity (agricul-
tural development) played an important role in the serious
water resource shortages during this period. The reason for

the differences between the WSDI and the scPDSI may be
that the WSDI (calculated by reconstructed TWSA) and
scPDSI are sensitive to evapotranspiration, and the compo-
nents considered by the WSDI and scPDSI are not exactly
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the same. For example, the components of groundwater and
surface water (e.g., lakes) are included in theWSDI but not in
the scPDSI.

4. Conclusions

Due to the excessive use of water resources for the purpose of
economic development, the groundwater level has dropped
significantly in recent years, and available water resources
are decreasing in the YRB. A better understanding of past
water resource utilization can aid in generating a rational uti-
lization strategy for the sustainable development of water
resources. The TWSA of the YRB from 1980 to 2016 were
first reconstructed by using different remote sensing data.
Then, the varieties of reconstructed TWSA and water
resource shortage characteristics were analyzed. The main
conclusions are as follows:

(1) The change in the GRACE-observed GWSA over the
period from 2003 to 2016 matched well with the
observed depth to groundwater data (r < −0:6). The
correlation coefficient and RMSE of precipitation
from TRMM and CMA sources were 0.99 and
6.5mm, respectively, which demonstrated that there
was little difference between the two datasets at both
monthly and yearly time scales. The AET from
MODIS, GLEAM, and ERA had a high correlation
with Noah on the monthly scale (r > 0:9) or seasonal
scale (r > 0:8). The GLEAM-AET data showed the
best correlation coefficient (r > 0:8) with the Noah-
AET data at monthly, yearly, or seasonal scales

(2) The water balance method using precipitation from
CMA and scaled AET data from GLEAM was used
to obtain the accurate reconstructed TWSA for the
period from 1980 to 2016. The reconstructed TWSA
matched well with the GRACE-observed TWSA,
with correlation coefficient and RMSE of 0.86 and
39mm, respectively, during 2003-2016. The trend of
the reconstructed TWSA during 1980-2016 also
agreed with the average depth to groundwater in

the Beijing Plain from historical document records
and with the runoff from the Guanting Reservoir

(3) An obvious decreasing pattern of the reconstructed
TWSA was found during 2000-2016, and the average
rate of decreasing trend was -11mm/year. The
decreasing trend was mainly caused by a decrease in
the GWSA due to the rapid development of agricul-
ture. Before 2000, the reconstructed TWSA decreased
slightly with an MK decreasing trend of -1mm/year

(4) The water resource shortage was between no drought
and mild drought during 1980-1999. Compared with
1980-1999, the water resource shortage was more
serious during 2000-2016, which was mainly caused
by human activities, especially agricultural develop-
ment. The WSDI showed an increasingly serious
trend from no drought to severe drought

A convenient method was developed to reconstruct long-
term changes in TWSA in a region. Due to the difficulties in
verifying the accuracy of AET data, the GRACE-observed
TWSA was used to check and find the relationship between
the reconstructed TWSA and precipitation-AET from the
CMA and GLEAM datasets. Combinations of different pre-
cipitation and AET datasets have certain uncertainties and
may affect the reconstructed results as well as the accuracy
of GRACE data. The accuracy of the reconstructed TWSA
is difficult to validate because of limited point-scale data
and detailed water use data in this study. However, the recon-
structed TWSA are at the regional scale and can provide a
temporal picture of water resource changes.
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