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Aiming at the problems of low accuracy, low efficiency, and many parameters required in the current calculation of rock slope
stability, a prediction model of rock slope stability is proposed, which combines principal component analysis (PCA) and
relevance vector machine (RVM). In this model, PCA is used to reduce the dimension of several influencing factors, and four
independent principal component variables are selected. With the help of RVM mapping the nonlinear relationship between
the safety factor of slope stability and the principal component variables, the prediction model of rock slope stability based on
PCA-RVM is established. The results show that under the same sample, the maximum relative error of the PCA-RVM model
is only 1.26%, the average relative error is 0.95%, and the mean square error is 0.011, which is far lower than that of the RVM
model and the GEP model. By comparing the results of traditional calculation method and PCA-RVM model, it can be
concluded that the PCA-RVM model has the characteristics of high prediction accuracy, small discreteness, and high
reliability, which provides reference value for accurately predicting the stability of rock slope.

1. Introduction

Slope sliding is a common geological disaster phenomenon,
which has great harm. Once it occurs, it will seriously threaten
people’s lives and property and various engineering safety,
causing great losses [1, 2]. Some slope instability disasters,
which are located in China, are shown in Figure1. In order
to effectively control the slope instability, researchers have
carried out a lot of slope stability evaluation work, in order
to reduce the loss caused by slope sliding and save the cost
of disaster prevention and mitigation.

Slope stability is affected by many uncertain factors, such
as natural and human factors, and there is a complex nonlin-
ear relationship between them. How to establish an accurate
rock slope stability evaluation model considering multiple
factors has always been the focus of engineering [3–8]. At
present, the research on slope stability mainly focuses on

numerical simulation, theoretical analysis, and experimental
research.

Numerical research: Zhang et al. [9] established a three-
dimensional geological model of a mining slope with the
help of DIMINE simulation platform and DTM model,
which can obtain the geological conditions of any section
of the slope; Guo et al. [10] used UDEC to study the influ-
ence of dry wet cycle on slope stability. The results show that
the cohesion is more affected by dry wet cycle than internal
friction angle; Wang et al. [11] based on Swedish slice
method, combined with DEM data and GIS components,
realized the search of slope sliding surface; Yang and Zhao
[12] took a landslide in Sichuan Province as the research
object, based on the simplified Bishop method and FLAC
3D, and simulated the deformation and stress of the slope
in the process of sliding; Xiao et al. [13], respectively, used
the simplified Bishop method and Fellenius method to
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analyze the slope stability under earthquake action. The
results show that the safety factor obtained by the Bishop
method is 6% higher than that by the Fellenius method.
Based on FLAC 3D platform, Xue et al. [14] developed local
and overall strength reduction programs to evaluate the sta-
bility of heterogeneous slope. Bo et al. [15] studied the stabil-
ity and deformation of artificial mountain slope on soft soil
foundation by using numerical analysis method, taking Dan-
shan mountain piling project in Zhenjiang City as an exam-
ple. However, numerical analysis method cannot solve the
problem of random, variable, and fuzzy dynamic change of
rock slope system and has some shortcomings, such as com-
plex calculation process, large amount of calculation, and
difficult to guarantee calculation accuracy; the shortcomings
of numerical analysis are also revealed.

Theoretical research: Deng et al. [16] introduced the
Hoek Brown criterion into the stability analysis of jointed
slope and combined with interval theory to obtain the
threshold value of safety factor; Lei and Zheng [17] deeply
analyzed the concept of seepage force and effective stress
applied in Swedish slice method; Fang [18] discussed the
law of the minimum solution of slice method by comparing
the calculation results of various common slope safety fac-
tors; Wang [19] introduced the tangential force and normal
force between strips into the calculation of the Janbu
method, modified the Janbu method, and improved the
accuracy of the calculation results; Deng et al. [20] proposed
a new slope sliding surface search method based on the
Janbu method and random angle, which has the advantages
of easy programming and wide simulation range. Yang et al.
[21], based on the stress field obtained by numerical calcula-
tion, carried out the slope limit equilibrium finite element
stability analysis and determined the most dangerous sliding
surface position and safety factor of the slope, but the safety

factor value calculated by the limit equilibrium method is
lower than the actual value due to the limitation of factors
and assumptions. The traditional numerical calculation
and balance analysis method is difficult to include the influ-
ence of many factors, and the result error is large and the
calculation efficiency is low.

In the aspect of experimental research, Liu et al. [22]
showed that the slope deformation tended to be stable after
2 months through field monitoring of the slope in the earth-
quake area, and the earthquake had a great impact on the
horizontal deformation of the shallow rock mass on the
slope; Huang et al. [23] modified the shear strength formula
of expansive soil based on the in situ shear test and evaluated
the slope stability with the modified formula; Wu et al. [24]
designed an indoor model test based on the slope of a min-
ing area and studied the dynamic change law of slope during
excavation; Zhou et al. [25] explored the stability of under-
water slope with the aid of centrifugal test, and the results
showed that the limit slope angle of underwater fine sand
slope was smaller than that of silty slope.

With the rapid development of computer technology,
many scholars began to apply machine learning algorithm
to rock slope stability prediction. Liu et al. [26] analyzed
and predicted the slope of Chongqing Wanliang Expressway
by using the mathematical model of grey correlation degree
method, and the results have good applicability and credibil-
ity. Although the predicted value of this method is accurate,
the grey model has the disadvantages of complex calculation
process and long calculation time; Jiang et al. [27] used BP
neural network to learn and predict a large number of rock
slope samples in Chongqing area. The research shows that
the prediction results of this method have high accuracy
and good adaptability. However, the neural network method
has some problems, such as slow learning speed and

Figure 1: Slope instability disaster in China.
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excessive dependence on learning samples. Li et al. [28]
established the support vector machine (SVM) model for
predicting the surface deformation of rock slope and used
the model to predict the surface deformation of rock slope
in Fushun. However, the model has some defects, such as
low generalization ability of kernel function and difficult to
determine. Therefore, it is urgent to establish a more effi-
cient and reasonable machine learning model.

Relevance vector machine (RVM) is a popular machine
learning method in recent years. It has the advantages of
high precision, high efficiency, and small sample size. How-
ever, when the input sample dimension is large, it will
reduce the learning efficiency of RVM and increase the cal-
culation cost [29, 30]. Therefore, this paper uses the feature
extraction ability of principal component analysis (PCA) to
reduce the dimension of data and selects less and linearly
independent influencing factors as new input variables for
prediction [31]. The RVM model is used to learn the new
input variables, and the rock slope stability prediction model
based on PCA-RVM is established. The example of
Fuwushan slope is used to verify the analysis, which provides
a new way for rock slope stability prediction.

2. Method Principle

2.1. Principal Component Analysis. Principal component
analysis (PCA) uses the idea of dimensionality reduction;
under the premise of little information loss, it recombines
multiple indicators with certain correlation into a group of
less comprehensive indicators so that a small number of
simplified variables can reflect most of the information in
the original variables [32]. PCA calculation steps are as
follows:

(1) Constructing m × n-order matrix is the number of
samples; n is the number of influencing factors of
each sample

Xm×n =

x11 x12 ⋯ x1n

x21 x22 ⋯ x2n

⋮ ⋮ ⋱ ⋮

xm1 xm2 ⋯ xmn

2
666664

3
777775: ð1Þ

The original data is standardized, and the standardized
matrix is generated automatically.

(2) The covariance matrix is established according to the
standardized matrix R. The calculation formula is

Rij =
∑n

k=1 Xij − Xi

� �
Xkj − Xj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

k=1 Xkj − Xi

� �2 Xkj − Xj

� �2q , ð2Þ

where Ri jði = 1, 2,⋯,m, j = 1, 2,⋯, pÞ is the correlation
coefficient of Xi and Xj.

(3) Since R is a positive definite matrix, m nonnegative
eigenvalues of characteristic equation ∣λE − R ∣ = 0
are obtained, that is, λ1 ≥ λ2 ≥⋯≥λm ≥ 0. Under
the premise of constant total variance, the contribu-
tion rate of the i-th principal component zi is λ/
∑n

i=1λi. The cumulative contribution rate of the first
q principal components ∑q

i=1zi is ∑q
i=1λi/∑

m
i=1λi.

According to literature [33], when the cumulative
contribution rate of q principal components exceeds
85%, it can be considered that these principal com-
ponents can contain most of the total information.

(4) After the principal component analysis, the relation-
ship between the initial variable x1, x2,⋯, xn and n
comprehensive index factor y1, y2,⋯, yn is as
follows:

y1 = c11x1 + c12x2+⋯+c1nxn,

y2 = c21x1 + c22x2+⋯+c2nxn,

⋮

yn = cc1x1 + cc2x2+⋯+ccnxn:

8>>>>><
>>>>>:

ð3Þ

In the formula, ci j and yi are not related to each other,
and cin satisfies c2 i1 + c2 i2 +⋯+c2 in = 1. Therefore, the num-
ber of initial variables is reduced to achieve the purpose of
dimension reduction.

2.2. Correlation Vector Machine. Suppose that the training
set is fxn, tngNn−1, where xn ∈ Rd and tn ∈ R are input vector
values and output scalar values, respectively, and tn is dis-
tributed independently. The relationship between the input
value x and the target value t can be expressed as follows:

tn = y xn ; ωð Þ + ξn, ð4Þ

where ω is the weight vector and ω = ½ω0, ω1,⋯, ωN �T and ζn
is the additional Gaussian noise with zero mean, which is
independent of each other, that is to say, it satisfies the fol-
lowing Gaussian distribution:

ξn ∼N 0, σ2
� �

, ð5Þ

where variance σ2 is unknown and needs to be obtained by
iterative updating. Pðtn ∣ xÞ =Nðtn ∣ yðxnÞ, σ2Þ obeys Gauss-
ian distribution. From equations (4) and (5), it can be con-
cluded that

p tjω, σ2� �
= 2πσ2� �−N/2,

exp −
1
2σ2

t −Φωk k2
� �

,
ð6Þ

where t = ðt1,⋯, tNÞT , Φ is the structure matrix of order
N × ðN + 1Þ set in advance, and Φ = ½φðx1Þ, φðx2Þ,⋯, φðxN
Þ�T , φðxnÞ = ½1, Kðxn, x1Þ, Kðxn, x2Þ,⋯, Kðxn, xNÞ�T .
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With a large number of parameters used, overadaptation
may occur in the evaluation of MLE (maximum likelihood
estimation) ω and σ2. In order to avoid similar phenome-
non, some mandatory conditions can be added to the
parameters. Suppose that the parameter ωi obeys the Gauss
conditional probability distribution with mean value 0 and
variance a−1i .

p ω αjð Þ =
YN
n=0

N ωi 0, α−1i
��� �

, ð7Þ

where a = ða0, a1,⋯, aNÞ is the N + 1-dimensional hyper-
parametric vector. Suppose that super parameter a and noise
parameter σ2 obey gamma prior probability distribution

P αð Þ =
YN
n=0

Gamma αn a, bjð Þ,

P σ2
� �

= Gamma c, dð Þ,
ð8Þ

where Gammaða, bÞ = ΓðaÞ − 1 ba aa − 1 e − ba, ΓðaÞ = Ð∞0 t
a − 1e − tdt, according to reference [32]; a = b = c = d = 0 is
defined.

According to the Bayesian theory, the posterior proba-
bility distribution of training sample set is as follows:

P ω, α, σ2 tj� �
=
P t ω, α, σ2
��� �

P ω, α, σ2
� �

P tð Þ , ð9Þ

where Pðω, a, σ2 ∣ tÞ cannot be calculated directly by inte-
gral, so it is decomposed into two parts:

P ω, α, σ2 tj� �
= P ω t, σ, σ2

��� �
P α, σ2 tj� �

: ð10Þ

The posterior distribution of weight vector ω can be
obtained from the above formula:

P ω t, α, σ2
��� �

=
P t ω, σ2
��� �

P ω αjð Þ
P t α, σ2jð Þ =N μ,〠

� 	
, ð11Þ

where posterior mean μ = σ−2∑ΦTt, covariance ∑ =
ðσ−2ΦTΦ +AÞ−1, A is a diagonal matrix, A = diag ða0, a1,
⋯, aNÞ. Because Pða, σ2 ∣ tÞ cannot be calculated directly by
decomposition, the Dirac delta function is introduced to
do approximate calculation, which is expressed as

P α, σ2 tj� �
≈ δ αMP , σ2MP

� �
: ð12Þ

The optimal solution of Pða, σ2 ∣ tÞ are aMP and σ2MP:

αMP = arg max P α tjð Þf g, ð13Þ

σ2MP = arg max P σ2 tj� �
 �
: ð14Þ

By solving equations (13) and (14), the following for-
mula is obtained:

P a, σ2/t
� �

∝ P t/a, σ2
� �

P að ÞP σ2
� �

: ð15Þ

The maximum estimates of Pða, σ2 ∣ tÞ, Pðt ∣ a, σ2Þ, and
PðaÞPðσ2Þ in equation (15) are obtained:

L = log P t log α, log σ2�� ��� �
+ 〠

N

n=0
logP log αnð Þ + log P log σ2

� �
:

ð16Þ

The deviation guide of formula (16) can be obtained:

∂L
∂ log αn

= −
1
2

−αn〠
nn

+ 1 + αnμ
2
n + 2a − 2bαn

 !
: ð17Þ

Let (17) be equal to 0 and rn = 1 − an∑nn:

αnewn =
rn + 2a
μ2n + 2b

: ð18Þ

The results are as follows:

σ2
� �new =

t −Φμk k2 + 2d
N −∑N

n=0rn + 2c
: ð19Þ

In the actual process, the super parameters an and σ2 are
updated through equations (18) and (19) to complete the
RVM learning. In the iterative process, most of an tends to
infinity, which can be obtained through formula μ = σ − 2
∑ΦTt, and the corresponding ω value tends to zero. Assum-
ing that the sample to be predicted is x∗, the predicted value
t∗ can be obtained from

P t∗ t, αMP, σ2
MP

��� �
=
ð
P t∗ ω, σ2MP

��� �
P ω t, αMP, σ2

MP

��� �
dω:

ð20Þ

By simplifying equation (20), it can be concluded that

P t∗ t, αMP, σ2MP

��� �
=N t∗ y∗, σ2∗

��� �
, ð21Þ

where expected value y ∗ = μTφðx ∗Þ, variance σ2∗ = σ2MP
+ φðx∗ÞT∑φðx∗Þ, and the real value of t ∗ is calculated by
equation (21).

3. PCA-RVM Model of Rock Slope Stability

3.1. Sample Data. Scholars at home and abroad divide slope
stability into two categories: failure slope and stability slope
[4, 34, 35]. The factors that affect the stability of rock slope
are complex and various. This paper introduces the principal
component analysis method to explore the relationship
between the influencing factors and slope stability, analyzes
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and reduces the dimension of each factor, and retains the
main influencing factors and substitutes them into the
RVM model for prediction. Select the rock weight (γ),
cohesion (C), internal friction angle (φ), slope height (H),
slope angle (α), and pore water pressure (γw). These six
factors are the input factors of rock slope stability, and
the safety factor (Fs) is the output factor. In this paper, 30
groups of slope data in literature [29] are sorted out, and
1~23 groups are used as learning samples and 24~30 groups
are used as prediction samples (see Table 1) to make the pre-
diction model. Finally, the third section of Fuwu mountain
slope is taken as an example to verify the analysis.

The 30 groups of data in Table 1 were standardized, and
the Bartlett sphericity test value was 0.000, which was less
than the significance level of 0.05. The results showed that
the sample data could be used for factor analysis. Principal
component analysis is performed on the input variables in
Table 1 to obtain the correlation coefficient matrix among
the variables (see Table 2).

According to Table 2, γ, C, φ, and H have a strong linear
correlation. For example: γ with C, φ, and H the correlation
coefficients were 0.469, 0.429, and 0.659, respectively; and
with α, γ, the correlation coefficients of γw were 0.382 and
-0.299. It has a good correlation with the first three factors,
but the correlation with the last two factors gradually
decreases, which even shows a negative correlation. It can
be preliminarily determined that γ has a good correlation
with the first three factors. In order to ensure that the
selected variables can contain most of the information of
the original data, it is necessary to obtain the actual contri-
bution rate and cumulative contribution rate of each
influencing factor to the slope stability, as shown in Table 3.

It can be seen from Table 3 that the cumulative contribu-
tion rate of the first four principal components has reached
88.47%, more than 85%, indicating that the first four princi-
pal components can effectively replace the information con-
tained in the original data. In order to intuitively compare
the contribution rate of each factor, the actual contribution
rate and cumulative contribution rate of each component
are shown in Figure 2.

The score coefficient matrix obtained by the maximum
difference method is shown in Table 4, so the comprehensive

score of each principal component can be calculated, and the
variable expressions of the four principal components are as
follows:

Therefore, γ, C, φ, and H four principal components h
are used as input variables to establish the RVM prediction
model, which not only reduces the dimension of variables
but also improves the operation speed and ensures the min-
imum loss of information carried by the initial variables.

3.2. Establish Prediction Model. The PCA-RVM prediction
model is established by using the data corresponding to the
four principal components after dimension reduction as
the input value and the safety factor (Fs) as the output value.
In order to obtain a more accurate model, the Gauss kernel

Table 1: Training and prediction samples [31].

Serial
number

γ C φ H α γw Fs

1 22.4 10 35 10 45 0.4 0.9

2 20 20 36 50 45 0.5 0.83

3 20 0 36 50 45 0.25 0.79

4 20 0 36 50 45 0.5 0.67

5 22 0 40 8 33 0.35 1.45

6 24 0 40 8 33 0.3 1.58

7 20 5 24.5 8 20 0.35 1.37

8 18 10 30 8 20 0.3 2.05

9 27 50 35 420 43 0.25 1.15

10 27 35 40 407 42 0.25 1.44

11 27 37.5 35 359 42 0.25 1.27

12 27.3 26 28 90.5 50 0.25 1.252

13 27.3 10 31 92 50 0.25 1.246

14 27.3 10 39 511 41 0.25 1.434

15 27.3 46 39 470 40 0.25 1.418

16 25 46 35 443 47 0.25 1.28

17 25 46 35 435 44 0.25 1.37

18 25 150 35 432 46 0.25 1.23

19 26 25 45 200 30 0.25 1.2

20 18.5 12 0 6 30 0.25 1.09

21 18.5 10 0 6 30 0.25 0.78

22 22.4 10 35 10 30 0.25 2

23 21.422 20 30.3 20 30 0.25 1.7

24 22 0 36 50 45 0.25 To be predicted

25 22 0 36 50 45 0.25 To be predicted

26 25 48 35 393 46 0.25 To be predicted

27 12 0 30 8 45 0.25 To be predicted

28 31.3 68.6 37 305 47 0.25 To be predicted

29 20 40 36 50 45 0.25 To be predicted

30 31.3 68 37 213 47 0.25 To be predicted

y1 = 0:302x1 + 0:259x2 + 0:191x3 + 0:314x4 + 0:211x5 − 0:149x6,

y2 = 0:024x1 − 0:223x2 + 0:539x3 − 0:103x4 + 0:332x5 + 0:604x6,

y3 = 0:167x1 + 0:348x2 + 0:376x3 + 0:181x4 − 1:013x5 + 0:374x6,

y4 = −0:287x1 + 0:786x2 − 0:557x3 + 0:094x4 + 0:277x5 + 0:662x6:

8>>>>><
>>>>>:

ð22Þ
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width needs to be optimized. After the model is adjusted, the
error between the predicted results and the actual values is
relatively small when the width of Gaussian core is between
1.76 and 1.82. In order to further improve the model accu-
racy, the kernel width interval is subdivided, and the kernel
width is calculated as 1.76, 1.77, 1.78, 1.79, 1.80, 1.81, and
1.82. The average relative error of predicted samples corre-
sponding to different kernel width values after subdivision
is shown in Figure 3. From Figure 3, with the Gaussian ker-
nel width σ, the average relative error of the prediction
results is the smallest when the value is 1.78. So take σ =
1:78, the number of iterations is 1000.

Combined with the established model, 25~30 samples
are calculated and analyzed. In order to verify the accuracy
of the model and ensure the same sample conditions, the
prediction results of the GEP prediction model and the
RVM prediction model are analyzed and compared. It can
be seen from Table 5 that the prediction results of the GEP
model have the largest error, of which the maximum relative
error is as high as 37.07%. The maximum relative error of
RVM model is 8.14%. The maximum relative error of the
PCA-RVM model is only 1.26%, and the error fluctuation
range of each sample point is small. Therefore, the predic-
tion accuracy of the PCA-RVM model is much higher than
that of the other two models.

In order to compare the predicted results of the three
models more intuitively, the predicted safety factors of each
model are compared with the actual safety factors, as shown
in Figure 4.

It can be seen from Figure 3 that the predicted value of
the GEP model deviates greatly from the actual value in gen-
eral, and the deviation of samples 25 and 27 is obvious, and
only a few sample points are close to the actual value. The
predicted value of the RVM model is basically consistent
with the actual value, and the error of no. 25 and no. 26 sam-
ple points is large. The PCA-RVM model has the highest
prediction accuracy, and the predicted values of each sample
point almost coincide with the actual values. In order to
compare the overall prediction accuracy and dispersion of
the three models, the mean square error (FMSE) and average
relative error (ARE) of the prediction results of each model
are compared in Table 6. It can be seen from Table 6 that
the PCA-RVM model is lower than the other two models
in mean square error and mean relative error. In conclusion,
compared with the GEP model and the RVM model, the
PCA-RVM model has lower discreteness and higher overall
accuracy.

4. Case Calculation

Taking the Fuwu mountain slope of a project as an example,
the prediction model is compared with the traditional calcu-
lation formula.

Establish prediction model.

4.1. Physical and Mechanical Parameters of Rock and Soil
Mass of Slope. Plastic red clay (Q4

el): γ = 16:5 kN/m3, φ =
8:5°, and C = 30 kPa. According to the requirements of the
code, the cohesion reduction factor is 0.5 and the internal
friction angle reduction factor is 0.8 in the process of slope
stability calculation φ = 6:8°, C = 15 kPa.

Strongly weathered sandstone: γ = 23 kN/m3, φ = 22°,
and C = 75 kPa; equivalent internal friction angle of slope
rock mass φe = 46°.

Apoplectic sandstone: γ = 29:13 kN/m3, φ = 26:6°, C =
1000 kPa,f a = 4000 kPa, f rbk = 1200 kPa, and φe = 56°.

4.2. Failure Mode of Slope. The whole slope is divided into
AB, BC, CD, DE, and EF.

After the later excavation, the slope of section AB is
composed of red clay and strong sandstone. The strongly

Table 2: Correlation matrix.

Influence factor γ C φ H α γw
γ 1.000 0.469 0.429 0.659 0.382 -0.299

C 0.469 1.000 0.157 0.615 0.258 -0.273

φ 0.429 0.157 1.000 0.352 0.346 0.098

H 0.659 0.615 0.352 1.000 0.377 -0.356

α 0.382 0.258 0.346 0.377 1.000 -0.049

γw -0.299 -0.273 0.098 -0.356 -0.049 1.000

Table 3: Contribution rate.

Component
Characteristic

root
Contribution
rate (%)

Cumulative
contribution
rate (%)

γ 2.775 46.256 46.256

C 1.210 20.168 66.424

φ 0.671 11.183 77.607

H 0.652 10.863 88.47

α 0.395 6.59 95.061

γw 0.296 4.939 100
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Figure 2: Actual contribution rate and cumulative contribution
rate of each component.
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weathered sandstone belongs to extremely broken rock
mass, and the moderately weathered rock mass belongs to
relatively broken rock mass, which can occur circular sliding
of soil layer, sliding along the rock soil boundary, and sliding
inside the rock weathering line.

After the later excavation of the BC section, the slope is
composed of a small amount of red clay and strongly weath-
ered sandstone. The strongly weathered sandstone belongs
to extremely broken rock mass, and the moderately weath-
ered rock mass belongs to relatively broken rock mass,
which can slide in circular arc shape, along the geotechnical
boundary and inside the weathering line.

After the later excavation, the slope of the CD section is
composed of a small amount of red clay and strongly weath-
ered sandstone. The strongly weathered sandstone belongs
to extremely broken rock mass, and the moderately weath-
ered rock mass belongs to relatively broken rock mass,
which can slide in circular arc shape, along the geotechnical
boundary and inside the weathering line.

After the later excavation of the DE section, the slope is
composed of red clay and strongly weathered sandstone. The
strongly weathered sandstone belongs to extremely broken
rock mass, and the moderately weathered rock mass belongs
to relatively broken rock mass, which can slide in circular arc
shape, along the geotechnical boundary and inside the
weathering line.

After the later excavation, the slope of the EF section is
composed of miscellaneous fill, red clay, and strongly weath-

ered sandstone. The strongly weathered sandstone belongs
to extremely broken rock mass and can slide in circular arc.

4.3. Slope Stability Analysis. The slope length of AB section is
about 20m, the slope height is about 17.38-36.5m, and the
slope aspect is 286°. The overburden of this section is resid-
ual slope red clay and strongly weathered sandstone, and the
underlying bedrock is moderately weathered sandstone. The
rock mass is relatively broken, and the occurrence of the
rock is 148° ∠53°. It is the reverse slope of rock. The occur-
rence of rock joint 1 in the slope is 311° ∠76°. The occur-
rence of joint 2 is 145° ∠80°. There is no external structural
plane in the slope. The angle between joint 1 and slope is
about 25 degrees, and the rock mass may be cut out along
joint fissure 1.

The length of BC section is about 31m, the height of this
section is about 36.5-40.7m, and the aspect is 286°. The
overburden of this section is residual slope red clay and
strongly weathered sandstone, and the underlying bedrock
is moderately weathered sandstone. The rock mass is rela-
tively broken, and the occurrence of the rock is 148° ∠53°.
It is the reverse slope of rock. The occurrence of rock joint
1 in the slope is 311° ∠76°. The occurrence of joint 2 is
145° ∠80°. There is no external structural plane in the slope.
Joint 1 will have a tangential angle of about 25 degrees with
an inclination of 76°> slope angle of foundation pit 63°.
There is no free cutting surface, and there is no possibility
of large-scale bedding cutting out of the rock mass, only
the phenomenon of block falling caused by joint fracture
cutting.

The slope length of CD section is about 62m, the maxi-
mum height of vertical grading is about 33.8~40.6m, and the
slope aspect is 286°. The overburden of this section is resid-
ual slope red clay and strongly weathered sandstone, and the
underlying bedrock is moderately weathered sandstone. The
rock mass is relatively broken, and the occurrence of the
rock is 148° ∠53°. It is the reverse slope of rock. The occur-
rence of rock joint 1 in the slope is 311° ∠76°. The occur-
rence of joint 2 is 145° ∠80°. There is no external structural
plane in the slope. Joint 1 will have a tangential angle of
about 25 degrees with an inclination of 76°> slope angle of
foundation pit 63°. There is no free cutting surface, and there
is no possibility of large-scale bedding cutting out of the rock
mass, only the phenomenon of block falling caused by joint
fracture cutting.

The slope length of DE section is about 43m, the maxi-
mum height of vertical grading is about 14.5-33.8m, and the

Table 4: Score coefficient matrix.

Proto component Principal component 1 Principal component 2 Principal component 3 Principal component 4

γ 0.302 0.024 0.167 -0.287

C 0.259 -0.223 0.348 0.786

φ 0.191 0.539 0.376 -0.557

H 0.314 -0.103 0.181 0.094

α 0.211 0.332 -1.013 0.277

γw -0.149 0.604 0.374 0.662

1.76 1.78 1.80 1.82
0.9
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Figure 3: Average relative error of different core widths.
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slope aspect is 286°. The overburden of this section is resid-
ual slope red clay and strongly weathered sandstone, and the
underlying bedrock is moderately weathered sandstone. The
rock mass is relatively broken, and the occurrence of the
rock is 148° ∠53°. It is the reverse slope of rock. The occur-
rence of rock joint 1 in the slope is 311° ∠76°. The occur-
rence of joint 2 is 145° ∠80°. There is no external structural
plane in the slope. Joint 1 will have a tangential angle of
about 25 degrees with an inclination of 76°> slope angle of
foundation pit 73°. There is no free cutting surface, and there
is no possibility of large-scale bedding cutting out of rock
mass. It can only be cut by joints and fissures to produce
block falling phenomenon.

The slope length of EF section is about 15m, the max-
imum height of the slope is 3.76~7.7m, slope is rock soil
mixed slope, and the slope direction is 21°. The occurrence

of the strata is 148° ∠53°. It is tangential to the main slope
of the slope. At present, the toe of the slope is a concrete
rubble retaining wall. The construction period of the wall
is more than 5 years, and the stability of the retaining wall
is good.

4.4. Slope Stability Calculation. The transfer coefficient
method is used to calculate the landslide thrust and the
residual sliding force of lateral geotechnical pressure:

Pn = 0,

Pi = Pi−1ψi−1 + Ti −
Ri

Fs
,

ψi−1 = cos θi−1 − θið Þ − sin θi−1 − θið Þ tan ϕi
Fs

,

Ti = Gi +Gbið Þ sin θi +Qi cos θi,

Ri = cili + Gi +Gbið Þ cos θi −Qi sin θi −Ui½ � tan ϕi,

ð23Þ

where Pn—residual sliding force per unit width of the Nth
fast track (kN/m); Pi—the residual sliding force per unit
width of the i and i + 1 calculation blocks (kN/m), when Pi
< 0 (i < n) that Pi = 0; ci—the standard value of bond
strength of rock and soil mass on sliding surface of block i
is calculated (kPa); φi—the standard value of internal fric-
tion angle of rock and soil mass on the sliding surface of
block i is calculated (°); li—the length of slide surface of
the i calculation block (m); ψi:1—transfer coefficient of i:1
calculation block to i calculation block; Ti—section i calcu-
lates the sliding force caused by gravity and other external
forces per unit width of the strip (kN/m); Ri—section i cal-
culates the antisliding force caused by gravity and other
external forces per unit width of the strip (kN/m); θi, θi−1
—the inclination angle of sliding surface of i and i:1 is calcu-
lated (°); Gbi—the vertical additional load per unit width
(kN/m) of the i calculation strip; when the direction is
downward, the value is positive; when the direction is
inward, the value is negative; Gi—the weight per unit width
of the i calculation block (kN/m); Qi—calculation of hori-
zontal load per unit width of block i (kN/m).

The failure mode of “sliding along circular arc inside soil
layer” is selected for calculation, and the stability coefficients

Table 5: Prediction results of each prediction model.

Sample number Actual value
GEP RVM PCA-RVM

Estimate Relative error (%) Estimate Relative error (%) Estimate Relative error (%)

24 1.02 1.12 9.8 4.91 1.02

25 0.89 1.22 37.07 0.9625 8.14 0.8821 0.89

26 1.32 1.26 4.54 1.2594 4.59 1.3033 1.26

27 0.8 0.97 21.25 0.8158 1.98 0.8052 0.65

28 1.2 1.21 0.83 1.2428 3.56 1.2070 0.58

29 0.96 0.9 6.25 0.9843 2.53 0.9712 1.17

30 1.2 1.18 1.67 1.2426 3.55 1.2131 1.09

24 25 26 27 28 29 30

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Sample number

Actual value
GEP

RVM
PCA-RVM

Sa
fe

ty
 fa

ct
or

 F s

Figure 4: Comparison of predicted values of different methods.

Table 6: Comparison of ARE and FMSE of different models.

Model ARE (%) FMSE

GEP 11.63 0.149

RVM 4.18 0.048

PCA-RVM 0.95 0.011
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are obtained as follows: FsAB = 0:539, FsBC = 0:961, FsCD =
1:005, FsDE = 0:419, and FsEF = 0:822.

4.5. PCA-RVM Model Was Used to Predict the Model. The
PCA-RVM model proposed and optimized in this paper is
used to budget; FsAB = 0:511, FsBC = 0:925, FsCD = 0:998,
FsDE = 0:425, and FsEF = 0:905.

The errors between the results and the traditional
method are 5.2%, 3.7%, 0.7%, 1.5%, and 9.2%, respectively.
The results show that the errors are conservative in design
and calculation, which also verifies the reliability of the
model and provides reference value for subsequent calcula-
tion and design.

5. Conclusion

(1) In this paper, the PCA and RVM models are used to
predict the stability of rock slope. PCA is used to
process the original data, and the six influence fac-
tors are reduced into four main influence factors,
which reduce the complexity of the algorithm;
RVM is applied to establish the mapping relation-
ship between influence factors and slope stability
after dimension reduction, so as to predict slope sta-
bility. The PCA-RVM model simplifies the complex
problems and makes the prediction process more
efficient and concise

(2) The results show that the PCA-RVM model is supe-
rior to the GEP model and the RVM model in terms
of mean square error and mean relative error in pre-
dicting rock slope stability, with higher accuracy and
lower discreteness. In the aspect of slope stability, the
PCA-RVM model has high credibility, and the pre-
dicted value is basically consistent with the actual
value, which can provide reference for the preven-
tion and control of slope disasters

(3) Taking Fuwushan slope as an example, combined with
the traditional slope stability calculation method,
compared with the calculation results of the PCA-
RVM model, the difference between the prediction
results and the calculation results is small. However,
because the model is based on a small amount of data,
there is still a certain deviation between the predicted
results and the actual value of the slope safety factor.
Therefore, it is of great significance to widely collect
the engineering case data to improve the accuracy
and practicability of the model
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