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In this study, we present a hybrid model coupled with two-set nodes Green element method (GEM) and embedded discrete fracture
model (EDFM) for capturing the effect of transient flow in inhomogeneous fractured porous media. GEM is an excellent advanced
algorithm, which can solve nonlinear problems in heterogeneous media. That is also an obvious advantage of GEM against the
original boundary element method (BEM). The novel GEM has double nodes of pressure and flux and it is an improvement of
classical GEM, which has a second-order precision and fits for triangle structured grids. In the place of adopting the linear flow
approximation for original EDFM, the interflows between local triangle matrix grids and fracture elements are derived using the
novel GEM, which has higher accuracy than those in previous EDFMs. Consequently, the modified hybrid model can indeed
calculate the pressure and flux distribution of transient flow in multifracture porous media. Three numerical cases are presented
to show the practicability of our novel model which include (i) multistage fractured horizontal well, (ii) heterogeneous fractured
porous media, and (iii) complex fracture networks (CFNs) in an unconventional reservoir.

1. Introduction

Accurate modeling and simulation of pressure and flux dis-
tribution in naturally and hydraulically fractured reservoirs
is a hot topic and quite challenging work for many oilfield
engineering technicians. So far, there are lots of numerical
approaches that have been employed to solve this physics
problem, such as the equivalent continuummodel [1–3], dis-
crete fracture model (DFM or DFN) [4, 5], and embedded
discrete fracture model (EDFM) [6–8]. Each approach has
advantages and disadvantages, but the most widely used
method is EDFM at present because of its high precision
and high efficiency. The original EDFM was firstly presented
by Li and Lee (2008) [9], in which discrete fractures are
embedded in the structured matrix cell, and the mass transfer
equations can be expressed by the nonneighboring connec-
tion (NNC) geometrical relationship of fractures and matrix.
Compared with DFM, EDFM only adopts a set of fixed struc-
tured matrix blocks and avoids the complexity of grid divi-
sion. Besides, it is easy to be coupled with the existing
reservoir simulation codes based on the finite volume
method (FVM). Therefore, EDFM is an important improve-

ment of DFM and has attracted the attention of many
scholars in recent years. But, for the original EDFM, comput-
ing the interflux conductivity between matrix grids and dis-
crete fracture elements is only related to geometrical
properties, which did not in accord with the actual physical
fact. To overcome this problem, the boundary element
method (BEM) is possibly a compelling treatment to calcu-
late the mass transmission between matrix and fracture.
However, the original BEM cannot deal with this problem
effectively because the actual reservoir is always strongly
heterogeneous. Consequently, it is essential to develop an
effective numerical approach for coupled EDFM simulators
to characterize the transient mass transfer in heterogeneous
fractured porous medium.

Green function method (GEM), intrinsically a variation
of BEM, can effectively deal with nonlinear problems in het-
erogeneous media. The original GEM was proposed by
Taigbenu et al. (1995a, 1995b, 1997, 1999) [10–14]; in this
method, the calculation domain was meshed by polygonal
cells, and cell vertices were considered as unknown nodes.
In previous GEMs, the normal flux at each internal node
was obtained by distinguishing the pressure expressed by
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the weighted average of nodal values of the pressure and basis
functions. However, this approximation approach reduced
overall accuracy and errors will widen with the decrease of
polygonal size. Then, some scholars put forward some
improved methods for original GEM. Archer (1999, 2006)
et al. [15, 16] pointed out the error of original GEM can be
reduced by adopting the overhauser interpolation functions.
Pecher et al. (2001) [17] and Lorinczi et al. (2006, 2008,
2010, 2011) [18–21] presented a modified GEM, in which
they used the continuity of flux vector component to approx-
imate the flux term and increased the number of degrees of
freedom of each internal node. Lorinczi et al. do not use the
traditional way of coupling the equations at the same source
point into one equation. Instead, all the equations at the same
source point are listed as independent equations to construct
the overdetermined equations, and then, the unknowns are
solved by the least squares method. Therefore, the pressure
and flux terms are explicitly solved in this method, which
improved to second-order accuracy. But, the system of equa-

tions may be singular in this method due to the excessive
number of degrees of freedom of each internal node, which
reduces the robustness of numerical simulation. Taigbenu
(2008) [22] proposed a flux-correct GEM and thought that
the sum of flux term on the cell edge in the clockwise direc-
tion (or both in the counterclockwise direction) around the
same node is zero, and uses these additional equations to
form a closed linear equation to solve the unknowns. Taig-
benu (2012) [23] returned to the original GEM and improved
the approximate accuracy of normal flux by using the qua-
dratic interpolation basis function. But in essence, the flux
term is not solved explicitly and the accuracy is not high
enough. By referring to the calculation of the flux term on
the edge of cell in the mixed finite element method (MFEM),
Fang et al. (2017) [24] presented a novel mixed boundary
element method (MBEM) to improve the accuracy by mov-
ing the pressure and flux nodes to the edge-center point to
satisfy the local mass conservation. Rao et al. (2018a,
2018b) [25, 26] presented a novel GEM that incorporates
double nodes of pressure and flux; in this method, the pres-
sure unknowns included all cell vertices and flux unknowns
contained all edge-center points. The advantage of this
approach is that it satisfies the local mass conservation and
has high accuracy, and it can be used for solving stably the
second-order partial differential equations (PDEs), such as
the mass transmission and heat transfer equations. To fur-
ther improve the strong robustness of GEM, Rao et al.
(2019) [27] proposed a mimetic Green element method
(MGEM) which coupled the idea of the mimetic finite differ-
ence method (MFDM).

At present, no matter the Green element method (GEM)
itself or the application in embedded discrete fracture model
(EDFM) is still at the exploration stage. Because the GEM has

Figure 1: Schematic of EDFM concept (modified from Li and Lee (2008) [9]).
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Figure 4: Coupling process for the novel GEM based on double
nodes of pressure and flux.
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Figure 3: Two-dimensional EDFM based on triangle elements and
the novel GEM.
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the unique advantage of high accuracy in dealing with
unsteady and heterogeneous problems, it is important to fur-
ther investigate the novel GEM and its application in the
engineering field. In this study, a modified EDFM based on
novel GEM with two-set nodes triangular element was pro-
posed to solve accurately the interflow between matrix and
fractures, which can effectively capture the dynamic flow
characteristics for heterogeneous fractured reservoirs. The
paper is organized as follows. In Section 2, the principle of
novel GEM and its coupling method in EDFM are illumi-
nated. In Section 3, the model validation process is intro-
duced and we compare the accuracy of early-time and long-
time performance of novel model and original method. In
Section 4, three cases are implemented to show the applica-
tion of our novel model which include (i) multistage frac-
tured horizontal well, (ii) heterogeneous fractured porous
media, and (iii) complex fracture networks in unconven-
tional reservoirs. Finally, the conclusions are presented in
Section 5.

2. A Brief Review of Original EDFM

Firstly, we explain the concept of EDFM approach and illus-
trate the reason why the accuracy of transient simulation of
original EDFM is not perfect for approximating the interflow
between matrix cell and fracture elements. According to the
pretreatment of EDFM, the fractured porous medium can
be independently divided into a matrix cell system and some
discrete fracture elements as plotted in Figure 1. For two-

dimensional media, fracture elements are regarded as 1D
pathways discretized independently from matrix cells.
Besides, the matrix and fracture elements are illustrated on
top of each other with overlapped matrix grids highlighted
with the color blue.

In previous EDFMs, the mass transfer between matrix
and fracture is approximated by the geometric index in the
transmissibility term, which is based on a steady flow. Li
and Lee [9] firstly assume that the pressure changes linearly
along each fracture’s vertical direction in the grid block and
adopt the following equations to calculate the interflux
between fracture and matrix as shown in Equation (1) and
Equation (2), which has been extended to many models
and studies [28–30]. However, this linear flow assumption
that the pressure linearly distributed along each fracture’s
vertical direction in matrix cell is not reasonable in the pro-
duction process, especially in the early stage of production,
resulting in low precision in the early stage owing to the great
difference between ultralow matrix permeability and ultra-
high fracture permeability.

CI = A
dh i , ð1Þ

dh i =
Ð
Vm

xn x′
� �

dx′
Vm

, ð2Þ

Table 1: Input parameters of numerical case.

Parameters Value Parameters Value

Matrix porosity 0.17 Matrix permeability 1mD

Rock compressibility coefficient 1:07 × 10−4MPa−1 Fracture aperture 10mm

Fracture porosity 0.4 Fracture permeability 20000mD

Fluid viscosity 2mPa·s Fluid compressibility coefficient 3:02 × 10−3MPa−1
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Figure 6: Sketch of reservoir domain and a horizontal well with one
fracture.
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Figure 7: Top view of locally refined fracture grids and their
surrounding matrix grids.
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where CI is the geometric index between matrix grid and
fracture control volume, A is the surface area of fracture ele-
ment connected to matrix, hdi is the average distance
between the matrix grid and the fracture grid, xn denotes
the distance between fracture and matrix grid, and Vm indi-
cates the matrix grid volume.

3. Methodology of Novel EDFM

In this report, we explain the idea of GEM of double nodes of
pressure and flux combined with the flow equation in porous
medium. The single-phase fluid flow in matrix is generally
described as follows:

∇ ⋅ K∇pð Þ = c
∂p
∂t

+ f , ð3Þ

where p represents the pressure over matrix domain, f indi-
cates the distribution of internal source or sink strengths
and generally equal to 0, K is the matrix permeability, and c
denotes the medium attributes.

The above flow equation also can be modified as follows:

∇2p = −∇ψ ⋅ ∇p + σ
∂p
∂t

+ νf , ð4Þ

where ψ = ln K , σ = cv, and ν = 1/K .
As shown in Figure 2, the novel GEM has double nodes of

pressure and flux, in which pressure nodes are distributed at
the three vertices of triangular matrix element and flux nodes
are distributed at the edge-center points of triangular matrix
block. The pressure nodes are marked as 1, 2, and 3, respec-
tively. The flux nodes are marked as a, b, and c, respectively.

Then, the boundary integral equation of Equation (4) is
adopted to each triangular element as follows:

−λpi +
ð
Γe

p∇G ⋅ n +G
qn
K

� �
ds

+∬
Λe
G −∇ψ ⋅ ∇p + σ

∂p
∂t

+ νf
� �

dA = 0:
ð5Þ

For each pressure point, the corresponding basis func-
tions of the pressure nodes are expressed as ϕ1, ϕ2, ϕ3, respec-
tively. The parameters of pressure within triangle element are
obtained by the weighted average of the nodal values and
basis functions. For each flux node, owing to the piecewise
continuous of normal flux, normal flux at one edge is consid-
ered as a constant, which is obviously different from the pre-
vious GEMs.

p = 〠
3

i=1
piϕi: ð6Þ

When a pressure node i is chosen as a source term, the
boundary integral equation of Equation (5) is then rewritten
as follows:

〠
3

j=1
Rijpj + 〠

c

z=a
Liz

qn
K

� �
z
− 〠

3

j=1
〠
3

m=1
Uimjψmpj

+ 〠
3

j=1
〠
3

m=1
Wimj σm

dpj
dt

+ υmf j

� �
= 0,  i, j = 1, 2,⋯, nð Þ,

ð7Þ
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Figure 8: Comparison of pressure distribution maps over 1000 days of three various simulators.
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Figure 9: Comparison of wellbore flow rate over 1000 days of three
various simulators.
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where

Rij =
ð
Γe

ϕj∇G M,Mið Þ ⋅ nds − δijλ,

Liz =
ð
Γz

G M,Mið Þds,

Γz = the edge of flux node,

Uimj =∬
Λe
G M,Mið Þ ∂ϕm∂x

∂ϕj

∂x
dA

+G M,Mið Þ ∂ϕm∂y
∂ϕj

∂y
dA,

Wimj =∬
Λe
G M,Mið ÞϕmϕjdA:

ð8Þ

Then, the system of linear equations of triangular block
can be approximated as follows:

Bizð Þ3×3qn = − Eij

� �
3×3p − Cij

� �
3×3

dpj
dt

− Fið Þ3, ð9Þ

where

Eij = 〠
3

m=1
Rij −Uimjψm

� �
,

Biz = Liz
1
K

� 	
z

,

Cij = 〠
3

m=1
Wimjσm,

Fi = 〠
3

j=1
〠
3

m=1
Wimjυmf j:Inmatrix cell

not containing fractures, Fi = 0,

p = p1, p2, p3ð ÞT,
q = qA, qB, qCð ÞT:

ð10Þ

Based on Equation (9), the inverse matrix of coefficient
matrix B can be solved, denoted B−1. The two sides of Equa-
tion (9) are multiplied by B−1; then, it is obtained that

qn = −B−1Ep − B−1C
dp
dt

− B−1F: ð11Þ

The above expression can be rewritten in an implicit
form as follows:

qn = − θB−1E +
B−1C
Δt

� 	
p n+1ð Þ

+ − 1 − θð ÞB−1E +
B−1C
Δt

� 	
p nð Þ − B−1F:

ð12Þ

Further, make the above equation concise:

qn =Mp n+1ð Þ + b, ð13Þ

where

M = − θB−1E +
B−1C
Δt

� 	
,

b = − 1 − θð ÞB−1E +
B−1C
Δt

� 	
p nð Þ − B−1F:

ð14Þ

There are physical quantities in the above formulas to be
clearly defined. For an actual physical fact, the interflux
between matrix and fracture is considered as the source or
sink term in matrix cell, such as Equation (3). Consequently,
it is necessary to clear out in which unit is a source term or
sink term, which is related to the geometrical properties
between fractures and matrix cells.

As shown in Figure 3, it is a sketch of two-dimensional
EDFM, in which fractures are plotted in blue lines and divided
into several cells by boundaries of matrix grids and intersect-
ing fractures. There is one node in each fracture cell, and the
node is positioned to the midpoint of the fracture cell.
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Figure 10: Comparison of pressure distribution maps over 10 days of three various simulators.

5Geofluids



160

140

120

100

80

60

40

20

0

1E-5 1E-4 0.001 0.01 0.1 1 10

Date (day)

W
ell

bo
re

 fl
ow

 ra
te

 (m
3 /d

)

Modified EDFM
Original EDFM by Li et al. (2008)
LGR by tNavigator

(a) Matrix permeability 0.1 mD and grid size 2m
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(b) Matrix permeability 0.1 mD and grid size 10m
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(c) Matrix permeability 1 mD and grid size 2m
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(d) Matrix permeability 1mD and grid size 10m
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(e) Matrix permeability 10mD and grid size 2m
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Figure 11: Comparison of early-time results of wellbore flow rate.
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Put the following cell as a case to explain the process of
matrix cells which contain fracture cells. In the cell, f in
Equation (3) is substituted by qomf ; then, the formulas of
the grid containing fracture segments are expressed as fol-
lows:

−λpi +
ð
Γe

p∇G ⋅ n + G
qn
K

� �
ds

+∬
Λe
G −∇ψ ⋅ ∇p + σ

∂p
∂t

+ νqomf

� �
dA = 0,

ð15Þ

where qomf is the interflux between matrix cell and fracture
cell.

Since the apertures of fractures are really small, the
source term qomf over a fracture segment f can be assumed
identical. Then,

∬
Λe
νG M ;Mið Þqomf dA

= 〠
nf

j=1
〠
3

m=1
ωjqomf ,j∬Γ j

νmϕmG M ;Mið ÞdA
� �

,
ð16Þ

where ωj is the aperture of the jth fracture cell, qomf ,j is the
interflow between the matrix cell and the jth fracture ele-
ment, Γj is the line of the jth fracture element, and nf is the
number of fracture elements.

Then, Equation (11) of the cell containing fracture
segments is rewritten as follows:

qn = Bizð Þ−13×3 − Eij

� �
3×3p − Cij

� �
3×3

dpj
dt

− Fið Þ3
� 	

, ð17Þ

where

Eij = 〠
3

m=1
Rij −Uimjψm

� �
,

Biz = Liz
1
K

� 	
z

,

Cij = 〠
3

m=1
Wimjσm,

Fi = 〠
nf

j=1
〠
3

m=1
ωjqomf ,j∬Γ j

νmϕmG M ;Mið ÞdA
� �

,

p = p1, p2, p3ð ÞT,
q = qA, qB, qCð ÞT:

ð18Þ
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Equations (11) and (17) are equations of matrix cells
with and without fracture segments contained, respec-
tively, which are expressed as the first part of global equa-
tions I1. These equations are coupled by utilizing the
physical reality that the sum of the normal fluxes at flux
nodes on shared edge is zero, which is a main characteris-
tic of GEM based on two-set nodes. As shown in Figure 4,
the two adjacent triangular cells denoted by e1 and e2 are
explained as an example to introduce the detail of the cou-
pling process as follows.

May as well assume that equations of element e1 are as
follows:

q 2ð Þ
a

q 2ð Þ
b

q 2ð Þ
c

2
6664

3
7775 =

Me1
11 Me1

12 Me1
13

Me1
21 Me1

22 Me1
23

Me1
31 Me1

32 Me1
33

2
664

3
775

p 2ð Þ
1

p 2ð Þ
2

p 2ð Þ
3

2
6664

3
7775 +

be11

be12

be13

2
664

3
775: ð19Þ

Since the edge 2-3 is shared by these two cells, the equa-
tions of element e2 are as follows:

−q 2ð Þ
a

q 2ð Þ
d

q 2ð Þ
e

2
6664

3
7775 =

Me2
11 Me2

12 Me2
13

Me2
21 Me2

22 Me2
23

Me2
31 Me2

32 Me2
33

2
664

3
775

p 2ð Þ
2

p 2ð Þ
3

p 2ð Þ
4

2
6664

3
7775 +

be21

be22

be23

2
664

3
775:

ð20Þ

Couple Equations (19) and (20) to the following equation:

0

q 2ð Þ
b

q 2ð Þ
c

q 2ð Þ
d

q 2ð Þ
e

2
66666666664

3
77777777775
−

be11 + be21

be12

be13

be22

be23

2
66666666664

3
77777777775

=

Me1
11 Me1

12 +Me2
12 Me1

13 +Me2
13 Me2

13

Me1
21 Me1

22 Me1
23 0

Me1
31 Me1

32 Me1
33 0

0 Me2
21 Me2

22 Me2
23

0 Me2
31 Me2

32 Me2
33

2
66666666664

3
77777777775

p 2ð Þ
1

p 2ð Þ
2

p 2ð Þ
3

p 2ð Þ
4

2
666666664

3
777777775
:

ð21Þ

Assuming the numbers of nodes of matrix cells, edges of
matrix cells, and fracture segments are np, nedge, and nf e,
respectively, as stated by Archer et al. [15], the number of
the first part of global equations is nedge, which is always larger
than np, so I1 is an overdetermined system.

The second part of global equations denoted by I2 is
obtained in the cells containing fracture segments. In each
cell with fracture segments contained, source points are

10 11 12 13 14 15 16 17 18 19 20

Figure 14: Pressure distribution maps in the 1st, 10th, 100th, 300th, 500th, and 1000th days.
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selected at midpoints containing fracture segments, respec-
tively, nf e equations can be obtained, and these expressions
are as the second part of equations. Also, another needed
nf e equations denoted by the third part I3 can be obtained
by handling flow equations in fractures; specific details are
as follows.

The finite difference method (FDM) can be applied to
discretize the flow equation to obtain I3. As shown in
Figure 5, it is a fracture divided into nf segments. To be
coupled with I1 and I2, using FDM in an implicit form shown
in Equation (22), needed nf equations can be obtained, which
is the same as the method proposed by Jia et al. (2015) [31].

Bi′p
n+1ð Þ
f ,i−1 + Ci′−

Fi′
Δt

 !
p n+1ð Þ
f ,i +Di′p

n+1ð Þ
f ,i+1

+ Ei′qomf ,i + Ei′qwell +
Fi′
Δt

p nð Þ
f ,i = 0,

ð22Þ

where Bi′, Ci′, Di′, Ei′, and Fi′are the coefficients term, qwell is the
flux from the fracture cell to the well, qwell = 0 represents that
there is no well in the fracture cell. If there is a well in the
fracture cell, it can be assumed that the well is producing at
constant bottom hole pressure (BHP), i.e., pwf and pf = pwf .

What is to be solved in a fracture cell with a well is qomf

and qwell; however, the unknowns of other fracture segments
without a well are qomf and pf . Consequently, there are two
uncertain factors in each fracture segment. The problem of
the constant production rate of production well can be solved
similarly.

In all, there are ne + 2nf equations in I1, I2, I3, and np +
2nf unknowns including np nodal pressures pm of matrix
cells and 2nf unknowns of fracture segments. Since ne is
larger than np, the whole global equations are overdeter-
mined owing to the application of novel GEM. Adding the
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Figure 15: Prediction of well production performance over 1000 days.
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sealed outer boundary condition, the resultant equations may
as well be assumed to be expressed as follows:

bið Þne+2nf
= Mij

� �
ne+2nfð Þ× np+2nfð Þ p n+1ð Þ

i

� �
ne+2nf

: ð23Þ

Calculating this overdetermined system is equivalent to
the solution in Equation (24) by orthogonal projection theo-
rem in functional analysis. Thus, all the unknowns can be
obtained.

MTM
� �

p n+1ð Þ =MTb: ð24Þ

4. Model Validation and Discussion for
Transient Effect

4.1. Model Validation. The quality of modified two-
dimensional EDFM based on the novel GEM is compared
with the original EDFM by Li and Lee (2008) [9] and the local
grid refinement (LGR) by tNavigator®. The tNavigator® is a
commercial high-performance reservoir simulation software
developed by Rock Flow Dynamics (RFD) group, which
results can be as the exact solution. The first case is to com-
pare the accuracy of three simulators in capturing the long-
time productivity of one horizontal well with one fracture.
Values of physical properties of low-permeability oil reser-
voir are indicated in Table 1. Figure 6 shows the sketch of a
rectangular reservoir domain (length: 1010 meters, width:
1010 meters). The reservoir thickness is 10 meters, and the
initial reservoir pressure is 20MPa. There is a 210-meter
fracture and a production well in the center of formation.

The horizontal wellbore crosses the midpoint (505, 505) of
the fracture in a 2D drawing. Figure 7 illustrates the local
refinement grids which can be used for representing one frac-
ture in tNavigator®. The fracture can be explicitly described
by EDFM but it must be along the direction of grid line in
the LGR method. The horizontal well is simulated with a
constant BHP of 10MPa. Figure 8 shows the computational
pressure distribution maps over 1000 days of three various
simulators. Wellbore flow rate curves obtained from three
various simulators are shown in Figure 9. It can be indicated
that the results of three different simulators are in good
agreement, which verifies the overall accuracy for long-time
production performance of proposed method.

4.2. Discussion for Transient Effect. This discussion is con-
ducted to verify that modified EDFM based on novel GEM
can reflect the early-time transient flow effect and to analyze
the average relative error between the original EDFM and the
modified EDFM. The basic properties of this case are the
same as in Table 1. There are two important factors that are
considered in the discussion: grid size and matrix permeabil-
ity. Consequently, the dimension of a grid is set as 2 × 2 and
10 × 10meters, and various matrix permeabilities include 0.1
mD, 1mD, and 10mD, respectively. The computing time is
set as 10 days. To achieve an accurate response to the early
transient effect, a smaller time step is used in the simulation
process compared with the verification example. Compari-
son of pressure distribution maps over 10 days of three vari-
ous simulators (10 × 10m) is shown in Figure 10. It can be
indicated from the results of pressure distribution maps that
there was no significant difference between three different
simulators. Wellbore flow rate curves obtained from three

10 11 12 13 14 15 16 17 18 19 20

Figure 18: Pressure distribution maps in the 1st, 10th, 100th, 300th, 500th, and 1000th days.

10 Geofluids



various simulators (original EDFM, modified EDFM, and
tNavigator®) in a condition of various grid dimensions
(2 × 2m and 10 × 10m) and matrix permeability (0.1mD,
1mD, and 10mD) are compared in Figure 11. Compared
with the results of tNavigator®, it is apparent from the
early-time results that the modified EDFM has higher preci-
sion and robustness than the original EDFM. This is because
proposed novel GEM can effectively reflect the transient
interflow between local triangle matrix grids and fracture ele-
ments replacing the linear flow approximation in the original
EDFM. The degree of transient flow effect is closely related to
grid dimension and matrix permeability. Average relative
errors are obtained by Equation (25), and the corresponding

results are indicated in Figure 12. It can be found that the
average relative error of the results of modified EDFM is
much lower than that of original EDFM. Also, with the
decrease of matrix permeability and the increase of grid size,
the effect of transient flow is magnifying such that the average
relative errors are increasing. The proposed novel GEM
indeed achieves a more clear characterization of transient
flow effects and improves the early accuracy of simulation.

Ae =
1
N
〠
N

i=1

qi − q refð Þ
i

q refð Þ
i












 × 100, ð25Þ

where qi represents the wellbore flow rate calculated by

EDFM, qðrefÞi represents the wellbore flow rate of tNavigator®,
and N is the number of time steps.

5. Numerical Examples

5.1. Multistage Fractured Horizontal Well. Technologies of
multistaged fracturing and drilling horizontal wells are
widely applied in the production of low-permeability oil res-
ervoirs. As illustrated in Figure 13, it is a rectangular reservoir
(length: 1000 meters, width: 600 meters). The thickness of
reservoir is 10meters. The outer boundary is sealed, and
the initial reservoir pressure is 20MPa. A horizontal well is
evenly staged fractured into 11 fractures and it is producing
at a constant BHP of 10MPa. Other input parameters of this
case are as same as in Table 1. Pressure distribution maps in
the 1st, 10th, 100th, 300th, 500th, and 1000th days and predic-
tion of well production performance over 1000 days are plot-
ted in Figures 14 and 15, respectively. The simulation results
indicated that the initial productivity of horizontal well is
very high in the early time of production (the first 100 days)
and the oil produced in the wellbore is mainly in fractures at
this stage. After that, the formation pressure and daily oil
production decrease rapidly and maintain at a low value.

500

400

300

W
el

lb
or

e fl
ow

 ra
te

 (m
3 /d

)

200

100

0
0 200 400 600 800 1000

Date (day)

0

1

Cu
m

ul
at

iv
e o

il 
pr

od
uc

tio
n 

(m
3 )

2
×104

Wellbore flow rate
Cumulative oil production

(a) Oil production performance

0 200 400 600 800 1000

Date (day)

10

12

Av
er

ag
e f

or
m

at
io

n 
pr

es
su

re
 (M

Pa
)

14

16

18

20

0

2

4

Re
se

rv
e r

ec
ov

er
y 

(%
)

Average formation pressure
Reserve recovery

(b) Average formation pressure and reserve recovery

Figure 19: Prediction of well production performance over 1000 days.
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Therefore, the low-permeability reservoir development is
dominated by the “fracture-controlled reserves.”When eval-
uating the productivity of fractured wells, the influence of
half-length and number of hydraulic fractures are very
significant.

5.2. Heterogeneous Fractured Porous Media. The prior exam-
ple in Figure 13 is an ideal case, and the actual reservoir is
heterogeneous. The proposed model has the obvious advan-
tage against the original boundary element method (BEM)
in solving nonlinear problems in heterogeneous media.
Therefore, the above model is repeatedly simulated based

on the actual reservoir properties. The new scheme retains
the same parameters of hydraulic fracture as above and adds
the random distribution of permeability and porosity, focus-
ing on the evaluation of the reservoir heterogeneity influence
on well performance. The matrix permeability distribution
map is plotted in Figure 16. The matrix permeability median
value is still 1mD and its gradation ranges from 0.1 to 10mD.
The matrix porosity distribution map is illustrated in
Figure 17, which shows that the matrix porosity median
value is 0.17 and its gradation ranges from 0.1 to 0.25. Other
physical parameters of this case are same as the example 1.
Pressure distribution maps in the 1st, 10th, 100th, 300th,

Table 2: Input parameters of numerical case.

Parameters Value Parameters Value

Matrix porosity 0.12 Matrix permeability 0.1mD

Rock compressibility coefficient 1:07 × 10−4MPa−1 Fracture aperture 10mm

Fracture porosity 0.4 Fracture permeability 5000mD

Fluid viscosity 2mPa·s Fluid compressibility coefficient 3:02 × 10−3MPa−1

10 15 20 25

Figure 21: Pressure distribution maps in the 1st, 10th, and 100th days and 1st, 3rd, and 10th years.
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500th, and 1000th days and prediction of well production per-
formance over 1000 days are plotted in Figures 18 and 19,
respectively. Compared with the prior example, it can be
found from Figure 19 that the daily oil production and cumu-
lative oil production of horizontal well in heterogeneous res-
ervoir are less than that in homogeneous reservoir under the
condition of keeping other factors unchanged. This is
because the reservoir heterogeneity increases the fluids flow
resistance. The application of novel EDFM based on two-
set nodes GEM and triangle element in this example shows
that the proposed model can effectively capture the produc-
tion characteristic of fractured horizontal wells in actual
oilfield.

5.3. Complex Fracture Networks in Unconventional Reservoir.
Unconventional reservoirs, such as tight or shale oil reser-
voir, are characterized by extensive natural fractures in
matrix and the reaction of complex fracture networks (CFNs)
after hydraulic fracturing stimulation. As indicated in
Figure 20, it is a rectangular oil reservoir (length: 2000
meters, width: 1200 meters). The reservoir is 10 meters thick
and the outer boundary condition is sealed, and the initial
reservoir pressure is 25MPa. There are 30 fractures with dif-
ferent length and azimuth, which constitute the multiscale
complex fracture networks in the formation. A production
horizontal well is producing at a constant BHP of 10MPa.
Input parameters of tight oil reservoir are shown in Table 2.
Pressure distribution maps in the 1st, 10th, and 100th days
and 1st, 3rd, and 10th years are plotted in Figure 21. Prediction
of well production performance over 10 years is illustrated in
Figure 22. The computational results illustrated that the
development of unconventional reservoir depends on the
CFNs stimulated by hydraulic fracturing because the matrix
permeability of unconventional reservoir is smaller than that
of low-permeability reservoir. The scale and degree of CFNs
is an important factor to affect the productivity of horizontal
well. Overall, the inspiration from the perspective of engi-

neering technicians is that both two aspects need to be con-
sidered to improve significantly the total production as
much as possible. On the one hand, it is necessary to establish
long-wide hydraulic fractures with high conductivity. On the
other hand, it is important to increase the area and utilization
rate of stimulated reservoir volume (SRV).

6. Conclusions

A modified EDFM by mixing the idea of two-set nodes GEM
based on the triangle element is developed in this paper and it
can effectively solve the transient effect of single phase in
fractured heterogeneous reservoir. Owing to the novel
GEM, the proposed approach can investigate the mass trans-
fer between matrix and fracture more exactly. Besides, the
novel model has the obvious advantage against the original
BEM in solving nonlinear problems in heterogeneous
medium. Some examples are illustrated to verify the preci-
sion of proposed model and show the application in frac-
tured reservoirs.
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