Review Article

NK Cell Subtypes as Regulators of Autoimmune Liver Disease

Guohui Jiao and Bangmao Wang

Department of Gastroenterology, General Hospital, Tianjin Medical University, Tianjin 300052, China

Correspondence should be addressed to Bangmao Wang; tjmughgi@hotmail.com

Received 28 February 2016; Accepted 29 May 2016

Academic Editor: Haruhiko Sugimura

Copyright © 2016 G. Jiao and B. Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As major components of innate immunity, NK cells not only exert cell-mediated cytotoxicity to destroy tumors or infected cells, but also act to regulate the functions of other cells in the immune system by secreting cytokines and chemokines. Thus, NK cells provide surveillance in the early defense against viruses, intracellular bacteria, and cancer cells. However, the effector function of NK cells must be exquisitely controlled to prevent inadvertent attack against normal “self” cells. In an organ such as the liver, where the distinction between immunotolerance and immune defense against routinely processed pathogens is critical, the plethora of NK cell subtypes has a unique role in the maintenance of homeostasis. Once self-tolerance is broken, autoimmune liver disease results. NK cells act as a “two-edged weapon” and even play opposite roles with both regulatory and inducer activities in the hepatic environment. That is, NK cells act not only to produce inflammatory cytokines and chemokines, but also to alter the proliferation and activation of associated lymphocytes. However, the precise regulatory mechanisms at work in autoimmune liver diseases remain to be identified. In this review, we focus on recent research with NK cells and their potential role in the development of autoimmune liver disease.

1. Introduction

Natural killer (NK) cells are important effectors of innate immunity, constituting up to 15% of the lymphocytes in human peripheral blood. Additionally, in several tissues and organs, their numbers are highly enriched [1]. NK cells are mainly involved in the defense against early viral infection, intracellular bacteria, and cancer cells [2]. By secretion of cytokines and chemokines [3], NK cells have the ability to interact with other immune cells to orchestrate immune responses linking innate immunity with adaptive immunity, that is, priming, influencing, and regulating T cells, B cells, and dendritic cells (DCs) [4]. NK cells express multiple activating and inhibitory receptors on their surfaces, and these receptors are the sites where ligands on target cells attach and control the dynamic signal balance [5, 6].

The liver is constantly exposed to food-derived antigens, microbes, and molecules absorbed into the intestinal system from the gastrointestinal tract via the portal vein. The liver is crucial to maintaining immune tolerance and to providing a correct defense against pathogens [7].

NK cells as innate immune cells physiologically resident in the liver must constantly participate in the maintenance of balance. Otherwise, inflammatory or autoimmune liver disease develops. Recently, accumulating data have demonstrated that NK cells play important but opposite roles involving the tissue cells as their targets at various stages of a corresponding autoimmune disease, such as that in the liver [8]. Other advances have significantly shaped the understanding of NK cell biology, broadening our appreciation of their influence on the immune system and the exquisite regulation of the immune balance.

This review focuses on recent research linking NK cells with autoimmune liver diseases, particularly the regulatory function of NK cells in maintaining homeostasis and their potential role in therapeutic applications.

2. Natural Development of NK Cells

Peripheral blood NK (PB-NK) cells were identified as empowered to lyse “nonself” cellular targets, an action controlled by inhibitory NK receptors (iNKRs) [9]. Activating NK receptors and coreceptors that trigger cytolytic activity include the natural cytotoxicity receptors (NCRs) Nkp46, Nkp30, and Nkp44. Activating forms of lectin-type receptors such as NKG2C or NKG2D or killer cell immunoglobulin-like receptors (KIRs) are also expressed [10] and facilitate the early phase response without immunological memory [11, 12].
NK cells were officially classified as the prototypical members of the group 1 innate lymphoid cells, which are defined by their capacity to secrete interferon-γ (IFN-γ) [13, 14]. In human, NK cells are classically defined as CD56dimCD3− cells [15] and occupy primarily the blood, spleen, liver, lung, and bone marrow, although limited numbers are localized in lymph nodes [16].

The two major subsets of NK cells found in humans are CD56dim and CD56bright. CD56dim NK cells are fully mature, make up approximately 90% of the NK cells in peripheral blood, and mediate cytotoxicity responses. In contrast, CD56bright cells are relatively immature, making up approximately 5% to 15% of total NK cells and considered primarily as cytokine producers in lymph nodes [17, 18]. The CD56brightCD16− subset is believed to manifest as suppressors of the self-reactive T cell response and inducers of apoptosis in activated T cells [19, 20].

NK cells are a major source of the type 1 cytokine IFN-γ, as well as tumor necrosis factor (TNF), granulocyte-macrophage colony-stimulating factor (GM-CSF), other cytokines, and chemokines [12]. These soluble factors have important regulatory influences over the recruitment and function of multiple immune cell populations [21].

NK cells are central players in a regulatory crossstalk network in the context of immunological responses against inflammatory stimuli [22]. In this regard, NK cells engage in active and bidirectional communications with autologous DCs requiring that both cell types interact and secrete specific cytokines [23]. Additionally, NK cells are able to interact with monocytes and macrophages [24, 25]. Furthermore, the cytotoxic function of NK cells is mediated by the directed exocytosis of cytolytic granules to release perforins and granzymes, respectively, perforating the target cells’ plasma membrane and triggering apoptosis.

3. NK Cell Distribution and Liver Microenvironment

The liver is now increasingly regarded as the largest organ of innate immunity enriched as it is in cells with innate immune properties [26]. In fact, NK cells make up as many as 30–50% of hepatic lymphocytes recruited by the liver’s microenvironment [27, 28]. Hepatic NK cells are extremely sensitive to the activation of interleukin-2 (IL-2), which is associated with IL-2-mediated upregulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) [29].

The liver receives blood from the portal vein, which contains products of digestion and antigens or microbial elements from intestine, but hepatic lymphocytes do not respond to these components at physiological status. Accordingly, Wu et al. have recently found that hepatic NK cells were kept in an immature state within the liver's microenvironment [30]. However, unlicensed NK cells can be mobilized and activated in response to inflammatory signals, after which an autoimmune response may occur [31, 32] (Figure 1).

NK cells also display potent regulatory effects on innate and adaptive immunity [33, 34]. For example, they provide signals promoting DC function and T helper cell polarization. NK cells also interact with immature DCs or autoreactive T cells to maintain immune homeostasis [35]. Previous work revealed that the liver’s microenvironment influences the unique phenotype and development of liver NK cell subsets [36]. NK cell receptors can become phenotypically modified so as to promote high levels of the inhibitory receptor NKG2A, while losing expression of MHC class I-binding Ly49 receptors, thus sustaining the functional hyporesponsive status of NK cells. This effect depends on the high levels of IL-10 within the liver [37]. A novel NK population characterized by CD25, CD93, and CX3CR1 expression, but near absence of CD62L, CD11b, and CD27, exerts potent cytoltyc activity and abundant IFN-γ production. However, the role of this novel subset in physiological normality and in the pathogenic process of autoimmune diseases needs further clarification [38].

Hepatic NK cells could retain antigen-specific memory against haptons and virus-derived antigens, crucially dependent on the expression of CXCR6 in order to reside in sinusoidal spaces to protect the liver from NK cell-mediated hepatotoxicity [39]. Questions remain regarding the mechanistic foundations for these memory responses, how long they can be maintained, and whether they can be harnessed to combat disease through therapeutic interventions, such as cell-based strategies.

4. Role of NK Cells in Autoimmune Liver Diseases

Primary biliary cirrhosis (PBC), autoimmune hepatitis (AIH), and primary sclerosing cholangitis (PSC) are the three major forms of autoimmune liver disease. Each has a unique pattern of inflammation, clinical phenotype, and focus of autoimmune injury [40, 41] (Table 1).

4.1. NK Cells in PBC. Currently, autoreactive B cells and burgeoning numbers of T cells are believed to attack and destroy the small intrahepatic bile ducts in PBC disorder. Growing evidence suggests that patients with PBC manifest increases in both the frequency and absolute number of PB-NK cells at the systemic and local levels [42] and that such patients express abnormally high levels of perforin along with decreases in cytokines [43, 44].

Chuang et al. [45] reported a clearly higher frequency and absolute number of NK cells in both the blood and liver of PBC patients, along with elevated cytotoxic activity, perforin expression, and levels of plasma IL-8, with marked expression of IL-8R on such cells. A TRAIL-dependent mechanism is crucial for the NK cell-mediated lysis of biliary epithelial cells and results in cholestatic liver injury [46, 47].

Within the livers of PBC patients, CD56dim/CD16pos cell infiltration was obvious [48] with strong cytotoxic activity against autologous biliary epithelial cells [49, 50]. Increased numbers of CD56− cells had scattered around the destroyed small bile ducts. This pathogenic effect required a crosstalk between Toll-like receptors (TLR) and NK receptors. Recently, Shimoda et al. [49] demonstrated that TLR4...
Figure 1: NK cells interaction with other immune cells in liver autoimmunity. Pathogen associated molecular patterns (PAMPs) can activate innate immunity, especially the innate lymphocytes (NK, ILC subsets, NKT, and γδT lymphocytes). This can be regulated by reciprocal interactions among stromal cells, monocytes, and dendritic cells. Innate response elicited by NK leads to (a) rapid elimination of the pathogens; (b) triggering generation of memory T and B cells; and (c) breaking the tolerance by chronic stimulation leading to generation of autoreactive cytotoxicity (KC: Kupffer cell; NKT: natural killer T; DC: dendritic cell).

Table 1: Roles of NK cell in the pathogenesis of autoimmune liver diseases.

<table>
<thead>
<tr>
<th>Disease</th>
<th>NK cell characteristics</th>
<th>Roles of NK cell in the pathogenesis of disease</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBC</td>
<td>CD56<sup>dim</sup>/CD16<sup>pos</sup>, CX3CR1<sup>+</sup>, CXCR3<sup>+</sup></td>
<td>(1) Elevated cytotoxic activity, perforin expression, and levels of plasma IL-8 (2) Increased TRAIL expression as an apoptotic inducer in portal tract damage (3) With TLR4 ligand-stimulated NK cells</td>
<td>[45–49, 53, 54]</td>
</tr>
<tr>
<td>AIH</td>
<td>CD16<sup>+</sup>CD56<sup>+</sup>, CD69<sup>+</sup>, CCR5<sup>+</sup>, CXCR6<sup>+</sup></td>
<td>(1) Migration in response to the chemotactic stimuli (2) KIR gene KIR2DS1 in AIH genesis with high affinity HLA-C2 ligands</td>
<td>[39, 57]</td>
</tr>
<tr>
<td>PSC</td>
<td>CD16<sup>+</sup>CD56<sup>+</sup></td>
<td>(1) Decreased cytolytic activity (2) NKG2D associated with development of CCA</td>
<td>[58–61]</td>
</tr>
</tbody>
</table>

4.2. NK Cells in AIH. T lymphocytes have been reported to play a prominent role in the pathogenesis of AIH, although the participation of innate immune cells, such as NK cells, has also been confirmed [55]. In mice, the administration of poly I:C, an analogue of double-stranded RNA, generated NK cell-dependent hepatitis and triggered pathological role of IL-17 as in AIH [56]. Killer immunoglobulin-like receptors are key regulators of natural killer cell-mediated immune responses. NK cells with their key receptors KIR gene KIR2DS1 were important in AIH genesis with high affinity HLA-C2 ligands,
Malfunction of NK cells is closely related to liver malignancies. Genetic variation of natural killer cell receptor G2D (NK2D) is associated with development of CCA in PSC patients [59]. Alteration of collagen-binding integrins expression in liver tissue-resident NK cells led to defect in NK maturation contributing to tumor genesis [70]. Further studies are needed to demonstrate the role of NK cells in autoimmune liver disease-related carcinogenesis.

6. Conclusion

Considerable evidence has shown that NK cells are major players in mediating the pathogenesis of autoimmunity. This concept provides an explanation for the unsatisfactory therapeutic effect of ordinary immune-suppression techniques [71]. In view of the influence of local microenvironments on the behavior and function of NK cells, NK cell dysfunctions should be regarded as epiphenomena determined by the presence of autoreactive B and T cells. The liver, with its constant exposure to external and non-self-antigenic elements from gut and lymph circulation, represents a unique microenvironment, especially prone to the development of autoimmune disease. Unquestionably, fuller understanding of NK cell self-tolerance and autoreactivity regulation in the liver offers enormous potential as a foundation for the development of new, broadly applicable immune-based therapeutics.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

The authors appreciate Professor Hao Junwei’s help in modifying the paper.

References

Submit your manuscripts at http://www.hindawi.com