Research Article

SN-Donor Methylthioanilines and Copper(II) Complexes: Synthesis, Spectral Properties, and In Vitro Antimicrobial Activity

Temitope E. Olalekan,1,2 Adeniyi S. Ogunlaja,3 and Gareth M. Watkins1

1Department of Chemistry, Rhodes University, P.O. Box 90, Grahamstown 6140, South Africa
2Department of Chemistry, University of Ibadan, Ibadan 200285, Nigeria
3Department of Chemistry, Nelson Mandela University, Port Elizabeth 6001, South Africa

Correspondence should be addressed to Temitope E. Olalekan; topeolalekan11@yahoo.com

Received 12 November 2018; Revised 24 January 2019; Accepted 5 February 2019; Published 3 March 2019

Academic Editor: Bartolo Gabriele

Copyright © 2019 Temitope E. Olalekan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Methylthioanilines, a series of sulfur-nitrogen donor ligands substituted with OCH3, CH3, Cl, and Br, and their copper(II) complexes have been synthesized and characterized by 1H and 13C NMR, elemental analysis, FTIR, UV-Vis and EPR spectra, molar conductance, and magnetic susceptibility measurements. The NMR spectra of the ligands revealed that the para/ortho protons and para carbon were sensitive to the electronic effect of substituents. The CHNS analysis presented CuLCl2 (L = OCH3, CH3, Cl) and CuL2Cl2 (L = Br) stoichiometries for the copper complexes. FTIR spectra showed that the bidentate ligands were coordinated to the copper ion through their nitrogen and sulfur atoms. The electronic spectra have suggested square planar and octahedral geometries for these complexes. The EPR spectra demonstrated that the solid state copper(II) complexes possess $d_{x^2-y^2}$ orbital ground state and $g_\parallel > g_\perp > 2.0023$ in a tetragonal environment. The compounds were evaluated for in vitro antimicrobial activity against S. aureus, B. subtilis, E. coli, and C. albicans. The copper complexes showed higher activity than the parent ligands against S. aureus and B. subtilis; the electron-donating OCH3 and CH3 derivatives were more active than the withdrawing Br- and Cl-substituted compounds.

1. Introduction

Thiomethylated anilines belong to a class of nitrogen-sulfur (SN) donor groups. They find application in preparation of sulfoxides [1] which are desulfurized to generate methylated anilines [2] and as starting materials [3] for deriving aminobenzaldehydes which are also useful precursors to many important heterocyclics. By coupling 2-(methylthioaniline) with another suitable aromatic polymer, a suitable chelating resin [4] has been derived for use in preconcentration of metal ions such as Cd, Hg, Ni, Co, Cu, and Zn for analytical purposes. Substituted 2-(methylthio)anilines were synthesized from the reaction of corresponding anilines with aliphatic disulfides in the presence of Lewis acid catalysts, particularly aluminum chloride and copper iodide at high temperatures of >100°C; mixtures of ortho- and para- substituted methylthiolated products resulted [5]. A two-pot synthetic route can also be used to generate substituted 2-(methylthio)anilines. By alkaline hydrolysis of the appropriate 2-aminobenzothiazolones at a high temperature and subsequent methylation with methyl iodide, the crude substituted 2-(methylthio)anilines were derived [6]. The biological relevance of Cu(I)/Cu(II) in living systems includes their presence as cuproproteins to transport molecular oxygen and acts as good catalysts in related oxidation-reduction processes. Substituted 6-(methylthio)aniline ligands are potential SN bidentate ligands of which bioactivity has not been investigated. The synthesis, NMR, FTIR, UV/Vis, EPR, molar conductance, magnetic measurements, and in vitro antimicrobial studies of ortho-substituted 6-(methylthio)anilines and their copper(II) complexes are reported in this study.
2. Materials and Methods

2.1. Materials and Physical Measurements. All the reagents and solvents were of analytical grade and used as obtained from commercial suppliers (Sigma Aldrich and Merck). CHNS analyses were determined on Elementar Analysensysteme varioMICRO V1.6.2. One- and two-dimensional NMR spectra (1H, 13C, DEPT135, COSY, HMBC, and HMQC) were obtained in CDCl3 on a Bruker Avance 400 MHz NMR spectrometer. Chemical shifts were recorded in ppm relative to the residual solvent proton. Infrared spectra of the compounds were determined in the region 400–4000 cm⁻¹ on PerkinElmer Spectrum 100 ATR-FTIR spectrometer. Far-infrared spectra for the complexes in the region 700–30 cm⁻¹ were obtained as mulls held between polyethylene discs and recorded on Perkin Elmer Spectrum 400 FTIR/FIR spectrometer. The molar conductance was measured in DMF at room temperature on a Perkin Elmer Lambda 25 UV/Vis Spectrometer. UV/Vis electronic spectra (250–1100 nm) were determined as mulls held between polyethylene discs and recorded on a Sherwood magnetic susceptibility balance Mark 1. A Galenkemp melting point apparatus was used to determine the melting points (uncorrected). The powder electron paramagnetic resonance (EPR) spectra were recorded on a Bruker ESP 300E X-band EPR spectrometer with 100 kHz field modulation. Other experimental parameters: 9.762 GHz, 4.698 T, 100 ss sweep time.

2.2. Synthesis of Substituted 2-(Methylthio)anilines. Ortho-substituted-2-(methylthio)anilines were prepared in a two-pot reaction involving the conversion of o-anisidine, o-toluidine, o-chloroaniline, and o-bromoaniline to the corresponding aminobenzothiazoles [7, 8] which were hydrolyzed and methylated to yield the crude products (Scheme 1) [6].

2.2.1. 2-Methoxy-6-(methylthio)aniline (L1). o-Anisidine (1.00 g, 8.11 mmol) and potassium thiocyanate (3.16 g, 32.50 mmol) were added to potassium hydroxide (1.54 g, 27.40 mmol) in 6-methoxy-2-aminobenzothiazole (0.54 g, 3.00 mmol) was added to the mixture during which a shiny brown precipitate formed. The filtrate was neutralized to pH 7 with aqueous ammonia to yield the crude product.

2.2.2. 2-Methyl-6-(methylthio)aniline (L2). Yield 24%, brown oil. Anal. Calc. for C8H11NS (M, 153.3): C, 62.70; H, 7.24; N, 9.14; S, 20.92. Found: C, 61.97; H, 7.44; N, 9.02; S, 20.64%. FTIR (cm⁻¹): 3383, 3293 νasym(NH2) (NH2), 1620 δ(NH2), 1269 ν(C–N). UV λmax (DMF, nm (ε, M⁻¹ cm⁻¹)): 284(ε), 308 (12240).

2.2.3. 2-Chloro-6-(methylthio)aniline (L3). Yield 29%, brown oil. Anal. Calc. for C8H7ClNS (M, 173.7): C, 48.41; H, 4.64; N, 8.07; S, 18.46. Found: C, 48.80; H, 4.81; N, 8.02; S, 18.39%. FTIR (cm⁻¹): 3459, 3355 νasym(NH2) (NH2), 1615 δ(NH2), 1292 ν(C–N). UV λmax (DMF, nm (ε, M⁻¹ cm⁻¹)): 286(ε), 309 (11960).

2.2.4. 2-Bromo-6-(methylthio)aniline (L4). Yield 22%, light yellow oil. Anal. Calc. for C8H7BrNS (M, 218.1): C, 38.55; H, 3.70; N, 6.42; S, 14.70. Found: C, 39.54; H, 3.71; N, 6.36; S, 14.76%. FTIR (cm⁻¹): 3455, 3354 νasym(NH2) (NH2), 1611δ(NH2), 1290 ν(C–N). UV λmax (DMF, nm (ε, M⁻¹ cm⁻¹)): 285(ε), 317 (9975).

2.2.5. Synthesis of [Cu(L1)Cl2]. 2-Methoxy-6-(methylthio)aniline, L1 (0.14 g, 0.80 mmol) in 3 mL ethanol was stirred at room temperature and ethanol solution of CuCl2.2H2O (0.14 g, 0.80 mmol) was added dropwise. The mixture was stirred for 3 h. The deep brown precipitate was obtained by filtration, washed with ethanol, and dried (0.08 g, 32%), mp >200°C. Anal. Calc. for C8H11Cl2CuNO3 (M, 303.7): C, 31.64; H, 3.65; N, 4.61; S, 10.56. Found: C, 31.72; H, 4.15; N, 4.50; S, 10.33%. FTIR-ATR (cm⁻¹): 3251, 3171 νasym(NH2) (NH2), 1585 δ(NH2), 1245 ν(C–N), 414 ν(Cu–N), 314 ν(Cu–Cl), 280 ν(Cu–S). UV-Vis λmax (DMF, nm (ε, M⁻¹ cm⁻¹)): 275(ε), 315 (5805), 335 (3664), 454 (3400). μeff (BM) = 1.8. (Ω⁻¹ cm² mol⁻¹) = 33.4.
2.2.6. Synthesis of \([Cu(L2)Cl_2]\). \([Cu(L2)Cl_2]\) was obtained from 2-methyl-6-(methylthio)aniline, \(L_2\) (0.24 g, 0.80 mmol) and \(CuCl_2\cdot2H_2O\) (0.14 g, 0.80 mmol). Yield: 0.06 g (24%), mp 140–141°C. Colour: Black. Anal. Calc. for \(C_{7}H_{3}ClCuNOS\) (M = 287.7): C, 35.40; H, 3.85; N, 4.87; S, 11.15. Found: C, 30.81; H, 3.13; N, 4.76; S, 10.89. FTIR-ATR (cm\(^{-1}\)) = 3240, 3143 (C–N), 1576 δ(NH₂), 1250 ν(C–N), 406 ν(Cu–N), 290 ν(Cu–Cl), 279 ν(Cs–S). UV-Vis \(\lambda_{max}\) (DMF, nm (ε, M\(^{-1}\) cm\(^{-1}\))): 273\(^{sh}\), 300 (5080), 336 (3360), 428 (2070). \(\mu_{eff}\) (BM) = 1.9. \(\Lambda\) (Ω\(^{-1}\) cm\(^2\) mol\(^{-1}\)) = 29.2.

2.2.7. Synthesis of \([Cu(L3)Cl_2]\). \([Cu(L3)Cl_2]\) was obtained from 2-chloro-6-(methylthio)aniline, \(L_3\) (0.14 g, 0.80 mmol) and \(CuCl_2\cdot2H_2O\) (0.14 g, 0.80 mmol). Yield: 0.11 g (28%), mp 150–152°C. Colour: Deep brown. Anal. Calc. for \(C_{7}H_{3}ClCuNOS\) (M = 308.1): C, 29.83; H, 3.13; N, 4.35; S, 9.95. Found: C, 29.54; H, 2.87; N, 4.32; S, 9.73%. FTIR-ATR 3340, 3199 v\(_{asym}\) (NH₂), 1576 δ(NH₂), 1271 ν(C–N), 406 ν(Cu–N), 301 ν(Cu–Cl), 278 ν(Cs–S). UV-Vis \(\lambda_{max}\) (DMF, nm (ε, M\(^{-1}\) cm\(^{-1}\))): 273\(^{sh}\), 304 (5690), 333 (3280), 364 (5424), 413 (3335). \(\mu_{eff}\) (BM) = 1.8. \(\Lambda\) (Ω\(^{-1}\) cm\(^2\) mol\(^{-1}\)) = 29.2.

2.2.8. Synthesis of \([Cu(L4)Cl_2]\). \([Cu(L4)Cl_2]\) was obtained from 2-bromo-6-(methylthio)aniline, \(L_4\) (0.18 g, 0.80 mmol) and \(CuCl_2\cdot2H_2O\) (0.14 g, 0.80 mmol). Yield: 0.11 g (22%), mp (22%), mp 110–111°C. Colour: Black. Anal. Calc. for \(C_{7}H_{3}BrClCuNOS\) (M = 588.7): C, 28.56; H, 3.08; N, 4.76; S, 10.89. Found: C, 28.95; H, 3.09; N, 4.78; S, 10.61%. FTIR-ATR (cm\(^{-1}\)) = 3276, 3183 v\(_{asym}\) (NH₂), 1583 δ(NH₂), 1273 ν(C–N), 409 ν(Cs–Cu), 303 ν(Cu–Cl), 275 ν(Cs–S). UV-Vis \(\lambda_{max}\) (DMF, nm (ε, M\(^{-1}\) cm\(^{-1}\))): 281 (3210), 314 (3622), 332 (2430), 436 (370). \(\mu_{eff}\) (BM) = 1.9. \(\Lambda\) (Ω\(^{-1}\) cm\(^2\) mol\(^{-1}\)) = 28.3.

2.3. Antimicrobial Studies. The microorganism strains, growth media, and sterile assay disks (diameter 6 mm) were purchased from Microbiologics, Merck, Becton Dickinson and Company in South Africa. Ampicillin powder was obtained from Roche Diagnostics, Germany. Double-distilled water was collected from the Pharmaceutics Unit of Faculty of Pharmacy, Rhodes University. Sterile saline was prepared by dissolving 0.85 g saline in double-distilled water and making up to 100 mL. McFarland (0.5) solution was prepared by adding 0.5 mL of 1.175% BaCl₂·2H₂O to 99.5 mL of 1% H₂SO₄ [9]. Agar disc diffusion method [10, 11] was employed to determine the susceptibility of Staphylococcus aureus ATCC 6538, Bacillus subtilis (subsp. spizizenii) ATCC 6633, Escherichia coli ATCC 8739, and for antifungal activity against Candida albicans ATCC 2091 to the synthesized compounds. Ampicillin (AMP) and ketoconazole (KTZ) were used as positive controls for the antibacterial and antifungal tests, respectively. The preparation of the growth media, reference drugs, agar plates, the culture of microbial strains, and inoculation of agar plates followed standard procedures [12, 13]. Each microbial inoculum was standardized with reference to 0.5 McFarland solution [14]. 250 μg of each test compounds dissolved in DMF was delivered on to sterile assay discs. Ampicillin and ketoconazole (125 μg) were measured onto separate discs and allowed to dry under the laminar flow. Six discs were placed on each inoculated agar plate containing the appropriate growth medium and incubated for 24 h (bacteria) and 60 h (fungus) at 35°C. The diameter of zone of inhibition of the microbial growth by each compound was measured. The tests were carried out in triplicate and the mean values were recorded in Table 3.

Table 1: \(^1\)H and \(^13\)C chemical shifts (δ) for substituted-6-(methylthio)aniline ligands in ppm.

<table>
<thead>
<tr>
<th>Ligands</th>
<th>Cl</th>
<th>C2</th>
<th>H, C3</th>
<th>H, C4</th>
<th>H, C5</th>
<th>H, C6</th>
<th>H, C7</th>
<th>H 8</th>
<th>H, C9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L1)</td>
<td>134.90</td>
<td>125.46</td>
<td>115.04</td>
<td>122.45</td>
<td>112.29</td>
<td>147.17</td>
<td>18.80</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(L2)</td>
<td>143.20</td>
<td>122.84</td>
<td>128.33</td>
<td>115.25</td>
<td>131.77</td>
<td>125.12</td>
<td>18.55</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(L3)</td>
<td>141.32</td>
<td>119.41</td>
<td>129.06</td>
<td>116.16</td>
<td>130.05</td>
<td>126.58</td>
<td>18.42</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(L4)</td>
<td>142.55</td>
<td>126.91</td>
<td>129.89</td>
<td>115.97</td>
<td>133.18</td>
<td>109.31</td>
<td>18.57</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\(\delta\) singlet; \(\delta\) doublet; \(\delta\) triplet.
absorbing between 2.40 and 2.43 ppm. The broad singlet peaks in the range 3.57–4.02 ppm were assigned to amine (\(-\text{NH}_2\)) protons. The aromatic protons appear as doublets and triplets in the downfield region 6.61–7.42 ppm. Additional peaks in the range 3.57–4.02 ppm were assigned to amine (\(-\text{NH}\)) protons.

3.3. IR Spectra

In the vibrational spectra of the ligands, the strong asymmetric and symmetric stretches due to \(\nu\text{N–H}\) of the primary amine group were observed within the ranges 3459–3383 and 3358–3293 \(\text{cm}^{-1}\), respectively [7, 14, 15]. The frequencies of both bands were lowered in the complexes to 3340–3251 and 3199–3171 \(\text{cm}^{-1}\). The methyl carbon (C7) resonated in the range 18.42–18.80 \(\text{ppm}\) and the aromatic carbon atoms have higher absorptions between 112.29 and 147.17 \(\text{ppm}\). The methyl and methoxy carbon atoms of L1 and L2 resonated at 1704 and 55.36 \(\text{ppm}\), respectively. The electronic effect of substituents on the NMR shifts of amine protons as well as the ortho (H3) and para (H5) protons was observed. These protons were more deshielded in the derivatives with electron-withdrawing substituents (L3 and L4), resonating at higher frequencies compared to those of substituents L1 and L2. A similar shift was observed at the para carbon atom (C3) (Table 1).

3.4. Electronic Spectra and Magnetic Moments

3.4.1. Electronic Spectra

The electronic spectra of the ligands include the intraligand \(\pi \rightarrow \pi^*\) transitions in the range 284–286 nm which appear as shoulder bands. The more intense bands at 308–317 nm were assigned to \(n \rightarrow \pi^*\) of the nitrogen lone pairs to the aromatic ring. In the spectra of the copper(II) complexes, \(\pi \rightarrow \pi^*\) transitions were bathochromically shifted to 273–281 nm. Two intense bands around 300–364 nm were assigned to \(n \rightarrow \pi^*\) transitions in the complexes. In the spectra of \([\text{Cu}(\text{L1})\text{Cl}_2]\), \([\text{Cu}(\text{L2})\text{Cl}_2]\) and \([\text{Cu}(\text{L3})\text{Cl}_2]\), moderately intense bands at 413, 428, and 454 nm, respectively, were assigned to \(2\text{I}_g \rightarrow 2\text{A}_g\) in a square planar geometry around the copper ion. The band at 436 nm in the spectrum of \([\text{Cu}(\text{L4})\text{Cl}_2]\) was assigned to \(2\text{E}_g \rightarrow 2\text{T}_{2g}\) transition in an octahedral geometry. The magnetic moments in the range 1.8–1.9 BM indicate the availability of an unpaired electron in the copper(II) complexes which are magnetically dilute.

3.4.2. Magnetic Moments

The EPR spectra of copper(II) complexes, substituted with -OCH\(_3\), -CH\(_3\), -\(\text{Cl}\) and -\(\text{Br}\), are presented in Figure 2. The spectra consist of two \(g\) values (\(g_1\) and \(g_\perp\)) in the range 2.052–2.293 (Table 2). These values are typical of copper(II) coordination to electron-donating group (such as nitrogen) [19]. The relation \(g_\perp > g_1 > g_0\) \((g_0 = 2.0023)\) observed in the EPR spectra of the copper(II) complexes is consistent with an elongated octahedral, square pyramidal or square planar geometry with \(d_{\pi}^2\) and \(d_{\sigma}^2\) orbital ground state [20, 21]. The spectra of the complexes display an axial signal with \(g_1 = 2.2\) and \(g_\perp = 2.0\), which has been associated with copper(II) square planar geometry [21–23]. The \(g_\perp < 2.3\) suggests the covalent character of the copper coordination to the ligand [24]. A square planar geometry is thus implied for \([\text{Cu}(\text{L1})\text{Cl}_2]\), \([\text{Cu}(\text{L2})\text{Cl}_2]\) and \([\text{Cu}(\text{L3})\text{Cl}_2]\), and a distorted octahedral geometry is proposed for \([\text{Cu}(\text{L4})\text{Cl}_2]\) (Figure 3).

Table 2: EPR parameters for copper(II) complexes.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(g_\parallel)</th>
<th>(g_\perp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{Cu}(\text{L1})\text{Cl}_2])</td>
<td>2.108</td>
<td>2.293</td>
</tr>
<tr>
<td>([\text{Cu}(\text{L2})\text{Cl}_2])</td>
<td>2.129</td>
<td>2.256</td>
</tr>
<tr>
<td>([\text{Cu}(\text{L3})\text{Cl}_2])</td>
<td>2.052</td>
<td>2.142</td>
</tr>
<tr>
<td>([\text{Cu}(\text{L4})\text{Cl}_2])</td>
<td>2.066</td>
<td>2.215</td>
</tr>
</tbody>
</table>

3.5. EPR Studies

The powdered EPR spectra of a series of 6-(methylthio)aniline copper(II) complexes, substituted with -OCH\(_3\), -\(\text{Cl}\) and -\(\text{Br}\), were presented in Figure 2. The spectra consist of two \(g\) values \((g_1\) and \(g_\perp\)) in the range 2.052–2.293 (Table 2). These values are typical of copper(II) coordination to electron-donating group (such as nitrogen) [19]. The relation \(g_\perp > g_1 > g_0\) \((g_0 = 2.0023)\) observed in the EPR spectra of the copper(II) complexes is consistent with an elongated octahedral, square pyramidal or square planar geometry with \(d_{\pi}^2\) and \(d_{\sigma}^2\) orbital ground state [20, 21]. The spectra of the complexes display an axial signal with \(g_1 = 2.2\) and \(g_\perp = 2.0\), which has been associated with copper(II) square planar geometry [21–23]. The \(g_\perp < 2.3\) suggests the covalent character of the copper coordination to the ligand [24]. A square planar geometry is thus implied for \([\text{Cu}(\text{L1})\text{Cl}_2]\), \([\text{Cu}(\text{L2})\text{Cl}_2]\) and \([\text{Cu}(\text{L3})\text{Cl}_2]\), and a distorted octahedral geometry is proposed for \([\text{Cu}(\text{L4})\text{Cl}_2]\) (Figure 3).

3.6. Antimicrobial Susceptibility Testing

The agar disc diffusion technique was used to assess the antimicrobial activity of the synthesized compounds using the sterile assay discs of diameter 6 mm. The results have been recorded in Table 3. The gram-positive \(S.\) aureus and \(B.\) subtilis were susceptible to the compounds and were inhibited by the measured diameters of 8–20 mm while the gram-negative \(E.\) coli and the fungus \(C.\) albicans were resistant. The copper complexes with methoxy and methyl substituents demonstrated better activity than the compounds with the electron-withdrawing substituents, with the diameters of inhibition in the range 19–20 \text{mm}.
Table 3: Diameter of inhibition zones (mm) at 250 μg disc⁻¹ of samples.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>S. aureus</th>
<th>B. subtilis</th>
<th>E. coli</th>
<th>C. albicans</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>9</td>
<td>11</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>[Cu(L1)Cl₂]</td>
<td>20</td>
<td>19</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>L2</td>
<td>7</td>
<td>11</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>[Cu(L2)Cl₂]</td>
<td>19</td>
<td>20</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>L3</td>
<td>7</td>
<td>15</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>[Cu(L3)Cl₂]</td>
<td>9</td>
<td>10</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>L4</td>
<td>8</td>
<td>13</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>[Cu(L4)Cl₂]</td>
<td>9</td>
<td>14</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>DMF</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>AMP*</td>
<td>40</td>
<td>38</td>
<td>23</td>
<td>--</td>
</tr>
<tr>
<td>KTZ*</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>23</td>
</tr>
</tbody>
</table>

*125 μg disc⁻¹.

4. Conclusion

6-(Methylthio)aniline derivatives and their Cu(II) complexes were prepared. The compounds were characterized by elemental analysis and spectroscopic means. The CHNS analysis showed the metal complexes stoichiometry as CuLCl₂ and CuL₂Cl₂. The electronic nature of substituents affected the NMR shifts of some protons in the ligands. The infrared spectral bands were consistent with primary amine groups, of which frequencies reduced in the copper complexes upon chelation. The substituted 6-(methylthioanilines) behaved as bidentate ligands binding with SN-donor atoms to the copper(II) ions. Molar conductance values were indicative of nonelectrolytic complexes. The electronic and powder EPR
spectra suggested a square planar geometry for \([\text{Cu(L1)Cl}_2]\), \([\text{Cu(L2)Cl}_2]\), and \([\text{Cu(L3)Cl}_2]\) and a distorted octahedral geometry for \([\text{Cu(L4)Cl}_2]\) (Figure 3). The evaluation of the synthesized compounds for in vitro antimicrobial activity against \(S. \text{aureus}\), \(B. \text{subtilis}\), \(E. \text{coli}\), and \(C. \text{albicans}\) demonstrated that the copper complexes showed higher activity than the parent ligands against \(S. \text{aureus}\) and \(B. \text{subtilis}\). The electron-donating OCH\(_3\) and CH\(_3\) derivatives were more active than the electron-withdrawing Br- and Cl-substituted compounds.

Data Availability

The data supplied in the manuscript are available and will be supplied when required.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

One of the authors (Temitope E. Olalekan) thanks the Organization of Women in Science for the Developing World (OWSDW) for providing a Research Fellowship and Rhodes University for academic bursary.

References

Submit your manuscripts at www.hindawi.com