In Vitro Ability of the Group B Streptococci to Inhibit Gram-Positive and Gram-Variable Constituents of the Bacterial Flora of the Female Genital Tract

Pongsakdi Chaisilwattana and Gilles R.G. Monif

Department of Obstetrics and Gynecology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand (P.C.); and Division of Infectious Diseases, Department of Obstetrics and Gynecology, Creighton University School of Medicine, Omaha, NE (G.R.G.M.)

ABSTRACT

Objective: The purpose of this study was to analyze the ability of septicemic and nonsepticemic isolates of group B streptococci (GBS) to inhibit in vitro the principal bacterial groups found in the normal bacterial flora of the female genital tract.

Methods: The target groups were composed of 1) 10 strains each of the following: viridans streptococci, nonhemolytic streptococci (not group B or D), group A streptococci, GBS, peptostreptococci, coagulase-negative staphylococci, Staphylococcus aureus, and Gardnerella vaginalis; 2) 9 strains of enterococci; 3) 9 strains of group C or G streptococci; 4) 7 strains of lactobacilli; and 5) 7 strains of diphtheroids. All target groups were tested for inhibition by a test panel of either a group of 10 or 41 GBS isolates. If the GBS isolates failed to inhibit a target group, that group was tested for its ability to inhibit the GBS test panel.

Results: The GBS test panel did not inhibit the growth of coagulase-negative staphylococci or S. aureus but uniformly inhibited groups A, B, C, and G streptococci, lactobacilli, and G. vaginalis. One of the 7 strains of diphtheroids was inhibited by 37 of the 41 GBS isolates; the other 6 strains of diphtheroids were uniformly inhibited. Variable inhibition by GBS was observed with viridans streptococci, nonhemolytic (not group B or D) streptococci, peptostreptococci, and enterococci; however, inhibition or noninhibition was uniform for a given target strain against the entire GBS test panel. The 23 GBS isolates obtained from septicemic neonates or adults did not differ from the 18 nonsepticemic isolates in their ability to inhibit other species of streptococci or other gram-positive or gram-variable constituents of the bacterial flora of the female genital tract. When converse testing was done, all 10 GBS isolates were uniformly inhibited by coagulase-negative staphylococci and by the majority of enterococci, but were not inhibited by S. aureus.

Conclusions: These studies suggest that GBS may be significant regulators of other β-hemolytic streptococci, diphtheroids, lactobacilli, and G. vaginalis within the bacterial flora of the female genital tract. Moreover, the absence of GBS in the vaginal flora may be the result of mediation by coagulase-negative staphylococci and selected strains of enterococci.

KEY WORDS
Bacterial interference, vaginal flora, streptococci strains

When quantitative and qualitative bacteriologic studies are performed on the normal bacterial flora of the cervical and vaginal vault, the dominant aerobic groups of bacteria are lactobacilli, diphtheroids, staphylococci, streptococci, and occasionally members of Enterobacteriaceae. The dominant anaerobic groups are composed of gram-positive bacilli which include lactobacilli, pep-
to streptococci (which now incorporate peptococci), and Bacteroidaceae. Group B streptococci (GBS) constitute a potentially important subgroup within the streptococci. Not only are they frequent inhabitants of the bacterial flora of the female genital tract, but they are also the most common endogenous cause of monomicrobial disease for both parturitional gravidas and neonates. The mechanisms that determine their presence, dominance, or exclusion are poorly delineated.

This study was carried out to analyze the ability of 23 isolates of GBS derived from septicemia patients and 18 isolates of GBS derived from vaginal specimens to inhibit other gram-positive or gram-variable bacteria that may be constituents of the bacterial flora of the female genital tract.

MATERIALS AND METHODS

Strains

The isolates of streptococci were provided by Microbiology Laboratory at St. Joseph Hospital, Omaha, NE; Gail Hill, Ph.D., Duke University School of Medicine, Durham, NC; Jon Rosenblatt, M.D., Mayo Clinic, Rochester, MN; Christine C. Sanders, Ph.D., Creighton University School of Medicine, Omaha, NE; and David F. Welch, M.D., University of Oklahoma College of Medicine, Oklahoma City, OK.

Initially, an inhibitor test panel of 41 isolates of GBS was examined. These inhibitor isolates were tested against target cultures of other streptococci and aerobic bacteria common in the vaginal flora. Twenty-three of the 41 isolates of GBS were obtained from blood cultures of septicemic patients and 18 isolates of GBS derived from vaginal specimens to inhibit other gram-positive or gram-variable bacteria that may be constituents of the bacterial flora of the female genital tract.

RESULTS

Viridans Streptococci

Seven strains of viridans streptococci were inhibited by all GBS strains examined in 101 tests (Table 1). Three viridans streptococci isolates were not
Group C or G Streptococci
For the 9 challenge strains of group C (7) and group G (2) streptococci, inhibition was complete in all 183 challenge experiments (Table 1).

Peptostreptococci
Of the 10 peptostreptococci, 7 challenge isolates were inhibited completely. Three of the 10 were not inhibited. The target isolates exhibited a uniform pattern of inhibition or noninhibition by GBS. The presence or absence of inhibition for the individual species of peptostreptococci is listed in Table 2.

Coagulase-Negative Staphylococci
None of the 10 target isolates of coagulase-negative staphylococci tested in 193 individual challenge experiments was inhibited by GBS (Table 1). When 5 strains of coagulase-negative staphylococci were used as inhibitors, all 10 of the group of GBS isolates in 50 challenge experiments were inhibited.

S. aureus
None of the 10 target isolates of *S. aureus* in 193 individual challenge experiments was inhibited by GBS (Table 1). When 5 strains of *S. aureus* were used as inhibitor cultures, none of the 10 GBS was inhibited in 50 challenge experiments.

Lactobacilli
All 7 target isolates of lactobacilli were inhibited in 163 individual challenge experiments (Table 1).

Diphtheroids
All 7 target isolates of diphtheroids tested individually were inhibited by GBS. One isolate had a variable pattern of inhibition so that, of the 194 individual experiments, 190 showed inhibition (Table 1).

G. vaginalis
All 10 target isolates of *G. vaginalis* were inhibited by GBS in 193 individual challenge experiments (Table 1).

DISCUSSION
The initial concept of bacterial interference emanated from the observations of Pasteur and Joubert. They noted that *Bacillus anthracis* in urine cultures would die if contaminated by other
ABILITY OF GBS TO INHIBIT BACTERIAL FLORA

CHAILISWATTANA AND MONIF

TABLE 1. Inhibition of target bacteria by GBS isolates

<table>
<thead>
<tr>
<th>Target bacteria</th>
<th>No. of strains tested</th>
<th>No. of observations</th>
<th>No. of strains/ (No. of observations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viridans streptococci</td>
<td>10</td>
<td>193</td>
<td>7/(101) 3/(92)</td>
</tr>
<tr>
<td>Nonhemolytic streptococci (not group B or D)</td>
<td>10</td>
<td>193</td>
<td>9/(183) 1/(10)</td>
</tr>
<tr>
<td>Enterococci</td>
<td>9</td>
<td>276</td>
<td>1/(41) 8/(235)</td>
</tr>
<tr>
<td>Group A streptococci</td>
<td>10</td>
<td>193</td>
<td>10/(193) 0/(193)</td>
</tr>
<tr>
<td>GBS</td>
<td>10</td>
<td>193</td>
<td>10/(193) 0/(193)</td>
</tr>
<tr>
<td>Group C (7) or G (2) streptococci</td>
<td>9</td>
<td>183</td>
<td>9/(183) 0/(183)</td>
</tr>
<tr>
<td>Peptostreptococci</td>
<td>10</td>
<td>193</td>
<td>7/(132) 3/(61)</td>
</tr>
<tr>
<td>Coagulase-negative staphylococci</td>
<td>10</td>
<td>193</td>
<td>0/(193) 10/(193)</td>
</tr>
<tr>
<td>S. aureus</td>
<td>10</td>
<td>193</td>
<td>0/(193) 10/(193)</td>
</tr>
<tr>
<td>Lactobacilli</td>
<td>7</td>
<td>163</td>
<td>7/(163) 0/(163)</td>
</tr>
<tr>
<td>Diphtheroids</td>
<td>7</td>
<td>193</td>
<td>7/(186)* 0/(4)</td>
</tr>
<tr>
<td>G. vaginalis</td>
<td>10</td>
<td>193</td>
<td>10/(193) 0/(193)</td>
</tr>
</tbody>
</table>

*Afour of GBS in the panel of 1 isolate were inhibitory.

TABLE 2. In vitro bacterial interference by GBS on 10 strains of peptostreptococci

<table>
<thead>
<tr>
<th>Individual peptostreptococcal isolates</th>
<th>No. of test strains of GBS</th>
<th>% Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. tetradius</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>P. anaerobius</td>
<td>41</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>P. micros</td>
<td>41</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>P. asaccharolyticus</td>
<td>41</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>

The mechanisms by which a bacterial species maintains its ecological niche are varied. Inhibitor bacterial products include a wide range of substances: low-molecular-weight antibiotics, metabolic products, hydrogen peroxide, lytic agents, enzymes, bacteriocins, and bacteriophages.15,16

The ultimate question for GBS is how this normal constituent of the bacterial flora of the female genital tract survives or governs. These studies15,16 demonstrate that GBS have the ability, through bacterial interference, to defend their ecological niches in vitro, not only against other GBS but also against β-hemolytic strains of group A, C, and G streptococci. This ability appears to be uniform, which may be the result of a genetic interrelationship between hemolytic activity and bacterial interference. Brock et al. found that, by categorizing strains of S. zymogens in terms of their hemolytic character, they could demonstrate uniform bacterial interference mediated by bacteriocins.17 In their study, they found no variation in the ability of GBS to inhibit bacterial replication between septicemic and nonsepticemic GBS isolates. In our study, no differences in inhibition or noninhibition were identified between septicemic isolates from incidental vaginal cultures. The primary risk factors that account for a statistically significant increase in the anticipated incidence of GBS diseases in neonates are related to their ability to colonize the urinary tract (bacteriuria) and to achieve high-density replication within the vaginal and rectal bacterial flora.18

Based on preliminary observations, other investigators have reported that heavy-density colonization is due primarily to the avid ability of selected strains of beta hemolytic streptococci to adhere to genitalurinary epithelial cells rather than to a unique ability to regulate the associated vaginal flora19. Reed et al. looked at group A streptococcal adherence to pharyngeal cells in isolates from cases of acute rheumatic fever isolates.20 They found that streptococci strains associated with acute rheumatic fever appeared to adhere more avidly to pharyngeal cells than strains not associated with rheumatic fever.

The potential of GBS to govern the enterococci is significant. The majority of isolates (95%) exhibited complete inhibition. The impact of GBS on
The importance of lactobacilli may be more their role as regulators of enterococci than as major regulators of GBS.

Statistically, coagulase-negative staphylococci are more frequently present in the bacterial flora than \textit{Staphylococcus aureus}.1–4 Both coagulase-negative and coagulase-positive staphylococci have significant ability to inhibit other bacteria. Possibly more important is their insensitivity to bacterial interference by other constituents of the bacterial flora. Dajani and Wannamaker24 demonstrated the ability of \textit{S. aureus} to produce a bactericidal substance that inhibits group A, D, and G streptococci. Observations in clinical disease in which both staphylococci and \(\beta \)-hemolytic streptococci can be concomitantly isolated from skin lesions have raised questions as to whether staphylococci invade sites previously infected with \(\beta \)-hemolytic organisms or a significant coupling occurs between the 2 groups of gram-positive bacteria.24–27 Theoretically, \textit{S. aureus} as the dominant staphylococcal species may occur either directly (by insensitivity to bacterial interference) or indirectly. Anaerobic bacteria (particularly \textit{Bacteroides melaninogenicus} and \textit{B. fragilis})
ABILITY OF GBS TO INHIBIT BACTERIAL FLORA

CHAISSLWATTANA AND MONIF

can counter the inhibition of coagulase-negative staphylococci, thereby allowing S. aureus to occupy the void.

The ability of a given strain of Enterobacteriaceae to inhibit other members of the family has been well documented. The predominance of a strain of E. coli as the principal Enterobacteriaceae in the bacterial flora may also be the result of Bacteroidaceae's inhibition of competing strains. Murray and Rosenblatt demonstrated that B. melaninogenicus, B. fragilis, and B. oralis, while possessing significant ability to inhibit Enterobacter cloacae, E. aerogenes, Klebsiella species, and Serratia marcescens, were ineffective against E. coli and Morganella morganii. Bacteroidaceae had moderate inhibitor activity against coagulase-negative staphylococci but almost no activity against S. aureus. In their report, fusobacteria and L. fermentum had little inhibitory effect on either gram-negative or gram-positive bacteria. Interspecies governance among the Enterobacteriaceae is probably mediated by bacteriocins, but the predominance of E. coli and Proteus mirabilis may be a direct function of their resistance to bacterial inhibition by Bacteroidaceae.

Our demonstration of the in vitro ability of GBS to inhibit streptococci, lactobacilli, diphtheroids, G. vaginalis, and most hemolytic and nonhemolytic streptococci infers that GBS may be a significant regulator of the bacterial flora of the female genital tract (Fig. 2). The presence of GBS in the vaginal flora may be determined by the absence of coagulase-negative staphylococci or selected strains of enterococci. The studies of bacterial inhibition in the literature, coupled with the present observations, infer that the ability of GBS to participate in progressive polymicrobial anaerobic infection may result as a consequence of the inhibition of coagulase-negative staphylococci by Bacteroidaceae.

REFERENCES

23. Phonck M: Streptococci antagonizing the vaginal lactoba-
ABILITY OF GBS TO INHIBIT BACTERIAL FLORA

