Review Article

Possible Role of the Transglutaminases in the Pathogenesis of Alzheimer’s Disease and Other Neurodegenerative Diseases

Antonio Martin, Giulia De Vivo, and Vittorio Gentile

Department of Biochemistry and Biophysics, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy

Correspondence should be addressed to Vittorio Gentile, vittorio.gentile@unina2.it

Received 23 November 2010; Accepted 5 January 2011

Academic Editor: Brian J. Balin

Copyright © 2011 Antonio Martin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Transglutaminases are ubiquitous enzymes which catalyze posttranslational modifications of proteins. Recently, transglutaminase-catalyzed post-translational modification of proteins has been shown to be involved in the molecular mechanisms responsible for human diseases. Transglutaminase activity has been hypothesized to be involved also in the pathogenetic mechanisms responsible for several human neurodegenerative diseases. Alzheimer’s disease and other neurodegenerative diseases, such as Parkinson’s disease, supranuclear palsy, Huntington’s disease, and other polyglutamine diseases, are characterized in part by aberrant cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. This paper focuses on the possible molecular mechanisms by which transglutaminase activity could be involved in the pathogenesis of Alzheimer’s disease and other neurodegenerative diseases, and on the possible therapeutic effects of selective transglutaminase inhibitors for the cure of patients with diseases characterized by aberrant transglutaminase activity.

1. Biochemistry of the Transglutaminases

Transglutaminases (TGs, E.C. 2.3.2.13) are a family of enzymes (Table 1) which catalyze irreversible posttranslational modifications of proteins. Examples of TG-catalyzed reactions include (I) acyl transfer between the γ-carboxamide group of a protein/polypeptide glutaminyl residue and the ε-amino group of a protein/polypeptide lysyl residue; (II) attachment of a polyamine to the γ-carboxamide of a glutaminyl residue; (III) deamidation of the γ-carboxamide group of a protein/polypeptide glutaminyl residue (Figure 1) [1, 2]. The reactions catalyzed by TGs occur by a two-step mechanism (Figure 2). The transamidating activity of TGs is activated by the binding of Ca^{2+}, which exposes an active-site cysteine residue. This cysteine residue reacts with the γ-carboxamide of a glutaminyl residue to yield the thiocarbamoyl enzyme intermediate and ammonia (Figure 2, Step 1). The thiocarbamoyl enzyme intermediate then reacts with a nucleophilic primary amine substrate, resulting in the covalent attachment of the amine-containing donor to the substrate glutaminyl acceptor and regeneration of the cysteinyl residue at the active site (Figure 2, Step 2). If the primary amine is donated by the ε-amino group of a lysyl residue in a protein/polypeptide, an N\textsubscript{ε}-(γ-L-glutamyl)-L-lysine (GGEL) isopeptide bond is formed (Figure 1, example (a)). On the other hand, if a polyamine or another primary amine (e.g., histamine) acts as the amine donor, a γ-glutamylpolyamine (or γ-glutamylamine) residue is formed (Figure 1, example (b)). It is also possible for a polyamine to act as an N,N-bis-(γ-L-glutamyl) polyamine bridge between two glutaminyl acceptor residues either on the same protein/polypeptide or between two proteins/polypeptides [3]. If there is no primary amine present, water may act as the attacking nucleophile, resulting in the deamidation of glutaminyl residues to glutamyl residues (Figure 1, example (c)). It is worthwhile noting that two of these reactions, in particular, the deamidation of peptides obtained from the digestion of the gliadin, a protein present in wheat, and the N\textsubscript{ε}-(γ-L-glutamyl)-L-lysine (GGEL) isopeptide formation between these peptides and “tissue” transglutaminase (TG2 or rTG), have been recently shown to cause the formation of new antigenic epitopes which are responsible of immunological reactions during the celiac disease (CD), one of the most
Table 1: TG enzymes and their biological functions when known.

<table>
<thead>
<tr>
<th>TG</th>
<th>Physiological role</th>
<th>Gene map location</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor XIIIa</td>
<td>Blood clotting</td>
<td>6p24-25</td>
<td>[10]</td>
</tr>
<tr>
<td>TG 1 (Keratinocyte TG, kTG)</td>
<td>Skin differentiation</td>
<td>14q11.2</td>
<td>[11]</td>
</tr>
<tr>
<td>TG 2 (Tissue TG, tTG, cTG)</td>
<td>Apoptosis, cell adhesion, signal transduction</td>
<td>20q11-12</td>
<td>[12]</td>
</tr>
<tr>
<td>TG 3 (Epidermal TG, eTG)</td>
<td>Hair follicle differentiation</td>
<td>20p11.2</td>
<td>[13]</td>
</tr>
<tr>
<td>TG 4 (Prostate TG, pTG)</td>
<td>Suppression of sperm immunogenicity</td>
<td>3q21-2</td>
<td>[14]</td>
</tr>
<tr>
<td>TG 5 (TG X)</td>
<td>Epidermal differentiation</td>
<td>15q15.2</td>
<td>[15]</td>
</tr>
<tr>
<td>TG 6 (TG Y)</td>
<td>Unknown function</td>
<td></td>
<td>[15]</td>
</tr>
<tr>
<td>TG 7 (TG Z)</td>
<td>Unknown function</td>
<td></td>
<td>[15]</td>
</tr>
</tbody>
</table>

The reactions catalyzed by TGs occur with little change in free energy and hence should theoretically be reversible. However, under physiological conditions the cross linking reactions catalyzed by TGs are usually irreversible. This irreversibility partly results from the metabolic removal of ammonia from the system and from thermodynamic considerations resulting from altered protein conformation. Some scientific reports suggest that TGs may be able to catalyze the hydrolysis of Nε-(γ-L-glutamyl)-L-lysine isopeptide bonds in some soluble cross-linked proteins. Furthermore, it is likely that TGs can catalyze the exchange of polyamines onto proteins [2]. In some TGs, other catalytic activities, such as the ability to hydrolyze GTP (or ATP) into GDP (or ADP) and inorganic phosphate, a protein disulfide isomerase activity, a serine/threonine kinase activity, and an esterification activity, are often present [6–9].

2. Multiple Biological Activities of the Transglutaminases

Experimental evidences indicate that some TGs are multifunctional proteins with distinct and regulated enzymatic activities. In fact, under physiological conditions, the transamidation activity of TGs is latent [16], while other activities, recently identified, could be present. For example, in some pathophysiological states, when the concentration of Ca^{2+} increases, the crosslinking activity of TGs may
K channels [19]. Interestingly, the signaling function of γN by the donor to the substrate glutaminyl acceptor and regeneration of the resulting in the covalent attachment of the amine-containing intermediate reacts with a nucleophilic primary amine substrate, enzyme intermediate and ammonia. Step 2: The thioacyl-enzyme glutaminyl residue of a protein/peptide substrate to yield a thioacyl-

Figure 2: Schematic representation of a two-step transglutaminase reaction. Step 1: In the presence of Ca²⁺, the active-site cysteine residue reacts with the γ-carboxamide group of an incoming glutaminyl residue of a protein/peptide substrate to yield a thioacetyl-enzyme intermediate and ammonia. Step 2: The thioacetyl-enzyme intermediate reacts with a nucleophilic primary amine substrate, resulting in the covalent attachment of the amine-containing donor to the substrate glutaminyl acceptor and regeneration of the cysteiny1 residue at the active site. If the primary amine is donated by the ε-amino group of a lysyl residue in a protein/polypeptide, an NH₃CH₂CH₂CH₂CH₂R isopeptide bond is formed.

contribute to important biological processes. As previously described, one of the most intriguing properties of some TGs, such as TG2, is the ability to bind and hydrolyze GTP and, furthermore, to bind to GTP and Ca²⁺. GTP and Ca²⁺ regulate its enzymatic activities, including protein cross-linking, in a reciprocal manner; the binding of Ca²⁺ inhibits GTP-binding and GTP-binding inhibits the transglutaminase cross-linking activity of the TG2 [6]. Interestingly, TG2 shows no sequence homology with heterotrimeric or low-molecular-weight G-proteins, but there is evidence that TG2 (TG2/Gḥa) is involved in signal transduction, and, therefore, TG2/Gḥa should also be classified as a large molecular weight G-protein. Other studies, along with ours, showed that TG2/Gḥa can mediate the activation of phospholipase C (PLC) by the β₂-adrenergic receptor [17] and can modulate adenyl cyclase activity [18]. TG2/Gḥa can also mediate the activation of the δ1 isoform of PLC and of maxi-K channels [19]. Interestingly, the signaling function of TG2/Gḥa is preserved even with the mutagenic inactivation of its crosslinking activity by the mutation of the active site cysteine residue [20]. Evidence of a pathophysiological role of the TGs in cell signaling, in disulfide isomerase activity, and in other biological functions, is lacking to date.

3. Molecular Biology of the Transglutaminases

At least eight different TGs, distributed in the human body, have been identified (Table 1). Complex mechanisms regulating the gene expression of TGs, both at transcriptional and translational levels, determine a complex but precise distribution of these enzymes in a cell and/or a tissue [21]. Such complex gene expression reflects the physiological roles that these enzymes play in both the intracellular and extracellular compartments. In the nervous system, for example, several forms of TGs are simultaneously expressed [15, 22, 23]. Moreover, several alternative splice variants of TGs, mostly in the 3′-end region, have been identified. Interestingly, some of them are differently expressed in human pathologies, such as Alzheimer’s disease (AD) [24]. On the basis of their ubiquitous expression and their biological roles, we may speculate that the absence of these enzymes would be lethal. However, this does not always seem to be the case, since, for example, null mutants of the TG2 are usually phenotypically normal at birth [25]. This result may be explained by the multiple expressions of other TG genes that could be substituting the missing isoform.

Bioinformatic studies have shown that the primary structures of human TGs share some identities in only few regions, such as the active site and the calcium-binding regions. However, high sequence conservation and, therefore, a high degree of preservation of residue secondary structure among TG2, TG3, and FXIIIa indicate that these TGs all share four-domain tertiary structures which could be similar to those of other TGs [26].

4. Transglutaminases and Alzheimer’s Disease

Numerous scientific reports suggest that TG activity is involved in the pathogenesis of Alzheimer’s disease and other neurodegenerative diseases. To date, however, definitive experimental findings about the role of these enzymes in the development of these neurological diseases have not yet been obtained. Protein aggregates in affected brain regions are histopathological hallmarks of Alzheimer’s disease and many other neurodegenerative diseases [27]. More than 20 years ago, Selkoe et al. [28] suggested that TG activity might contribute to the formation of protein aggregates in AD brain. In support of this hypothesis, tau protein has been shown to be an excellent in vitro substrate of TG2/Gḥa. Furthermore, tau protein has been shown to be an excellent in vitro substrate of TG2/Gḥa, and GGE cross-links have been found in the neurofibrillary tangles and paired helical filaments of AD brains [33, 34]. In addition to these experimental findings, it has been shown that TGs and transglutaminase-catalyzed cross-links colocalize with pathological lesions in Alzheimer’s disease brain [34–36]. Interestingly, a recent work showed the presence of bis γ-glutamyl putrescine in
human CSF, which was increased in Huntington’s disease (HD) CSF [37]. These are important experimental data which demonstrate that protein/peptides cross-links and protein/peptides cross-linking by polyamines do indeed occur in brain, and that these transglutaminase-catalyzed reaction products are increased in AD and HD brains. More recently, TG activity has been shown to induce amyloid β-protein oligomerization and aggregation at physiologic levels in vitro [38, 39]. By these molecular mechanisms, TGs could contribute to AD symptoms and progression [39]. Moreover, there is evidence that TGs also contribute to the formation of proteinaceous deposits in Parkinson’s disease (PD) [40, 41] and in supranuclear palsy [42, 43]. To support the role of the TG activity in the pathogenesis of neurodegenerative diseases, expanded polyglutamine domains, present in HD and other neurodegenerative diseases caused by a CAG expansion in the affected gene (Table 2) [44], have been reported to be substrates of TG2 in vitro [45–47]. Therefore, aberrant TG activity could contribute to the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease and other neurodegenerative diseases, by different molecular mechanisms, as described in Figure 3. However, all these studies suggest the possible involvement of the TGs in the formation of deposits of protein aggregates in neurodegenerative diseases, they do not indicate whether aberrant TG activity per se directly determines the disease’s progression. In support of the hypothesis of a pathophysiological role for protein aggregates in neurodegenerative diseases, it is worth noting that the aggregate formation has been shown to inhibit the proteasome degradation of expanded polyglutamine proteins [48].

5. Transglutaminases as Potential Therapeutic Targets of Neurodegenerative Diseases

Since up to now there have been no long-term effective treatments for human neurodegenerative diseases, then the possibility that selective TG inhibitors may be of clinical benefit has been seriously considered. In this respect, some encouraging results have been obtained with TG inhibitors in preliminary studies with different biological models of CAG-expansion diseases. For example, cystamine (Figure 4) is a potent in vitro inhibitor of enzymes that require an unmodified cysteine at the active site [59]. Inasmuch as TGs contain a crucial active-site cysteine, cystamine has the potential to inhibit these enzymes by disulfide interchange reactions. A disulfide interchange reaction results in the formation of cysteine-cysteine mixed disulfide residue at the active site. Recent studies have shown that cystamine decreases the number of protein inclusions in transfected cells expressing the atrophin protein containing a pathological-length polyglutamine domain, responsible for the Dentato-Rubro-Pallido-Luysian Atrophy (DRPLA) [60]. In other studies, cystamine administration to HD-transgenic mice resulted in an increase in life expectancy and amelioration of neurological symptoms [61, 62]. Neuronal inclusions were decreased in one of these studies [62]. Although all these scientific reports seem to support the hypothesis of a direct role of TG activity in the pathogenesis of the polyglutamine diseases, cystamine is also found to act in the HD-transgenic mice by mechanisms other than the inhibition of TGs, such as the inhibition of Caspases [63], suggesting that this compound can have an additive effect in the therapy of HD. The pharmacodynamics and the pharmacokinetics of cystamine, therefore, should be carefully investigated in order to confirm the same effectiveness in patients with neurodegenerative diseases. Another critical problem in the use of TG inhibitors in treating neurological diseases relates to the fact that, as previously reported, the human brain contains at least four TGs, including TG1, 2, 3 [23], and possibly TG6 [64], and a strong nonselective inhibitor of TGs might also inhibit plasma Factor XIII, causing a bleeding disorder. Therefore, from a number of standpoints, it would seem that a selective inhibitor, which discriminates between TGs, would be preferable to an indiscriminate TG inhibitor. In fact, although most of the TG activity in mouse brain, at least as assessed by

![Figure 3: Possible mechanisms responsible for protein aggregate formation catalyzed by TGs.](image)

![Figure 4: Chemical structure of cystamine.](image)
Table 2: List of polyglutamine (CAG-expansion) diseases.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Sites of neuropathology</th>
<th>CAG triplet number</th>
<th>Gene product (Intracellular localization of protein deposits)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corea major or Huntington’s disease (HD)</td>
<td>Striatum (medium spiny neurons) and cortex in late stage</td>
<td>6–35</td>
<td>Huntingtin (n, c)</td>
<td>[49]</td>
</tr>
<tr>
<td>Spinocerebellar Ataxia Type 1 (SCA1)</td>
<td>Cerebellar cortex (Purkinje cells), dentate nucleus, and brainstem</td>
<td>6–39</td>
<td>Ataxin-1 (n, c)</td>
<td>[50]</td>
</tr>
<tr>
<td>Spinocerebellar Ataxia Type 2 (SCA2)</td>
<td>Cerebellum, pontine nuclei, substantia nigra</td>
<td>15–29</td>
<td>Ataxin-2 (c)</td>
<td>[51]</td>
</tr>
<tr>
<td>Spinocerebellar Ataxia Type 3 (SCA3) or Machado-Joseph disease (MJD)</td>
<td>Substantia nigra, globus pallidus, pontine nucleus, cerebellar cortex</td>
<td>13–42</td>
<td>Ataxin-3 (c)</td>
<td>[52]</td>
</tr>
<tr>
<td>Spinocerebellar Ataxia Type 6 (SCA6)</td>
<td>Cerebellar and mild brainstem atrophy</td>
<td>4–18</td>
<td>Calcium channel subunit (α1A) (m)</td>
<td>[53]</td>
</tr>
<tr>
<td>Spinocerebellar Ataxia Type 7 (SCA7)</td>
<td>Photoreceptor and bipolar cells, cerebellar cortex, brainstem</td>
<td>7–17</td>
<td>Ataxin-7 (n)</td>
<td>[54]</td>
</tr>
<tr>
<td>Spinocerebellar Ataxia Type 12 (SCA12)</td>
<td>Cortical, cerebellar atrophy</td>
<td>7–32</td>
<td>Brain-specific regulatory subunit of protein phosphatase PP2A (?)</td>
<td>[55]</td>
</tr>
<tr>
<td>Spinocerebellar Ataxia Type 17 (SCA17)</td>
<td>Gliosis and neuronal loss in the Purkinje cell layer</td>
<td>29–42</td>
<td>TATA-binding protein (TBP) (n)</td>
<td>[56]</td>
</tr>
<tr>
<td>Spinobulbar Muscular Atrophy (SBMA) or Kennedy disease</td>
<td>Motor neurons (anterior horn cells, bulbar neurons) and dorsal root ganglia</td>
<td>11–34</td>
<td>Androgen receptor (n, c)</td>
<td>[57]</td>
</tr>
<tr>
<td>Dentatorubral-pallidoluysian atrophy (DRPLA)</td>
<td>Globus pallidus, dentatorubral and subthalamic nucleus</td>
<td>7–35</td>
<td>Atrophin (n, c)</td>
<td>[58]</td>
</tr>
</tbody>
</table>

Cellular localization: c, cytosolic; m, transmembrane; n, nuclear.

6. Conclusions

Although many scientific reports have implicated aberrant TG activity in Alzheimer’s disease and other neurodegenerative diseases, still today we are looking for data which could definitely confirm the direct involvement of TGs in the pathogenetic mechanisms responsible for these diseases. The use of inhibitors of TGs could be then useful for experimental approaches. To minimize the possible side effects, however, selective inhibitors of the TGs should be required in the future. Progress in this area of research may be achieved also through pharmacogenetic techniques.

Acknowledgment

This work is supported by the Italian Education Department.

References

