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The purpose of this paper is devoted to developing a chaotic artificial bee colony algorithm (CABC) for the system identification
of a small-scale unmanned helicopter state-space model in hover condition. In order to avoid the premature of traditional artificial
bee colony algorithm (ABC), which is stuck in local optimum and can not reach the global optimum, a novel chaotic operator with
the characteristics of ergodicity and irregularity was introduced to enhance its performance.With input-output data collected from
actual flight experiments, the identification results showed the superiority of CABC over the ABC and the genetic algorithm (GA).
Simulations are presented to demonstrate the effectiveness of our proposed algorithm and the accuracy of the identified helicopter
model.

1. Introduction

Small-scale unmanned helicopter is a typical aerial robot
that can carry cameras, sensors, or other payloads, which
is identified as an important part of the Unmanned Aerial
Vehicles (UAVs) and will be used for some challenging mis-
sions such as information gathering, accurate measurement,
border patrol, and forest protection, to name several aerial
robotic applications [1–3]. Compared to fixed-wing aircrafts,
the helicopters can take off and land vertically, and they have
the ability of hovering and flying at low altitudes. Moreover,
a small-scale helicopter not only is extremely sensitive to
control inputs and disturbances, but also is a complex system
with high unstable, nonlinear, multiple-inputmultiple output
(MIMO), and high degree of coupling characteristics. Hence,
these factors make the unmanned helicopter attract much
attention and effort of researchers to design a satisfactory
MIMO linear controller. And an accurate mathematical
model is the basis for the design of a feasible controller.

In terms of academic research, a small-scale unmanned
helicopter modeling approaches can be generally categorized
into two approaches [4]: first principle modeling and

modeling through system identification. The first principle
approach to helicopter modeling applies the fundamental
laws of mechanics and aerodynamics to derive from a
mathematicalmodel with a large number of parameters,most
of which cannot be directly measured [5]. This modeling
approach is unsuitable for helicopter system because it
requires detailed knowledge and numerous measurements
of the helicopter flight mechanics. Hence, the first prin-
ciple modeling approach may be tedious, expensive, and
inefficient. Conversely, system identification is a convenient
method based on integration of a mathematical model with
real flight data in determining the model parameters.

In the realm of the unmanned helicopters, a number
of system identification approaches have been reported in
the literature. US army and NASA developed a frequency
domain method named Comprehensive Identification from
Frequency Responses (CIFER), and Mettler et al. [6, 7]
used this software to identify the linear model for Carnegie
Mellon’s Yamaha R50 helicopter. This model structure was
also used successfully by other researchers [8, 9]. However,
it is difficult for the frequency domain method to get
the suitable frequency spectrum through lots of frequency
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sweep experiments. The use of prediction-error modeling
(PEM) method has also been reported as a useful tool in
autonomous helicopter model estimate. Cai et al. [10] applied
the PEM method to identify the model of the yaw channel
of a UAV helicopter. Dharmayanda et al. [11] obtained a
linear model of the RUAV helicopter from flight data with
PEM. Nonetheless, the PEM method is highly sensitive to
parameter initialization, and this increases the difficulty of
the system identification for helicopters. Raptis et al. [12]
used the Recursive least squares algorithm (RLS) to identify a
nonlinear helicoptermodel inX-Plane simulation. According
to [13], the RLS algorithm was used to determine the
helicopter’s parameters as the entire model was divided into
six decoupled SISO subsystems. Despite the wide application
of the RLS algorithm, the method may be trapped into local
optimum and ignore the global optimum.

In recent years, some intelligence computation algo-
rithms have been employed in system identification for
helicopters. In order to get the model of a UAV helicopter, an
immune particle swarm optimization algorithm (PSO) was
proposed to identify a linear state-space model in [14]. Zhi-
gang and Tiansheng [15] introduced the traditional genetic
algorithm (GA) to obtain the helicopter model and Lei and
Du [16] used the adaptive GA to estimate the parameters
of two decoupled linear helicopter models. However, while
dealing with complex and large-scale parameters identifi-
cation problems, the flaw that the premature convergence
can make the aforementioned methods stuck in a local
optimum.

The artificial bee colony algorithm (ABC) was first pro-
posed by Karaboga in 2005 [17] and successfully applied to
many fields like UAV path planning [18], function optimiza-
tion problem [19], and clustering analysis [20]. The ABC can
be also trapped into local optimum as well as other intelligent
algorithms. In this paper, considering the outstanding per-
formance of chaotic operator in jumping out of stagnation, a
novel chaotic artificial bee colony algorithm (CABC) which
combines chaotic optimization method with the ABC was
introduced to conquer the system identification problem of
the helicopters. The identification was implemented on a
TREX 600 Radio Controlled (RC) model helicopter with a
full set of avionics system. The comparison of three different
identification methods, GA, ABC, and CABC, illustrated the
superiority of our proposed algorithm.

The outline of this paper is organized as follows. Firstly,
the helicopter dynamical model is given in Section 2, where
both the nonlinear and linear models are described. Then,
Section 3 presents the identification process of the linear
helicopter model using the chaotic artificial bee colony
algorithm. Later on, the experimental platform, flight data
preprocess, and identified results are presented in Section 4.
Finally the main conclusions and further research direction
are given in Section 5.

2. Helicopter Dynamical Model

An experimental TREX 600 helicopter is adopted as
the unmanned helicopter platform. Since the small-scale
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Figure 1: TREX 600 states in body-fixed coordinate frame system.

helicopter is treated as a rigid body, it possesses 6 Degrees
of Freedom (DOF), and the exhaustive description for forces,
moments, and physical parameters for it can be found
in [21]. All the force and moment components primarily
consist of the contributions from the fuselage, main rotor,
and tail rotor. As shown in Figure 1, the standard rigid
body dynamical equations of the helicopter that describe
the helicopter’s translational and rotational motion in the
body-fixed coordinate frame (BF) are given by Newton-Euler
equations:
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where [𝑢, V, 𝑤]𝑇 and [𝑝, 𝑞, 𝑟]𝑇 are the linear velocity and the
angular velocity in BF; 𝐹 and 𝑀 denote the external force
matrix and moment matrix acting on the center of mass of
the helicopter, respectively; 𝑚 is the helicopter mass; 𝐼 is the
inertial moment matrix about the reference axes.

The rotation matrix 𝑅(Θ) is defined by the yaw-pitch-
roll Euler angles and maps vectors from BF to Earth-fixed
coordinate frame (EF). 𝑅(Θ) is governed by the equation:

𝑅 (Θ) = [[[
[

𝑐𝜃𝑐𝜓 𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓
𝑐𝜃𝑠𝜓 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓
−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

]]]
]
, (2)

where 𝑠𝛼 and 𝑐𝛼 are the abbreviations for cos𝛼 and sin𝛼.
The parameters 𝜙, 𝜃, and 𝜓 represent the roll, pitch, and
yaw angles of the helicopter in BF, respectively. The angular
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velocity of the helicopter is related to the time rate of change
of the Euler angles through the following relation:
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There are four control commands associated with heli-
copter piloting. The control inputs are defined as 𝑢 =
[𝑢lat, 𝑢lon, 𝑢col, 𝑢ped]𝑇, where 𝑢lat and 𝑢lon are the lateral and
longitudinal cyclic rotor control inputs, 𝑢col is the collective
pitch control input, and 𝑢ped is the tail rotor pedal control
input.

The simplified rotor dynamics, which is common to all
small-scale helicopters, can be derived from the first-order
flapping dynamic equations [7]:

[
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where 𝑎
𝑠

and 𝑏
𝑠

are the longitudinal and lateral main rotor
flapping angles, 𝜏

𝑠

is the effective rotor time constant, and
𝐴 lat, 𝐵lon, and 𝑘1 are just gains.

In the real control of the TREX 600, a feedback yaw
rate gyro installed on the helicopter is used to reduce the
effect of the antitorque fluctuation on the yaw response. Here,
according to [4], the additional yaw-rate gyro feedback term
𝑟fb is added to account for the effect of the tail gyro:

𝑟fb
𝑟 = 𝑘

𝑟

𝑠 + 𝑘fb
, (5)

where 𝑘
𝑟

and 𝑘fb are the parameters to be identified.
The above nonlinear differential equations represent the

motion and orientation of the helicopter. They can be rewrit-
ten in a compact form as

�̇� = 𝑓 (𝑥, 𝑢) , (6)

where 𝑥 is a vector of 12 states written as 𝑥 =
[𝑢, V, 𝜙, 𝜃, 𝜓, 𝑞, 𝑝, 𝑎

𝑠

, 𝑏
𝑠

, 𝑤, 𝑟, 𝑟fb]𝑇.
However, the nonlinear model is unfit for system iden-

tification for the helicopter. Hence, a linearized state-space
model of the helicopter system is derived from the nonlinear
equations by using the small perturbation theory through
capturing the actual behavior of the system near the trim
condition (e.g., hovering/cruise) [22]. In that case,𝜓 has little
couple relationship with other variables and it is true that
�̇� ≈ 𝑟. Additionally, it is difficult and impractical to estimate
all the parameters in one go. Hence, the helicopter dynamics
can be separated into two interconnected subsystems, that
is, the horizontal and vertical motions. In particular, the
subsystems are given by (7), which were proposed in [23] and
used successfully in [24]

𝛿�̇�hor = 𝐴hor𝛿𝑥hor +𝐵hor𝛿𝑢hor,
𝛿�̇�ver = 𝐴ver𝛿𝑥ver +𝐵ver𝛿𝑢ver,

(7)

where 𝛿 is the perturbation from the trim condition, and the
related matrices of the above models can be found as follows:

𝑋hor = [𝑢, V, 𝜃, 𝜙, 𝑞, 𝑝, 𝑎𝑠, 𝑏𝑠]𝑇 ;

𝑢hor = [𝑢lat, 𝑢lon]𝑇 ;

𝑋ver = [𝑤, 𝑟, 𝑟fb]𝑇 ;

𝑢ver = [𝑢col, 𝑢ped]
𝑇 ;
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(8)

In above matrices, there are more than 30 unknown
parameters to be identified. Moreover, some parameters are
unable to be directly identified from the actual flight data.
According to [7], the assumptions that 𝑁fb = −𝑁ped and
𝑘fb = −2𝑁𝑟 are accepted in this paper.

3. Identification of the Model Based on
CABC Algorithm

3.1. Introduction to Chaos Theory. Chaos theory is epito-
mized by the so-called “buttery” detailed by Lorenz [25];
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Figure 2: Loss of chaotic property at three specific initial points.

he discovered that tiny changes in initial conditions will
make radically disparate final results, rendering long-term
prediction impossible in general. Chaotic map can be
described as a bounded nonlinear system with deterministic
dynamic behavior that has ergodic and stochastic properties.
Moreover, it has a very sensitive dependence upon initial
conditions and parameters.

Some common chaotic maps are logistic map, tent map,
sinusmap, andGaussmap [26]; in this paper, the well-known
logistic map is chosen to generate initialize condition. The
logistic map equation is defined as

𝑥
𝑚+1 = 𝜇𝑥𝑚 (1−𝑥𝑚) . (9)

In the equation, 𝑚 is the iteration number and the control
parameter 𝜇 ∈ [0, 4]. The behavior of the system (9) is greatly
changed with the variation of 𝜇. When 𝜇 = 4, the system
exhibits chaotic dynamics in which very small change in the
initial value of 𝑥 would give rise to very large differences in
its long-term behavior [27]. In this case, the variable 𝑥 is
called chaotic variable and the series {𝑥1, . . . , 𝑥𝑚} is called
chaotic sequence. With the characteristics of ergodicity,
pseudorandomness, and irregularity, the chaotic variable can
travel ergodically over the whole search space and never
repeat a value having appeared already. Suppose that 0 ≤
𝑥
𝑚

≤ 1 (expect 0.25, 0.5, and 0.75 to be the fixed point),
Figure 2 shows that the chaotic sequence is stuck in the
endless loopwhen initial points are 0.25 or 0.75 since 4×0.25×
(1−0.25) = 0.75 and 4×0.75×(1−0.75) = 0.75. Analogously,
when initial point becomes 0.5, the chaotic sequence can also
be stuck in the endless loop. Consequently, these three points
will lead chaotic sequence lose chaotic property.

3.2. Basic Principles of CABC. As a highly robust and effi-
cient method, the real-coded chaotic artificial bee colony

algorithm (CABC) is applied to identify the TREX 600
helicopter model. In CABC, the position of each food source
represents a possible solution to the appropriate identified
parameter. In order to introduce the self-organization model
of bee selection that leads to the emergence of collective
intelligence of honey bee swarms, we define the population
of the colony bees as 𝑁

𝑠

, the number of employed bees
as 𝑁
𝑒

, and the number of unemployed bees as 𝑁
𝑢

, which
satisfies the relation 𝑁

𝑠

= 2𝑁
𝑒

= 2𝑁
𝑢

. We also define 𝐷 as
the dimension of solution vector, that is, the number of the
unknown parameters. The detailed procedure of executing
the proposed algorithm is expressed as follows.

Step 1 (initialization). Randomly initialize a set of possible
solutions (𝑥1, . . . , 𝑥𝑁

𝑠

), and the particular solution 𝑥
𝑖

can be
governed by

𝑥𝑗
𝑖

= 𝑥𝑗min + rand (0, 1) (𝑥𝑗max −𝑥𝑗min) , (10)

where 𝑗 ∈ {1, . . . , 𝐷} donates the 𝑗th dimension of the
solution vector. 𝑥𝑗min and 𝑥𝑗max mean the lower and upper
bounds, respectively.

Step 2. Apply a specific function to calculate the fitness of the
solution𝑥

𝑖

according to the following equations and select the
top𝑁

𝑒

best solutions as the number of the employed bees:

𝐹
𝑖

=
𝑁

∑
𝑖=1

𝑦𝑖 − 𝑦𝑚𝑖𝑦𝑖 − 𝑦
, (11)

fit
𝑖

= 1
(1 + 𝐹

𝑖

) , (12)

where fit
𝑖

is the fitness function,𝐹
𝑖

is the objective function,𝑁
is the simulation length, 𝑦

𝑖

is the actual flight data vector, and
𝑦 is themean of𝑦

𝑖

. Similarly,𝑦
𝑚𝑖

is the vector of the simulated
data from the identified model.

Step 3. Each employed bee searches new solution in the
neighborhood of the current position vector in the 𝑛th
iteration as follows:

V𝑗
𝑖

= 𝑥𝑗
𝑖

+Φ𝑗
𝑖

(𝑥𝑗
𝑖

−𝑥𝑗
𝑘

) , (13)

where 𝑘 ∈ {1, . . . , 𝐷}, 𝑘 ̸= 𝑖, both 𝑘 and 𝑗 are randomly
generated, andΦ𝑗

𝑖

is a randomparameter in the range from−1
to 1. In order to ensure that the algorithm evolves to the global
optimal, we apply the following greedy selection equation to
choose the better solution between V𝑗

𝑖

and 𝑥𝑗
𝑖

into the next
generation:

𝑥𝑗
𝑖

= {{
{

V𝑗
𝑖

, fit (V𝑗
𝑖

) > fit (𝑥𝑗
𝑖

)
𝑥𝑗
𝑖

, fit (V𝑗
𝑖

) ≤ fit (𝑥𝑗
𝑖

) .
(14)

Step 4. Eachunemployed bee selects an employed bee to trace
according to the parameter of probability value. The formula
of the probability method is described as

𝑝
𝑖

= fit
𝑖

∑𝑁𝑒
𝑖=1 fit𝑖

. (15)
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Step 5. The unemployed bee searches in the neighborhood
of the selected employed bee’s position to find new solutions.
Update the current solution according to their fitness.

Step 6. If the search time trial is larger than the pre-
determined threshold limit and the optimal value cannot
be improved, then the location vector can be reinitialized
randomly according to the following equation:

𝑥
𝑖

(𝑛 + 1)

= {{
{

𝑥min + rand (0, 1) (𝑥max − 𝑥min) , trial > limit

𝑥
𝑖

(𝑛) , trial ≤ limit.
(16)

Step 7. Store the best solution, and conduct the chaotic search
around the best solution. Among the engendered series of
solutions, the best one can be selected to replace a random
employed bee. The chaotic operator is written as follows:

𝑥
𝑚

= 𝑥
𝑖

+𝑅
𝑖

(2𝑥
𝑚

− 1) , (17)

where chaotic sequence 𝑥
𝑚

is mapped into the optimization
vector 𝑥

𝑚

. And 𝑥
𝑚

is located in the circle with center of 𝑥
𝑖

and radius of 𝑅
𝑖

.

Step 8. Output the best solution parameters achieved at the
present time, and go back to the Step 3 until termination
criterion 𝑇max is met.

The detailed procedure of CABC algorithm for system
identification can be depicted in Figure 3.

4. Model Validation and Analysis

4.1. Flight Data Collection and Processing. The entire experi-
ments are implemented on a TREX 600 RCmodel helicopter
platform equipped with flight control system, GPS, camera,
and so forth (Figure 4), and the general physical parameters
are shown in Table 1.

To get the data of attitude angles and angular velocities
in experiment, an instrument IMU (inertial measurement
unit) consisting of a three-axis accelerometer, a three-axis
gyroscope, and a three-axis magnetometer was installed in
the flight control system module. A brief photo of the flight
control system components is shown in Figure 5. And the
specifications of the components are given in Table 2. It
should be noted that the flight control module is only used
for obtaining flight data.

In addition, a low-cost GPS module installed on the
aluminium board is kept on the bottom of the helicopter due
to the short cable, whichmay result in poor satellite reception
and inaccurate data. The appearance of the GPS module is
shown in Figure 6. Some key specifications of the module are
listed in Table 3.

Due to the structural vibrations frommain rotor, a shock
absorber is installed below the flight control system module,
as shown in Figure 7. And the specifications of the shock
absorber are shown in Table 4.

Start
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Employed bees search with
greedy selection

Unemployed bees search 
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Reinitialize the parameters
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conduct chaotic search
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Calculate fiti and select

Calculate fiti and update the
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Figure 3: The procedure of CABC method.

Table 1: General physical parameters of TREX 600 helicopter.

Physical quantities Value
Rotor speed 2200 rpm
Full length of fuselage 1.16m
Main rotor diameter 1.35m
Total weight 6.4 kg

In the flight experiment, five servos are used to control
the longitudinal cyclic input, lateral cyclic input, collective,
pedal, and throttle, respectively. The pilot excites each of the
system channels (roll, pitch, yaw, and collective) with a series
of inputs whilemaking the helicopter fly in hover.The control
inputs and relative raw outputs were sampled with 50Hz
frequency and recorded in a 1 GB SD card.



6 International Journal of Aerospace Engineering

LiPo batteries

CameraGyro

Wireless transmission
Flight control system

GPS

Figure 4: TREX 600 helicopter and flight experiment.

Figure 5: Flight control system in our helicopter.

Table 2: Specifications of the flight control system components.

Specification Sending range
Acceleration range ±19.6m/s2

Angular rate range ±200 deg/s
Magnetometer range ±0.75G
Roll\pitch accuracy 0.005 rad
Yaw accuracy 0.012 rad
Size 65mm × 42mm × 13mm
Weight 58 g

Since there are various errors in flight tests, such as wind
disturbance, installation error, andmotor error, it is necessary

Figure 6: The appearance of GPS module.

Figure 7: Shock absorber.

Table 3: Specifications of GPS module.

Specification GPS module
Position accuracy 1m
Update rate 18Hz
Sensitivity −167 dBm
Time to first time 1 s (Hot)\26 s (cold)
Size 𝜙54mm × 15mm
Weight 30 g

Table 4: Specifications of damping plate.

Specification Shock absorber
Material Glass fiber
Size of lower plate 100mm × 69mm × 1.5mm
Size of upper plate 91mm × 61mm × 1.5mm
Net weight 22 g
Package weight 70 g

to preprocess the flight data before identification. In order
to remove outliers and attenuate the effect of interference
signal, a five-point average FIR filter is adopted to smooth
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the raw data 𝑌 = [𝑦1, . . . , 𝑦𝑚]𝑇 according to the following
equation:

𝑦1 =
1
70

[69𝑦1 + 4 (𝑦2 +𝑦4) − 6𝑦3 −𝑦5] ,

𝑦2 =
1
35

[2 (𝑦1 +𝑦5) + 27𝑦2 + 12𝑦3 − 8𝑦4] ,

𝑦
𝑖

= 1
35

[−3 (𝑦
𝑖−2 +𝑦𝑖+2) + 12 (𝑦𝑖−1 +𝑦𝑖+1) + 17𝑦𝑖] ,

𝑦
𝑚−1

= 1
35

[2 (𝑦
𝑚−4 +𝑦𝑚) − 8𝑦𝑚−3 + 12𝑦𝑚−2 + 27𝑦𝑚−1] ,

𝑦
𝑚

= 1
70

[−𝑦
𝑚−4 + 4 (𝑦𝑚−3 +𝑦𝑚−1) − 6𝑦𝑚−2 + 69𝑦𝑚] ,

(18)

where 𝑖 = 3, . . . , 𝑚 − 2 and 𝑌 = [𝑦1, . . . , 𝑦𝑚]𝑇 is
the data for identification after preprocessing through the
aforementioned FIR filter. The principle of the five-point
average FIR filter is the use of the least square method to
smooth the discrete data. In the flight experiment, the size of
the flight data collected is far more than 5, and two adjacent
points before and after each data point are approximated by
a three-order polynomial with the least square method. The
more the number of using (18) is, the smoother the curves
will be. It should be noted that excessive use of (18) to smooth
the raw data can lead to the error of the system identification
increasing.

4.2. Experiment and Simulation. System identification pro-
cedures are carried out with CABC in Matlab 2012b pro-
gramming environment on an Intel Core i7-3770 PC running
Windows 7. No commercial tools are used.

According to [19], the performance of algorithm is based
on the population size of colony bees. As the population size
increases, the algorithm produces better results. However,
after a sufficient value for colony size, any increment in the
value does not improve the performance of the algorithm
significantly. The control parameter limit is related to the
local vector reinitialized frequency. As the value of limit
approaches to infinity, the total number of local vector
reinitialized goes to zero. After many trials, in this paper,
we set the parameters of traditional ABC and CABC as
follows: 𝑁

𝑠

= 20, Limit = 5. Moreover, a GA algo-
rithm [16] is also used to identify the helicopter models,
and the parameters selection is similar to ABC algorithm.
The optimal parameters, that is, population size, crossover
probability, and mutation probability, are chosen as 20, 0.8,
and 0.2. All the above algorithms are run 20 times, the
performance comparison of the three different identification
methods is presented as the three-axis linear velocities, three-
axis angular velocities, and Euler angles illustrated in Figures
8–10. The results show that the estimated data by applying
the three proposed algorithms have the same trend as

Table 5: The values of identified parameters.

Parameter Value
𝑋
𝑢

−0.1064
𝑌V −0.02873
𝑀
𝑢

−0.1215
𝑀V 0.3012
𝑀
𝑞

0.2456
𝑀
𝑎

−1.2648
𝑀
𝑏

−23.1095
𝐿
𝑢

1.0106
𝐿V −0.9456
𝐿
𝑝

−8.0143
𝐿
𝑎

62.5780
𝐿
𝑏

78.3182
𝑘1 0.0510
𝜏
𝑠

−7.2351
𝑋lat −5.8015
𝑌lon 7.2462
𝑀lat −4.0126
𝑀lon −8.5145
𝐿 lat 9.2156
𝐿 lon −5.6877
𝐴 lat 6.4578
𝐵lon −5.2111
𝑍
𝑤

−7.1048
𝑍
𝑟

2.0663
𝑁
𝑤

−1.3975
𝑁
𝑟

0.4905
𝑁fb −0.7884
𝑘
𝑟

4.5578
𝑘fb −0.9810
𝑍col −8.0137
𝑍ped 7.0868
𝑁col 11.5558
𝑁ped 0.7884

the measured data. Nonetheless, it turns out that the sim-
ulation results generated by CABC approximate the actual
test data best. The parameters identified by our proposed
algorithm are listed in Table 5.

To further prove the performance of the CABC against
the other algorithms, the match degree 𝜌 between the
measured data 𝜆 and estimated data �̂� is governed by the
following equation, and the results are listed in Table 6:

𝜌 = 1−
�̂� − 𝜆


‖𝜆‖ × 100%. (19)
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Figure 8: Comparison of the actual and estimated velocities responses.

Table 6: Comparison of math degrees.

Parameter GA ABC CABC
𝑢 74.64% 77.15% 78.91%
V 72.36% 75.41% 79.67%
𝑤 65.86% 63.84% 68.80%
𝑞 52.97% 67.26% 75.02%
𝑝 66.12% 56.37% 69.88%
𝑟 40.23% 53.97% 62.35%
𝜃 67.78% 65.65% 72.06%
𝜙 75.73% 78.14% 79.62%

From the Table 6, we can clearly see that the match
degree of the identification results produced by our proposed
algorithm is better than those of other algorithms. For
example, the match degree of pitch rate by applying the
CABC can be improved 8 percent and 22 percent compared
to applying ABC and GA methods, respectively. It should be
noted that our proposed algorithm has a great ability to find
the global optimum with high accuracy.

Figure 11 shows the evolution curves of CABC, ABC,
and GA regarding (12). The figure demonstrates that the
fitness function increases as the generation iterates with time,
gradually converging to an optimal result. Compared with
GA and ABC, CABC achieves a better result with higher
fitness value after 20 iterations. It can be seen from the result
that the chaotic operator cannot only avoid the traditional
ABC being trapped in a local optimum but also improve its
robustness and efficiency.

5. Conclusion

In this paper, the small-scale unmanned helicopter nonlinear
model development and extraction of linearized model have
been presented. Based on the flight data collected from flight
experiment, we use a novel identification algorithm CABC
including ABC method and chaotic operator to identify the
unknown parameters of the two decoupled linear models.
Furthermore, the evolutionary curves show that CABC can
get a better fitness value when compared with GA and ABC.
Simulation results verify the effectiveness, feasibility, and
robustness of our proposed algorithm.

In the future, we will continue to study the design of
control law based on our identified model.
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Figure 9: Comparison of the actual and estimated velocities responses.
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