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In this paper, we address the problem of vision-based satellite recognition and pose estimation, which is to recognize the
satellite from multiviews and estimate the relative poses using imaging sensors. We propose a vision-based method to solve
these two problems using Gaussian process regression (GPR). Assuming that the regression function mapping from the
image (or feature) of the target satellite to its category or pose follows a Gaussian process (GP) properly parameterized by a
mean function and a covariance function, the predictive equations can be easily obtained by a maximum-likelihood
approach when training data are given. These explicit formulations can not only offer the category or estimated pose by the
mean value of the predicted output but also give its uncertainty by the variance which makes the predicted result convincing
and applicable in practice. Besides, we also introduce a manifold constraint to the output of the GPR model to improve its
performance for satellite pose estimation. Extensive experiments are performed on two simulated image datasets containing
satellite images of 1D and 2D pose variations, as well as different noises and lighting conditions. Experimental results
validate the effectiveness and robustness of our approach.

1. Introduction

Optical imaging sensors have been widely used as the essen-
tial payloads of vision systems in aerospace applications:
autonomous rendezvous and docking [1–4], vision-based
landing [5], position and pose estimation [6–13], on-orbit
serving [14, 15], space robotics [16], satellite recognition
[12, 17–19], 3D structure reconstruction and component
detection [20, 21], etc. Vision-based recognition and pose
estimation of a target satellite are one of the key technologies
to achieve these applications. The manufacturing technology
and performance of the imaging sensors develop rapidly
in the past decades. For example, the space-based visible
(SBV) sensor [22] can provide images with spatial resolution
by possibly reducing the range from the imaging sensor to
the target satellite [23]. Recently improved sCMOS sensors
[24] can perform affordable, wide-field, and rapid cadence

surveillance from the low Earth orbit (LEO) to out past
the geosynchronous orbit (GEO). In addition, a next-
generation chip scale imaging sensor SPIDER [25] has
been designed to provide higher resolution by enabling a
larger-aperture imager in a constrained volume. Owing to
the improvement of imaging sensors, image data captured
by space-based vision systems can be of higher quality. Such
high-quality image data contain more detailed information
of the target satellite, which thus could benefit satellite
recognition and pose estimation.

Previous vision-based pose estimation methods for space
objects can be broadly divided into two classes, i.e., 3D
model-based methods and 2D image-based methods. 3D
model-based pose estimation requires a prior 3D model of
the target space object which contains rich information:
structure, shape, textures, and so on. The 3D model could
be a CAD model [1, 3, 4, 26, 27] or 3D point cloud [2, 13].
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When estimating the poses of the target, 3D models are
utilized directly to 2D images or to the 3D data reconstructed
by 2D images using stereo vision [28]. In addition, the 3D
model can also be used to generate projection images from
sampled viewpoints for matching when an input 2D image
is given [27]. However, such accurate prior 3D models are
usually difficult to be obtained in practice. 2D image-based
methods attempt to directly restore pose information from
an image sequence or a single image based on binocular (or
stereo) vision [8, 9] or monocular vision [6, 14, 29]. Although
no prior 3D model is needed, most of existing image-based
methods may need camera calibration [8, 29] or optical
markers [14] on the target spacecraft. Meanwhile, due to
the principle of binocular vision, binocular vision-based
approaches may be invalid when the imaging sensors are
far from the target spacecraft; i.e., the distance from the target
spacecraft to the imaging sensors is much farther than
the distance between the two imaging sensors. Recently,
learning-based methods [10–12, 19] have been proposed
without the above limitations. Zhang et al. [10] introduced
Homeomorphic Manifold Analysis to the aerospace area to
estimate relative poses of space objects. Zhang and Jiang
[11] and Zhang and Jiang [19] handled spacecraft pose
estimation by using kernel regression-based methods. These
methods are fundamentally based on supervised learning
technology (like kernel regression), and no other require-
ments but only training image data are needed, which thus
can be also regarded as 2D image-based methods.

In the past decade, vision-based satellite recognition
or identification is attracting more and more interest
[12, 17–19, 30–33]. Some of these methods focus on extract-
ing good features to improve recognition performance of
traditional classifiers like k-nearest-neighbors, support vector
machines, etc. [17] represented the combined features of sat-
ellite images in a latent space generated by kernel locality
preserving projections. Pan et al. [30] achieved satellite
recognition by fusing infrared and visible image features.
Ding et al. [18] proposed normalized affine moment invari-
ants and illumination invariant multiscale autoconvolution
for autonomous space object identification. Shi et al. [31]
encoded satellite image features by elastic net sparse coding
and [32] also used sparse coding-based probabilistic latent
semantic analysis to get semantic features for satellite recog-
nition. Meanwhile, the other approaches tend to use various
machine learning models for a better recognition of the satel-
lites. Zhang and Jiang [19] solved multiview space object
recognition by kernel regression, [12] used homeomorphic
manifold analysis for satellite recognition, and [33] built a
nine-layer deep convolutional neural network DCNN to
achieve space target recognition. In particular, [19] and [12]
formulated vision-based satellite recognition and pose esti-
mation in one framework.

In this paper, following previous works [12, 19], we also
address the problem of vision-based satellite recognition
and pose estimation, which is to estimate the relative pose
of a target satellite and simultaneously recognize its category
using imaging sensors. We develop a novel method based
on monocular vision using Gaussian process regression
(GPR), which is not only powerful for predicting continuous

quantities but also applicable for discrete values. We make
assumption that the regression function mapping from the
image (or feature) of the target satellite to its relative pose
or category follows a Gaussian process (GP), and then, this
GP can be properly parameterized by a mean function and
a covariance function. Given the training data, we can easily
obtain the explicit formulations of predictive equations by a
maximum-likelihood approach, in which the mean value of
the predicted output (i.e., the estimated pose or recognized
category) and its variance (which indicate the uncertainty)
can be computed. Considering the fact that we recognize
the category of a target satellite priorly before estimating its
pose using GPR, we can solve multiview satellite recognition
and pose estimation in one framework via pose-after-
category strategy. Besides, as shown in [10, 12, 19], images
of one space object with different poses lie on intrinsic
low-dimensional manifolds which are homeomorphic to
each other, and such homeomorphic manifold can be
beneficial for pose estimation. Therefore, we also use
normalized n-sphere (i.e., the homeomorphic manifold)
in a n + 1 -dimensional Euclidean space to represent n-
degree-of-freedom (n-DoF) pose variation and then learn a
multiple-output GPR model for satellite pose estimation.
To validate the effectiveness and robustness of our approach,
extensive experiments have been performed on a simulated
image dataset called BUAA-SID dataset [19], considering
multiple complex conditions including 1D and 2D pose
variations, image noises, and lighting conditions.

Comparing with previous vision-based satellite recogni-
tion and pose estimation methods, the contributions of this
paper can be divided into three aspects. Firstly, GPR, a more
powerful regression model, is introduced for the task of
satellite recognition and pose estimation. GPR has strong
statistical foundation and many desirable properties which
are suitable for classification and pose estimation. Secondly,
a homeomorphic manifold constraint is employed to
improve the pose estimation capability of the original GPR
model. Our manifold constrained Gaussian process regres-
sion (MCGPR) can obviously improve the performance of
pose estimation, leading a surprising increase of more than
one order of magnitude in some cases. Thirdly, as the GPR
model can offer a variance of each output, we defined and
calculated the uncertainty of the predicted value by its
variance. The uncertainty represents the credibility of the
predicted value, which can help us choose more convincing
results. The uncertainty represents the credibility of the
predicted value, which can help us choose more convincing
results. In the field of aerospace, identifying the certainty
may be more important than the accuracy of the results, so
the uncertainty has an important strategic significance. It
should be noticed that this paper is an extended version of
our paper [34] published in IEEE Aerospace Conference
2015 at Big Sky, MT, USA, where parts of a pose estimation
work were previously represented.

The rest of the paper is organized as follows: we detailedly
describe the framework of the GPR model for satellite
recognition and pose estimation in Section 2. Experimental
results and analyses are presented in Section 3. Section 4
concludes the paper.
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2. Methodology

2.1. General Gaussian Process Regression Model. Gaussian
processes (GPs) have received increasing attention in the
field of machine learning in the past few years, for classifica-
tion or regression [35–40]. Classification and regression are
subproblems of supervised learning, which involve the
prediction of discrete and continuous quantities, respectively.
Since discrete quantities can be seen as samples of continuous
ones, we can also perform classification the same as regres-
sion. Thus, we can use a regression model for both classifica-
tion and regression problems. Gaussian process regression
(GPR) has many desirable properties, such as ease of obtain-
ing and expressing uncertainty in predictions, the ability to
capture a wide variety of behaviour through a simple para-
metrisation, and a natural Bayesian interpretation [36]. So
we try to employ it to solve the problem of classification
and pose estimation of space objects. We will describe the
framework of GPR briefly in this section.

xi, yi
N
i=1 is set as the input training data, where

xi ∈Rd are the input data (i.e., different kinds of image
representations, e.g., the six kinds of image representations
used in Section 3 of this paper), Rd is the d-dimensional
Euclidean space, yi ∈Rv are the corresponding target values
represented in the v-dimensional Euclidean space, and N is
the number of training data. For clarity and without loss of
generality, we take 1D output for example, i.e., yi ∈R
indicates a certain dimension of yi ∈Rv. Then, the regression
model for the task with noise can be written as y = f x + ε,
where f is the regression function mapping from Rd to R

and noise ε follows an independent, identically distributed
Gaussian distribution with zero mean and variance σ2n, i.e.,
ε ~N 0, σ2n . According to [38], the Gaussian process can
be written as

f x ~GP m x , k x, x′ , 1

where the mean function m x is taken to be zero and the
covariance function cov f x , f x′ = k x, x′ is set to be
the squared exponential covariance function with isotropic
distance measure with unit magnitude [38],

k x, x′ = exp − x − x′
T
ell2I −1 x − x′ , 2

where x and x′ are two datapoints, I is the d-order identity
matrix, and parameter ell2 is the characteristic length-scale.
Then, in the GPR model, the Gaussian process prior over
the function f is [38]

f ~N 0, K X,X , 3

where f denotes the regression function outputs of the entire
training set X = xi N

i=1 and K X,X denotes the N ×N

matrix of the covariances evaluated at all pairs of training
points using equation (2).

Let the testing set be X∗; then, under prior equation (3),
the joint distribution of the observed target values y of X
and the regression function outputs f∗ of X∗ can be written
as [38]

y
f∗

~N 0,
K X,X + σ2

nI K X,X∗

K X∗,X K X∗,X∗

, 4

and the likelihood is a factorized Gaussian y∣f ~N f, σ2nI .
Thus, the predictive equations for the GPR model can be
written as [38]

f∗∣X, y,X∗ ~N f∗, cov f∗ , 5

where

f∗ = K X∗,X K X,X + σ2nI
−1y,

cov f∗ = K X∗,X∗ − K X∗,X K X,X + σ2
nI

−1
K X,X∗

6

The target value can be represented by the mean
values f∗, and the variances in cov f∗ can indicate the
uncertainties of the target values predicted by the model.
The larger the variance is, the less convincing the corre-
sponding estimated pose is. We may reject some estimation
results in practice if their variances are too large.

To predict multiple output variables, we can follow the
simple approach mentioned in Section 9.1 of [38] in an intu-
itive way, i.e., modeling each output variable as independent
of other variables and treating them separately.

2.2. GPR for Satellite Recognition. When GPR is used for
satellite recognition, the target value should be class labels.
For a C-class classification problem, we can define the target
values as a label vector yi = 0, 0,⋯,1,⋯,0 T ∈RC , where
the value ‘1’ is located at the c-th dimension for class
c (c = 1, 2,⋯, C). Then, we can train C-independent GPR
models to predict the label vector y∗ = y1∗, y2∗,⋯,yC∗ T of
a testing data x∗, and x∗’s predicted class label y∗ = c if yc∗

is maximal among all the C dimensions. At the same time,
we can obtain the corresponding variance cov yc to indi-
cate the uncertainty of the predicted class label. It should be
noticed that we indeed treat C-class classification problem
as C-independent 2-class classification problems using a
multiple-output GPR model.

2.3. Manifold Constrained GPR for Pose Estimation.
Homeomorphic view manifold has been applied for pose
estimation recently. Zhang et al. [10] used normalized
1-sphere inR2 as a homeomorphic manifold representation
of all view manifolds in the case of 1D pose variation, while
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[19] expending such homeomorphic manifold constraint for
a more general case. A similar thing happened in the case of
2D and 3D pose variations. For the case of 2D pose variation,
a normalized 2-sphere in R3 can represent a 2D pose varia-
tion of one object, and for the 3D case, the homeomorphic
view manifold becomes a normalized 3-sphere in R4.
Assuming the pose angles of the input xi are θi, βi, ζi , where
θ, β, and ζ are the yaw angle, pitch angle, and roll angle,
respectively, then, the pose on the homeomorphic view
manifold can be written as [10]

yi =

cos θi
sin θi

∈R2 in 1D case ,

cos θi cos βi

sin θi cos βi

sin βi

∈R3 in 2D case ,

cos θi cos βi cos ζi
sin θi cos βi cos ζi

sin βi cos ζi
sin ζi

∈R4 in 3D case

7

Instead of simply using the pose angles, the representation
of the poses on the homeomorphic view manifold can
preserve the topology of the view manifolds. Such repre-
sentation has achieved significant improvement for pose
estimation [10, 12, 19].

Applying the homeomorphic manifold constraint to
the GPR framework, we expand the output of the GPR
framework and we can obtain a multiple output even
in the case of 1D pose estimation. So we call such
multiple-output GPR model manifold constrained Gauss-
ian process regression (MCGPR). For example, in a 1D
case, the original GPR model can be learned by the train-
ing data xi, θi N

i=1, where θi is the corresponding yaw
angle of data xi, and such a single-output GPR model
can predict the yaw angle θ∗ of an input x∗ directly. But
when predicting the 1D pose of the input x∗ using the
MCGPR model, the MCGPR model should be learned by
the training data xi, yi

N
i=1, where the pose of xi is pre-

sented as yi using equation (7) in the 1D case. Then, we
can get the predicted output in R2 as y∗ = y1∗, y2∗ T ,
where y1∗ and y2∗ are the first and the second dimensions
separately obtained by their respective GPR models. Then,
the estimated yaw angle can be computed by the inverse
trigonometric function as

θ∗ = g y1∗, y2∗ = arctan y2∗
y1∗ 8

When predicting the 2D pose of the input x∗ using the
MCGPR model, the training data become xi, θi, βi

N
i=1,

where βi is the corresponding pitch angle of data xi. Then,
the predicted output in R3 is y∗ = y1∗, y2∗, y3∗ T , getting
a third dimension more than the 1D case. According to
equation (7), the estimated yaw angle θ∗ can still be
computed using equation (8), and the estimated pitch
angle can be computed by the inverse sine function as

β∗ = h y3∗ = arcsin y3∗ 9

Similar solutions can be solved for the 3D case. It
should be noticed that, unlike original GPR-based pose
estimation that directly predicts the pose angles, such
solutions are specially designed for our MCGPR model
because the outputs of MCGPR are constrained on the
homeomorphic manifold.

2.4. Uncertainty of Predicted Values. Let Δy represent the
uncertainty of the target value y, then if we use the GPR
model to predict y, we can get the variance of y, i.e., cov y
directly, and we define Δy = cov y , where cov y is
the standard deviation. By such definition, the uncertainty
Δy will share the same physical meaning and unit as the
target value y. To make it clear, we describe our process for
calculating the uncertainty of the predicted class label and
estimated pose angles in detail.

2.4.1. Uncertainty of Predicted Class Label. As mentioned in
Section 2.2, the uncertainty of the predicted class label can
be defined as

Δy = cov yc , if y∗ = c, 10

where yc is the c-th dimension output of the predicted label
vector y.

2.4.2. Uncertainty of Predicted 1D Pose. In the 1D case, if we
use the original GPR, the target value y will be the yaw
angle θ, i.e., y = θ, Δθ = cov θ = cov y1 just as we
defined it. However, in the MCGPR model where y1 = cos θ
and y2 = sin θ, the relationship between the estimated yaw
angle θ and the target values y1 and y2 follows the inverse
trigonometric function as in equation (8). As Δy1 =

cov y1 and Δy2 = cov y2 can be obtained directly
by the model, to compute Δθ, we consider the total differen-
tial of θ as

dθ = ∂g
∂y1 dy1 +

∂g
∂y2 dy2, 11

where ∂g/∂ · stands for the partial differential. From one
perspective, a differential dy can represent the variation
of y, while from another perspective, dy can also indicate
the uncertainty of y. So we can regard dy as Δy. Then,
noticing that y12 + y22 = cos2θ + sin2θ = 1, the uncertainty
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of θ can be computed according to the total differential in
equation (11) as

Δθ = ∂g
∂y1

2
Δy1 2 + ∂g

∂y2
2
Δy2 2

= y2
y12 + y22

2
Δy1 2 + y1

y12 + y22
2
Δy2 2

= y2
y12 + y22

2
cov y1 + y1

y12 + y22
2
cov y2

= y2 2 cov y1 + y1 2 cov y2
12

2.4.3. Uncertainty of Predicted 2D Pose. The output of the
original GPR for 2D pose estimation will be y = y1, y2 T ,
where y1 = θ and y2 = β are the yaw angle and pitch angle,
respectively, with the uncertainties Δθ = cov θ =

cov y1 and Δβ = cov β = cov y2 . If we use

the MCGPR model with output y = y1, y2, y3 T , where
y1 = cos θ cos β, y2 = sin θ cos β, and y3 = sin β according
to equation (7), the relationship between the estimated
pitch angle β and the target value y3 follows the inverse trig-
onometric function as in equation (9), and the relationship
between the estimated yaw angle θ and the target values y1
and y2 follows the inverse trigonometric function as in
equation (8). Similar with the 1D case, we can compute the
uncertainty of β according to its differential as

Δβ = dβ = dh
dy3 dy3 =

1
1 − y3 2

Δy3 = cov y3
1 − y3 2 13

Since the relationship between y1, y2, and y3 changes
to y12 + y22 + y32 = cos2θ cos2β + sin2θ cos2β + sin2β = 1 in
the 2D case, according to equations (11) and (12), the uncer-
tainty of the yaw angle θ becomes

Δθ = y2
y12 + y22

2
cov y1 + y1

y12 + y22
2
cov y2

= y2
1 − y3 2

2
cov y1 + y1

1 − y3 2

2
cov y2

14

By calculating the uncertainty, we can learn the relation-
ship between the absolute error of the prediction result and
the uncertainty and determine the corresponding threshold
based on the existing results. Then, the result with uncer-
tainty greater than the threshold can be regarded as an
unreliable result, and a second interpretation could be
performed to ensure the credibility of the results.

3. Experiments and Analyses

3.1. Dataset and Image Representation.We performed exper-
iments on two simulated satellite image datasets BUAA-SID
1.0 [17, 41] and BUAA-SID 1.5 [10, 12, 19] to evaluate the
proposed method. BUAA-SID 1.0 is a publicly available
satellite image dataset containing 4600 gray images of 20
satellites together with 4600 corresponding binary images.
These noise-free images were sampled on a viewing sphere
from 230 viewpoints. The BUAA-SID 1.0 dataset can be used
for testing the performance of GPR for multiview satellite
recognition. Images in BUAA-SID 1.5 were simulated via
the simulation method introduced in [42] using ten 3D
satellite models selected from BUAA-SID 1.0. It contains
four subsets. In the 1D subset of BUAA-SID 1.5, 3600 gray
images and their corresponding binary images were simu-
lated from 360 viewpoints uniformly sampled on a circle with
the yaw angle θ ∈ 0°, 360° and the pitch angle β = 0°. Images
in the 2D subset of BUAA-SID 1.5 were captured from
2042 viewpoints on a viewing sphere with the yaw angle
θ ∈ 0°, 360° and the pitch angle β ∈ −90°, 90° ; the light-
ing subset of BUAA-SID 1.5 contains 10800 gray images
of one satellite from the 1D subset, simulated in different
lighting conditions, i.e., the phase angle of the light rang-
ing from 0° to 90° in steps of 10° while the altitude angle
of the light is 0°, 90°, and 180°, respectively; the noise sub-
set of BUAA-SID 1.5 was obtained by adding Gaussian
white noise to images in the 1D subset, and the variance
varies from 0.001 to 0.01 in steps of 0.001. Compared with
BUAA-SID 1.0, BUAA-SID 1.5 has a simpler posture
change but more abundant data types, such as lighting
and noise subsets. So the BUAA-SID 1.5 dataset can be
used for better validation of GPR for both recognition
and pose estimation. It should be noticed that the data,
including BUAA-SID 1.0 and BUAA-SID 1.5 datasets, used
to support the findings of this study are available from the
corresponding author upon request.

Several methods have been proposed in the field of mul-
tiview space object recognition (e.g., [12, 17, 19, 31]). In order
to compare the performance between the methods more
fairly and objectively, we use the above two datasets to do
experiments. We also used two groups of image representa-
tions to represent the satellite images: the first group consists
of four representations to represent the shape information of
space objects, including original binary image (BI), distance
transform (DT) obtained by applying a signed distance
function [10] to binary images, Hu’s moment invariants
(HU) [43], and Fourier descriptor (FD) [44]; the second
group includes original gray image (GI) and histogram of
oriented gradients (HOG) [45] which can describe the
appearance variations of space objects. All these representa-
tions were used in a vector form (i.e., data x in Section 2)
for training and testing GPR for classification and pose
estimation or the MCGPR model for pose estimation. It
should be noticed that when solving a 1D or 2D pose estima-
tion problem using the GPRmodel, the corresponding pose y
in Section 2.1 was represented as the pose angle θ or θ, β
directly, while for the MCGPR model, y was represented
using equation (7) in 1D or 2D case, respectively.
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3.2. Results of Satellite Recognition and Pose Estimation

3.2.1. Satellite Recognition.We performed recognition exper-
iments on the BUAA-SID 1.0 dataset and 1D subset of

BUAA-SID 1.5, respectively. As mentioned in Section 2.2,
we learned one GPR model for each dimension of the output
label vector, resulting 20 GPRmodels for satellite recognition
on the BUAA-SID 1.0 dataset and 10 on the 1D subset of

Table 1: Satellite recognition results on BUAA-SID 1.0 and comparison with [17, 19]. Results are in bold if the proposed method performs
the best.

Representation Method Accuracy (%)

HU
Kernel method [19]
Our GPR method

54.13

71.00

FD
Kernel method [19]
Our GPR method

57.52

62.30

HOG
Kernel method [19]
Our GPR method

98.00

86.61

MI+FD+region covariance [17]+HOG

KLPP [17] 95.87

LPP [17] 88.22

KPCA [17] 69.70

PCA [17] 68.57

Table 2: Satellite recognition results on BUAA-SID 1.0 and comparison with [19, 31]. Results are in bold if the proposed method performs
the best and in italic if the second best.

Number of training image Representation Method Accuracy (%)

80 HU

SVM [31] 48.93

Kernel method [19] 55.50

Our GPR method 68.91

80 FD

SVM [31] 34.73

Kernel method [19] 53.86

Our GPR method 59.25

80

Elastic net sparse coding [31] SVM [31] 82.07

HOG Kernel method [19] 97.13

HOG Our GPR method 84.98

90 HU

SVM [31] 50.50

Kernel method [19] 56.04

Our GPR method 69.67

90 FD

SVM [31] 34.36

Kernel method [19] 54.25

Our GPR method 59.52

90

Elastic net sparse coding [31] SVM [31] 83.25

HOG Kernel method [19] 96.60

HOG Our GPR method 85.78

100 HU

SVM [31] 53.08

Kernel method [19] 55.11

Our GPR method 70.22

100 FD

SVM [31] 35.92

Kernel method [19] 54.90

Our GPR method 60.57

100

Elastic net sparse coding [31] SVM [31] 87.54

HOG Kernel method [19] 97.65

HOG Our GPR method 85.40
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BUAA-SID 1.5. To compare with [12, 17, 19], half of the
images were used for training, and the rest were used for
testing. Specially, for comparison with [19, 31] on BUAA-
SID 1.0, 80, 90, or 100, training images of each satellite were
randomly selected to learn the classification models, as in
[31], and the rest were used for testing. Results are shown
in Tables 1, 2, and 3. The results of our GPR method are in
bold if it achieves the best and in italics if it achieves the
second best. For the 20-class classification problem on
BUAA-SID 1.0, we can significantly improve the recognition
accuracy when using 12-dimensional Hu’s moment invari-
ants (HU) and 20-dimensional Fourier descriptors (FD), as
seen in Tables 1 and 2. It is promising since lower dimension
of features means lower computation and less storage. In
addition, because binary images of space objects can be
captured more easily and completely than high-resolution
gray images, shape representations like HU and FD are more
suitable for real aerospace applications. It can be seen from
Table 3 that, on the 1D subset of BUAA-SID 1.5, our GPR
method performs better than those in [19] and [12] in most
conditions except the second best for FD representation. This
shows the good recognition capability of our method.

Recently, deep learning methods are widely used for
general object recognition. Zeng et al. [33] introduced such
technology for space target recognition. We reproduced the
nine-layer deep convolutional neural network in [33] to
achieve satellite recognition on our datasets. We chosen
rotation and crop as the way of data augmentation and also
fixed the magnitude of training data at 8-fold. The training
data is the same as above. We also trained other popular
state-of-the-art deep learning networks including ResNet
[46] and DenseNet [47], to make our comparison more
comprehensive. The results are shown in Table 4. We can
see that our GPR model gets similar results as DCNN [33]
on BUAA-SID 1.0, not better than ResNet [46] and Dense-
Net [47]. As for the BUAA-SID 1.5 dataset, our GPR model
achieves better satellite recognition accuracy than DCNN
[33], the same 100% performance as ResNet [46] and Dense-
Net [47] on 1D the and noise subsets, and slightly worse than
ResNet [46] and DenseNet [47] on the lighting subset. This
means that deeper networks like ResNet [46] and DenseNet
[47] can achieve better recognition results, especially when
the classes to be classified enlarge, i.e., the recognition prob-
lem becomes harder. By contrast, our GPR model can be
learned more easily using limited computing resources and
give uncertainty of the outputting results.

3.2.2. Pose Estimation. In order to evaluate the performance
of pose estimation, we performed 1D and 2D pose estimation
experiments on the 1D subset and 2D subset of BUAA-SID
1.5, respectively. In each subset, we chose half of the images
for training and the rest for testing. It should be noticed that
on the 1D subset, we used two training strategies: in one
strategy, we trained GPR/MCGPR models for each satellite
individually with the assumption that the categories were
known, while in the other strategy, we trained GPR/MCGPR
models (indicated as GPR-ALL andMCGPR-ALL in Table 5)
for all the ten satellites without prior knowledge of categories.
For the quantitative evaluation and comparison, we follow

Table 3: Satellite recognition results on the 1D subset of BUAA-SID
1.5 and comparison with [12, 19]. Results are in bold if the proposed
method performs the best and in italics if the second best.

Representation Method Accuracy (%)

BI

Homeomorphic manifold [12] 100

SVM [12] 100

Kernel method [19] 100

Our GPR method 100

DT

Homeomorphic manifold [12] 100

SVM [12] 100

Kernel method [19] 100

Our GPR method 100

HU

Homeomorphic manifold [12] 98.9

SVM [12] 99.6

Kernel method [19] 94.00

Our GPR method 99.71

FD

Homeomorphic manifold [12] 95.2

SVM [12] 98.2

Kernel method [19] 94.56

Our GPR method 96

GI

Homeomorphic manifold [12] 100

SVM [12] 100

Kernel method [19] 100

Our GPR method 100

HOG

Homeomorphic manifold [12] 99.9

SVM [12] 100

Kernel method [19] 100

Our GPR method 100

Table 4: Satellite recognition results and comparison with deep
learning methods.

Dataset Method Accuracy (%)

BUAA-SID 1.0

DCNN [33] 86.78

ResNet [46] 94.32

DenseNet [47] 96.17

Our GPR method 86.61

BUAA-SID 1.5 1D subset

DCNN [33] 100

ResNet [46] 100

DenseNet [47] 100

Our GPR method 100

BUAA-SID 1.5 noise subset

DCNN [33] 99.58

ResNet [46] 100

DenseNet [47] 100

Our GPR method 100

BUAA-SID 1.5 lighting subset

DCNN [33] 88.69

ResNet [46] 100

DenseNet [47] 100

Our GPR method 97.593
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the same indicators as in [19], i.e., using the absolute error
(AE), which can be defined as the absolute value of the differ-
ence between the ground truth angle and the estimated pose
angle. We report the mean absolute error (MAE) to evaluate
the pose estimation performance on the entire testing set. At
the same time, in order to analyze the distribution of angle
errors in detail, we also report the percentage of testing
images of which the pose angle is correctly estimated with
an AE less than a threshold (1°, 2°, or 5°). Since most recent
vision-based satellite pose estimation methods [27, 29] are
not learning-based and not suitable for comparison, we
compared our proposed method with the most comparative
kernel regression method [19]. In addition, for compre-
hensive comparison with recently available learning-based
methods, we also adjusted the network structures of ResNet

[46] and DenseNet [47] and trained them in a regression
way to estimate 1D and 2D pose on BUAA-SID 1.5.

Experimental results are shown in Tables 5 and 6. It can
be seen that the proposed method performs better than or
similar as the state-of-the-art [19] in both 1D and 2D pose
estimations. Deep learning networks ResNet [46] and Dense-
Net [47] perform relatively worse for pose estimation. This
may be caused by the limited training data and the highly
synthesized deep features, resulting terrible regression per-
formance on the BUAA-SID 1.5 dataset. Comparing with
the original GPR, MCGPR achieves significant improvement,
surprisingly improving about an order of magnitude in MAE
of 1D pose estimation using GI representation. This validates
the role of the manifold constraint. We can see that GI
performs the best among all the six kinds of image

Table 5: Pose estimation results on the 1D subset of BUAA-SID 1.5. Results are in bold if the proposed method performs the best and in italic
if the second best.

Representation Method MAE (°) AE < 1° (%) AE < 2° (%) AE < 5° (%)

BI

MCGPR 4.83 53.44 70.11 88.06

MCGPR-ALL 6.13 33.67 53.56 78.72

GPR 11.4 22.00 38.33 61.00

GPR-ALL 14.46 10.28 21.33 45.61

Kernel method [19] 4.84 53.33 70.17 88.22

DT

MCGPR 6.78 48.94 63.22 78.72

MCGPR-ALL 8.82 20.67 39.22 67.50

GPR 14.8 18.39 32.50 52.33

GPR-ALL 20.60 5.83 11.39 28.06

Kernel method [19] 6.07 53.67 68.33 82.56

HU

MCGPR 57.3 4.28 8.17 17.50

MCGPR-ALL 75.21 1.33 2.33 6.56

GPR 69.5 1.06 2.39 5.17

GPR-ALL 83.94 0.67 1.33 2.89

kernel method [19] 80.37 1.22 2.61 6.44

FD

MCGPR 23.2 8.44 16.94 35.78

MCGPR-ALL 34.81 3.50 7.11 16.89

GPR 38.9 3.17 6.78 14.94

GPR-ALL 56.54 0.94 2.39 6.22

Kernel method [19] 27.09 8.50 16.28 32.83

GI

MCGPR 0.29 93.06 98.00 99.72

MCGPR-ALL 0.43 90.44 96.56 99.50

GPR 3.02 52.33 72.44 90.67

GPR-ALL 3.84 38.89 62.00 86.72

Kernel method [19] 0.29 93.06 97.94 99.72

ResNet [46] 4.5206 17.22 31.67 74.44

DenseNet [47] 22.41 2.22 6.11 15.56

HOG

MCGPR 5.32 43.61 64.72 82.83

MCGPR-ALL 6.04 27.44 48.61 77

GPR 15.5 9.67 18.89 42.06

GPR-ALL 16.51 6.61 13.67 35.11

Kernel method [19] 5.36 43.50 64.72 82.94
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representations, as it is more sensitive to pose variation. HU
and FD seem to be unsuccessful in pose estimation, with
quite high MAE on both the 1D and 2D subsets. This may
be because they are view-invariant features and not sensitive
to pose variation, and such invariance reduces pose estima-
tion performance. Thus, to get better pose estimation results,

we need to use pose-sensitive representations. Comparing
results in Tables 5 and 6, it can be obviously seen that 2D
results are worse than 1D results, which can be easily under-
stood by considering the increasing difficulty of the pose
estimation problem when the dimensionality rises from 1D
to 2D. Similarly, due to the growing variance within training

Table 6: Pose estimation results on the 2D subset of BUAA-SID 1.5. Results are in bold if the proposed method performs the best and in italic
if the second best.

Representation Pose Method MAE (°) AE < 1° (%) AE < 2° (%) AE < 5° (%)

BI Pitch

MCGPR 27.8 8.23 14.01 28.99

GPR 32.3 4.90 9.60 19.10

Kernel method [19] 27.75 8.23 13.91 28.89

BI Yaw

MCGPR 24.0 7.35 14.79 30.17

GPR 30.6 3.92 7.25 16.85

Kernel method [19] 24.04 7.35 14.89 29.97

DT Pitch

MCGPR 15.4 8.03 15.67 33.69

GPR 21.1 4.80 9.50 22.53

Kernel method [19] 15.53 7.54 15.38 32.71

DT Yaw

MCGPR 14.7 10.19 19.00 41.33

GPR 23.6 4.31 9.01 22.92

Kernel method [19] 14.85 10.97 19.10 40.84

HU Pitch

MCGPR 58.7 1.08 2.45 6.17

GPR 42.4 5.48 5.88 5.88

Kernel method [19] 61.68 1.08 2.84 6.17

HU Yaw

MCGPR 89.3 0.88 1.47 3.23

GPR 90.0 0.29 0.39 0.98

Kernel method [19] 89.34 0.69 1.57 3.33

FD Pitch

MCGPR 40.8 1.86 4.11 10.48

GPR 40.3 1.67 3.04 8.81

Kernel method [19] 69.62 1.57 2.25 6.37

FD Yaw

MCGPR 50.6 0.69 1.37 4.70

GPR 52.5 0.69 0.98 3.82

Kernel method [19] 75.95 0.59 1.47 5.39

GI Pitch

MCGPR 1.04 69.05 87.07 98.04

GPR 1.89 44.66 66.01 92.95

Kernel method [19] 1.04 69.15 87.07 98.04

ResNet [46] 3.35 19.5 37.81 74.93

DenseNet [47] 3.84 12.73 35.65 72.87

GI Yaw

MCGPR 0.94 72.87 88.05 97.65

GPR 8.21 19.49 34.48 64.15

Kernel method [19] 0.93 72.77 87.86 97.75

ResNet [46] 47.62 2.25 4.21 8.42

DenseNet [47] 47.45 1.18 2.64 5.29

HOG Pitch

MCGPR 3.79 26.44 47.40 77.08

GPR 7.99 13.52 26.93 55.53

Kernel method [19] 3.79 26.44 47.31 77.08

HOG Yaw

MCGPR 4.29 27.13 47.11 81.29

GPR 13.7 7.74 14.79 36.14

Kernel method [19] 4.29 27.23 47.01 81.29
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data, GPR-ALL/MCGPR-ALL performs worse than GPR/
MCGPR. Therefore, pose estimation models should better
be trained for individual targets.

3.2.3. Joint Satellite Recognition and Pose Estimation.
According to the findings in Section 3.2.2, previous recogni-
tion approach can provide category prior to selecting proper
models for better pose estimation. Thus, we use pose-after-
recognition strategy to achieve joint satellite recognition
and pose estimation based on individual approaches intro-
duced in Sections 2.2 and 2.3 of this paper; i.e., we recognize
the category of a testing data using GPR and then estimate its
pose using MCGPR specially trained for the recognized
category. Table 7 shows joint satellite recognition and pose
estimation results of our proposed method and the compar-
ison with the state-of-the-art networks [12, 19]. We perform
the best pose estimation results for five out of all the six kinds
of image representations, except the second best for BI repre-
sentation. Noticing the good recognition accuracy shown in
Table 3, our proposed method achieves the state-of-the-art
results for joint satellite recognition and pose estimation.

3.3. Uncertainty Analysis. The most important advantage of
the GPR method than previous works [12, 17, 19, 31] is that
GPR can provide variance of each predicted output value,
which can be used to calculate the uncertainty of the pre-
dicted value as introduced in Section 2.4. Such uncertainty
can describe the credibility of the predicted value and give
us a way to choose convincing results. This is very helpful
in aerospace applications.

3.3.1. Uncertainty of Satellite Recognition. We chose the
satellite recognition results using FD representation in
Table 3 to analyze the uncertainties of predicted class labels,
since the recognition accuracy of FD is less than 100%, mean-
ing that some of testing images were incorrectly classified.
We computed the Euclidean distance between the predicted
label vector and the ground truth label vector to quantita-
tively evaluate the error of recognition. Figure 1 shows the
relationship between uncertainty and the Euclidean distance.
It can be seen that predicted labels with large Euclidean
distances, i.e., large recognition errors, correspond to the
large uncertainties. According to the data in Figure 1, if we
select an uncertainty threshold Tu = 0 014 and regard the
recognition results of the uncertainties more than Tu as
untrustworthy results, we can get the recognition accuracy
of the rest results raised to 100%. It means that we can
choose more convincing recognition results according to
uncertainties.

3.3.2. Uncertainty of Pose Estimation. To validate the capabil-
ity of pose estimation uncertainty provided by our method,
the performance of the representation GI on the pose
estimation problem, we used 1D pose estimation result GI
representation in Table 5 to analyze the absolute errors and
uncertainties of the estimated 1D pose angles. Figure 2 shows
the results of three satellites. We can see that both GPR and
MCGPR have one thing in common that estimated poses
with large uncertainties usually have high absolute errors,
resulting in obvious peaks at the same positions on the

abscissa in the figure. This can verify the feasibility of the
definition of pose uncertainty in Section 2.4. We can also
see that the mean absolute error of MCGPR is 4 4055°, quite
less than 10 3643° of GPR in Figure 2. However, the mean
uncertainty of MCGPR is 30 8165°, larger than 7 0988° of
GPR. This means that MCGPR improves the pose estimation
performance of GPR at the expense of enlarging the uncer-
tainties of some predicted values. Such enlarging can be
explained by equation (2) where the uncertainty of MCGPR
is an additive combination of uncertainties of individual
GPRs. It should be noticed that the spikes in Figure 2 appear
when the appearances of the satellite of symmetrical poses
(the difference between pose angles is near 180∘) are quite
similar since the satellite is usually of geometrical symmetry.
In this case, the errors and uncertainties will tend to peak.

Similar results can also be found in Figure 3 for the
uncertainty of 2D pose. We can see that the positive correla-
tions between the absolute error and the uncertainty are
pronounced in the overall trend but locally various. This
may be caused by the more challenging difficulty in 2D pose
estimation than the 1D case.

3.4. Noise Robustness.Noise in the data is an important factor
affecting the performance of machine learning models. In

Table 7: Joint satellite recognition and pose estimation results on
the 1D subset of BUAA-SID 1.5. Results are in bold if the
proposed method performs the best and in italic if the second best.

Representation Method MAE (°)

BI

Homeomorphic manifold [12] 4.33

SVM [12] 9.98

Kernel method [19] 6.80

Proposed method 4.83

DT

Homeomorphic manifold [12] 7.95

SVM [12] 13.5

Kernel method [19] 10.47

Proposed method 6.78

HU

Homeomorphic manifold [12] 64.0

SVM [12] 74.7

Kernel method [19] 84.65

Proposed method 57.46

FD

Homeomorphic manifold [12] 27.7

SVM [12] 25.5

Kernel method [19] 58.34

Proposed method 21.85

GI

Homeomorphic manifold [12] 0.51

SVM [12] 3.05

Kernel method [19] 0.43

Proposed method 0.29

HOG

Homeomorphic manifold [12] 8.73

SVM [12] 10.2

Kernel method [19] 6.47

Proposed method 5.32
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Figure 1: Uncertainty analysis results of satellite recognition.
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Figure 2: Uncertainty analysis results of three satellites on the 1D subset of BUAA-SID 1.5.
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this section, we analyzed the satellite recognition and pose
estimation performance of the proposed models trained by
noise and noise-free data.

3.4.1. Noise Robustness of Satellite Recognition. To evaluate
the robustness against noise for satellite recognition, we used
the models trained on the training set of the 1D subset of
BUAA-SID 1.5 in Section 3.2.1 and tested on the noisy
images in the noise subset of BUAA-SID 1.5 corresponding
to the testing set of the 1D subset. In other words, we used
noisy data to test the model learned by noise-free data.
Figure 4(a) shows the experimental results. It can be seen that
noise significantly affects recognition performance except GI.
BI and DT perform better than HU, FD, and HOG. The noise
robustness of GI is particularly prominent because its recog-
nition accuracy remains 100% when the variance of Gaussian
noise increases. Figure 4(b) shows experimental results of
GPR models trained on noisy training data, i.e., the noisy
images in the noise subset of BUAA-SID 1.5 corresponding

to the training set of the 1D subset. The performance of noise
GPR models is improved obviously than the noise-free
models in Figure 4(a). This means that GPR can model the
noise in the training data and get promising results on realis-
tic noisy data. Therefore, it is necessary to model the noise in
the learning procedure for real applications.

3.4.2. Noise Robustness of Pose Estimation. We also experi-
mented on the noise subset of BUAA-SID 1.5 to evaluate
the noise robustness of pose estimation. We compared the
performance of models learned in Section 3.2.2 using noise-
free training data (indicated as “GPR/MCGPR+image repre-
sentation”) and the corresponding models retrained by noisy
training data (indicated as “NOISE+image representation”)
in Figures 5, 6, and 7. It is shown that noise significantly
affects pose estimation performance as well. Results get worse
rapidly when the variance of noise increases, and GI has
better noise robustness than other image representations.
By modeling the noise in the learning procedure, most
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Figure 3: Uncertainty analysis results on the 2D subset of BUAA-SID 1.5.
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Figure 4: Noise robustness results of GPR for satellite recognition.
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Figure 5: Noise robustness results of GPR and MCGPR for pose estimation (MAE).
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Figure 6: Noise robustness results of GPR for pose estimation (% AE less than a threshold).
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Figure 7: Noise robustness results of MCGPR for pose estimation (% AE less than a threshold).
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GPR/MCGPR models get improved pose estimation perfor-
mance, including the lower mean absolute error and higher
percentage accuracy with AE less than 1°, 2°, or 5°. MCGPR
with GI representation is an exception.We explain that, since
the manifold constraint in MCGPR has enhanced the pose
estimation ability of GPR and GI has been proved as the
image representation with best noise robustness, the noise
in the training data may disturb the modeling of MCGPR
for accurate pose estimation and thus reduce the pose
estimation performance.

3.5. Lighting Robustness. Lighting is another important factor
affecting satellite recognition and pose estimation. Lighting
condition will change along with the lighting phase angle
(also called the sun phase angle), which is determined by
the relative position between the sun, the imaging sensor,
and the target satellite. Such changes may affect appear-
ance representations, e.g., GI and HOG. Thus, we analyzed
lighting robustness on the lighting subset of BUAA-SID 1.5
using the model learned on training data of the 1D subset
BUAA-SID 1.5 in Sections 3.2.1 and 3.2.2, respectively.

3.5.1. Lighting Robustness of Satellite Recognition. Figure 8
shows the lighting robustness results of GPR with GI and
HOG. The comparison with the kernel method [19] shows
that our method has a better lighting robustness of satellite
recognition than the kernel method [19] when the lighting
phase angle is larger than 60°. It can also be seen that HOG
is more robust than GI.

3.5.2. Lighting Robustness of Pose Estimation. Experimental
results for pose estimation are shown in Figure 9.We can also
see that HOG is more robust than GI for pose estimation, and

MCGPR with HOG representation can still achieve MAE less
than 10° even in bad lighting condition; i.e., the lighting
phase angle is larger than 60°.

3.6. Performance on Sparse Training Data. Actually, it is
difficult to get a large quantity of images for training due to
the limitation of real imaging systems in space. If we can
achieve a good performance by using fewer training images,
it will be more helpful and applicative in practice. So it is
important and necessary to clarify howmany training images
our proposed method actually need. Thus, in this section, we
kept the testing set and the parameter of the model learned
on the training data of the 1D subset of BUAA-SID 1.5 in
Sections 3.2.1 and 3.2.2 and just reduced the number of
training images for each satellite from 180 to 10 in order
to analyze the satellite recognition and pose estimation
performance on sparse training data.

3.6.1. Satellite Recognition Performance on Sparse Training
Data. Figure 10 shows the results for satellite recognition. It
can be seen that most representations can still perform
100% recognition accuracy given only 10 training images.
The worse performance of HU and FD is around 90% in this
case, which is also acceptable. This shows the strong ability of
GPR for satellite recognition in terms of sparse training data.

3.6.2. Pose Estimation Performance on Sparse Training Data.
For pose estimation, we selected one satellite in the 1D subset
of BUAA-SID 1.5 and chose GI as the image representation.
Results are shown in Figure 11. We can see that performance
changes slowly when the number of training images is more
than 100, while the average uncertainty keeps falling
although the speed becomes slower and slower. Thus, more
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Figure 8: Lighting robustness results of satellite recognition.
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training data may help to minimize the uncertainty, but pose
estimation results may not be improved too much. Compar-
ing with satellite recognition, pose estimation is more sensi-
tive about the number of training images. Taking all factors
into consideration, we suggest at least 50 training images to
get acceptable pose estimation results and more than 100
necessary images for better results.

3.7. Cross-Validation for Parameter Determination. There are
two parameters affecting the performance of our proposed
method, i.e., the characteristic length-scale ell2 of the
covariance function in equation (2) and the variance σ2n of
the additive noise ε in the regression model (also in the
likelihood function y∣f ~N f, σ2nI ). Since we use the squared
exponential function as the covariance function in ourmodel,
we empirically set the length scale by experience as

ell2 = 0 1 × max
i,j∈ 1,⋯,N

∥xi − x j∥2, 15

where ∥·∥ is the second norm inRd .
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Figure 9: Lighting robustness results of pose estimation.
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We did 4-fold cross-validation on the training set to select
the most suitable σn. We divided the training set to 4-fold and
used onefold as the validation set in each round of the 4-round
validation experiments. We use the average performance of
recognition accuracy or MAE to select proper σn for satellite

recognition or pose estimation. Some cross-validation results
for pose estimation on the 1D subset of BUAA-SID 1.5 are
shown in Figure 12. Similar validation experiments were done
on other subsets as well. The parameters achieving reported
experimental results in this paper are listed in Tables 8 and 9.
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Figure 11: Pose estimation performance on sparse training data.
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Figure 12: Cross-validation results on the 1D subset of BUAA-SID 1.5 for pose estimation.
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4. Conclusion

In this paper, we have proposed a novel monocular vision-
based method by employing Gaussian process regression to
solve satellite recognition and pose estimation. Our approach
can effectively recognize the categories of satellites and esti-
mate their relative poses. We have achieved the state-of-
the-art satellite recognition and pose estimation results
on BUAA-SID datasets. For satellite recognition, only 10

training images of each satellite are needed to get near
100% recognition accuracy. For pose estimation, our method
can obtain a pose error less than 5 degrees for most cases. In
addition, no other requirements but training data are needed
for our pose estimation model; thus, there are no aforemen-
tioned limitations, such as camera calibration and optical
markers. Our GPR-based method can provide the uncer-
tainty of the predicted values (pose angles or categories),
which may be used to choose convincing results in applica-
tions. Because of the supervised learning procedure, our
method may be more suitable for cooperative space objects
of which enough images can be obtained for training.
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Table 8: Parameters used for satellite recognition. σn i indicates the variance in the i-th independent GPR model to predict the label vector.

Representation σn 1 σn 2 σn 3 σn 4 σn 5 σn 6 σn 7 σn 8 σn 9 σn 10
BI 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

DT 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

HU 0.006 0.001 0.002 0.002 0.003 0.001 0.001 0.002 0.003 0.002

FD 0.01 0.01 0.01 0.008 0.007 0.01 0.01 0.01 0.01 0.01

GI 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

HOG 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 9: Parameters used for pose estimation.

Method+representation Subset σn
MCGPR+BI 2D 0.01

MCGPR+DT 2D 0.01

MCGPR+HU 2D 1.00

MCGPR+FD 2D 0.45

MCGPR+GI 2D 0.01

MCGPR+HOG 2D 0.01

GPR+BI 2D 0.01

GPR+DT 2D 0.01

GPR+HU 2D 1.00

GPR+FD 2D 0.24

GPR+GI 2D 0.03

GPR+HOG 2D 0.01

MCGPR+BI 1D & noise 0.01

MCGPR+DT 1D & noise 0.01

MCGPR+HU 1D & noise 0.01

MCGPR+FD 1D & noise 0.02

MCGPR+GI 1D & noise 0.01

MCGPR+HOG 1D & noise 0.05

GPR+BI 1D & noise 0.01

GPR+DT 1D & noise 0.02

GPR+HU 1D & noise 0.01

GPR+FD 1D & noise 0.04

GPR+GI 1D & noise 0.04

GPR+HOG 1D & noise 0.08

MCGPR+GI Lighting 0.01

MCGPR+HOG Lighting 0.01

GPR+GI Lighting 0.13

GPR+HOG Lighting 0.01
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