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Aeroengine is one of the most concerned objects of the relevant aviation industry and researchers, and it is a hard work to assess
and predict performance degradation due to the complex structure and the changeable operating condition of the engine. In order
to realize the performance degradation assessment and remaining useful life (RUL) prediction of aeroengine, this paper proposes a
two-stage assessment and prediction method based on data fusion. First, the standard deviation merged by multiple selected
features is used as the health indicator to characterize the engine performance. Second, a sliding window detection method
called average local window slope is proposed to determine the current health state of observations by a specified rule. Finally,
the RUL prediction is performed on the observation in the two stages, respectively. On the one hand, a similarity-based RUL
prediction method is used to engines in the health stage, and on the other hand, for engines in the degradation stage, a RUL
prediction method based on a mapping function of the standard deviation and the current using cycle is established. The
proposed method has been applied and verified on the NASA’s C-MAPSS simulation data. Results of degradation assessment
and prediction show that the proposed method is trustworthy and feasible from the engineering perspective, and it has better
performance in the comprehensive indicator compared with other methods.

1. Introduction

The aeroengine is the core component of modern military
and civil aircraft, which performance will inevitably degrade
with use. One thing is particularly concerned, performance
degradation significantly shortens the operating reliability
of engines, and leads to more serious safety risks and higher
life-cycle costs (LCC) [1]. Effective performance degradation
assessment and remaining useful life (RUL) prediction can
help engineers make better maintenance decisions and sup-
port the realization of condition-based maintenance
(CBM), which can help reducing operating cost and increas-
ing the management and utilization of the fleet [2].

Due to the complex system composition and operation
environment, performance degradation assessment and pre-
diction technology of the engine have always been a hot
research topic and a difficult problem in the research field
related to the aviation industry. A review article comprehen-

sively introduced technologies and methods of performance
monitoring, diagnosis, and prediction of the engine in recent
years, in which some critical research progress and major
breakthroughs were summarized [3]. Studying a large num-
ber of related literature, the research of engine performance
degradation assessment and prediction can be divided into
three methods: model-based methods, data-driven methods,
and deep learning (DL) methods. Generally, there are three
critical technologies for performance degradation assess-
ment and prediction of the engine: determining a character-
istic indicator of performance degradation, establishing a
trajectory function or model of degradation,; and proposing
an effective RUL prediction approach.

For performance characterization, some researchers pay
more attention to monitoring parameters of the engine itself
and find important ones that can characterize the perfor-
mance state, such as engine exhaust temperature margin
(EGTM) [4, 5]. Another different approach is that a
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customized health indicator is used to characterize engine
performance in some literature [6, 7]. Comparing these two
methods, the former one is intuitive and simple, but has cer-
tain limitation in applicability, because EGTM can only reflect
the performance of the engine’s gas path and is not suitable for
characterizing the performance of the oil path and rotors. The
latter approach is generally proposed for the quantitative deg-
radation problem with a dimensionless health index quantity
by reconstructing monitoring parameters; so, it is more adapt-
able and universal. One thing is important that the rationality
of the customized performance indicator determines the accu-
racy of performance assessment and prediction. Some classic
machine learning methods construct a health assessment indi-
cator based on data fusion, which has been proven feasibility
and convenience.

Degradation trajectory function or description model is
the key to research on engine performance assessment and
prediction and which is also an interdisciplinary research
field involving physics, materials, and mathematics. Some
classic distributions such as Gaussian process [8], wiener
process [9], gamma process [10], and inverse Gaussian pro-
cess [11] are used to describe engine performance degrada-
tion process. These methods are developed and verified on
experimental data and simulation data, but there is an invite
defect that these methods cannot meet actual engineering
requirements. With the development of monitoring technol-
ogy and data analysis method, research on engine perfor-
mance degradation and RUL prediction is not only
depends on restricted traditional degradation distributions
but also using more and more abundant available monitor-
ing data to realize data-driven model development. This type
of data-driven engine physical degradation model takes into
account both the description of the performance degrada-
tion process and the application of monitoring parameters.
The most representative one is the two-stage degradation
model [12]. As mechanical equipment and system, the use
process of a general product includes the normal working
phase and the failure delay phase; that is, there is a potential
failure time point that changes the performance state from
the normal working state to the defective state. Undoubt-
edly, RUL prediction should be different at different perfor-
mance phases, but most of previous methods did not
consider this.

Some researchers used data-driven methods to study
engine life prediction problems. One thing is helpful: the
complex physical degradation process does not need to be
studied in depth. From previous studies, methods like ran-
dom forest (RF), support vector machine (SVM), support
vector regression (SVR), kernel principal component analy-
sis (KPCA), and logistic regression (LR) are widely used
[13–20]. However, this type of method has an inevitable
flaw; that is, it requires a large amount of historical data
and is not effective in early fault detection.

In addition to model-based and data-driven methods,
deep learning-related methods are also used in the research
of engine performance degradation assessment and predic-
tion [21, 22]. Some studies reported the use of the convolu-
tional neural network (CNN) [23], long and short term
memory network (LSTM) [24–26], and small-batch gradient

descent neural network (GDN) [27] to the engine perfor-
mance degradation evaluation and prediction. Unlike tradi-
tional methods that are limited by computing power and
data availability, deep learning can implement supervised,
unsupervised, and semisupervised training methods and
output appropriate results. However, the interpretability of
deep learning methods is poor, and the reliability and
acceptability of the results always are the troublesome prob-
lem for dealing with engineering problems, especially engine
performance evaluation and prediction. Generally, the inter-
pretability of a model means engineering usability; that is,
the model with better interpretability has a stronger general-
ization ability for practical problems [28]. Compared with
the machine learning method, the interpretability of deep
learning method is not obvious.

Although there are many existing methods for engine
performance assessment and prediction, there are still no
methods that take into account early fault detection, model
interpretability, and multistage life prediction. In order to fill
gaps in related research fields and solve practical engineering
application problems, in this paper, a two-stage aeroengine
degradation assessment and prediction method based on
data fusion is proposed, and the innovation of this study is
highlighted as follows: (1) a novel comprehensive health
index (standardized deviation, SD) based on the consistent
trend of mutiparameters is used; (2) a two-stage degradation
assessment method is proposed and realized the time win-
dow to find the first occurrence of potential degradation,
which is surprisingly able to find early failures in the process
of engine performance degradation; (3) for observations in
the health stage, a RUL prediction method based on the sim-
ilarity of historical samples is proposed; (4) for observations
in the degradation stage, a mapping function based on the
health index and usage time is established, and RUL predic-
tion is realized based on it.

The rest of this article is arranged as follows. In Section
II, the theoretical background related to degradation assess-
ment and prediction is introduced, and general definitions
and introductions of the proposed method are expressed.
In Section III, the proposed method is highlighted in detail,
including the calculation process and evaluation function of
degradation assessment and RUL prediction. In Section IV,
an application case based on NASA’s turbine engine simula-
tion data (CMAPSS) is presented, and the results are com-
pared with other methods in related literature. Finally, the
conclusion is given in Section V.

2. Theoretical Background

2.1. Degradation Process of the Aircraft Engine. The perfor-
mance degradation of mechanical equipment can be divided
into two types: wear type of lifetime and non-wear of life-
time. The performance of the former type will decrease irre-
versibly because of using without effective maintenance. The
performance degradation of the latter type has nothing to do
with the use time, and which shows generally as a random
failure.

For the mechanical equipment that meets the first type,
the classic P-F curve describes the degradation process.
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Generally speaking, since installment, there will be some
potential failures occur after a period of running-in time of
the mechanical equipment, but it will not cause function fail-
ure or unexpected shutdown. However, if the equipment
keeps working in a defective state without any treatment
when a potential failure occurs, it will accelerate the speed
of performance degradation and cause a functional failure
and shutdown maintenance. The P-F curve of mechanical
equipment is shown in Figure 1.

Aeroengine is a complex system composed of multiple
mechanical components, but it is also a typical wearable
mechanical equipment; that is, the degradation process of
the engine conforms to the P-F curve. The main structure
diagram of the engine [29] is shown in Figure 2.

In order to realize the condition-based maintenance of
the engine, it is very important to find the P-point where
the performance is significantly degraded or abnormal. The
period before P-point can be understood as a healthy work-
ing phase, and there is a defective working time with a
potential failure after P-point. Therefore, the two-stage deg-
radation model is pretty meaningful for describing engine
performance degradation.

2.2. Definition of the State of Health. Lifetime data is impor-
tant source for reliability evaluation and degradation predic-
tion; besides, it is easily collected by operators. For
components assembled on the aircraft, time since install-
ment (TSI) is the typical common life data, which represents
the real service time of a component or a system since
installment operation. Moreover, TSI can be as the time
scale to evaluate the health state of the observation object.

There is no doubt that there is a negative correlation
between TSI and RUL; that is, the sum of the two is equal to
the total life. In order to quantitatively characterize this nega-
tive correlation, this paper proposes a dimensionless index,
named state of health (SOH). The advantage of SOH is to
establish a remaining life predictionmethod based on the map-
ping function. The SOH can be calculated by (1) at time t.

SOHt = L − TSLtð Þ/L, ð1Þ

where TSIt is the service time since installment at the time t,
and L is the actual life of the observation object. So, the SOH is
the ratio between RUL and the all lifetime, and the value range
of SOH is [0,1). Obviously, the RUL is the difference between
the all lifetime and the nominal use time of the current time.
One thing is important, at any time, the all lifetime is unknown
(except for the final removal time), but the TSI is obtainable,
and the SOH is associated with monitoring parameters that
characterize performance status. Therefore, for a component
or a system with the significant degradation process, the RUL
at any time t can be calculated by (2).

RULt = TSI∗t
SOHt

1 − SOHt
: ð2Þ

2.3. Summary of Previous Works Related to CMAPSS. In addi-
tion to the performance degradation process and the SOH def-
inition of the engine, the stable and representative data is the

most important condition for modeling and verification. Gen-
erally, the available and complete real-world data is best for
modeling and verification. However, for performance assess-
ment and RUL prediction of the aeroengine, there are two
main difficulties in obtaining real-world data: (1) obtaining
real-world data is expensive; (2) it is very difficult to guarantee
the integrity and quality of all-life-cycle real-world data. NASA
developed a tool for the simulation of a realistic large commer-
cial turbofan engine, named “Commercial Modular Aero-
Propulsion System Simulation” (C-MAPSS). Although the
CMPASS data is generated by simulation, the simulation is
designed based on the physical mechanism and degradation
process of a realistic large commercial turbofan engine. Many
studies were reported to performance assessment and RUL pre-
diction for the engine based on C-MAPSS. By summarizing the
related literature, thesemethods in recent years can be classified
into three types: statistical-based methods, machine learning,
and deep learning, as shown in Table 1.

Our proposed method is used to evaluate the health
stage and RUL prediction by deviations of the performance
parameters, which is driven by data rather than relying on
physical models or principles; so, the CMAPSS data can
meet the needs of model verification. The details of the pro-
posed method are presented in Section III.
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Figure 1: P-F curve of general wearable mechanical equipment.
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Figure 2: The structure diagram of the aircraft engine.
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3. Proposed Methodology and Algorithms

3.1. General Introduction of the Proposed Method. The pro-
posed two-stage aeroengine degradation assessment and pre-
diction method based on data fusion is shown in Figure 3.

Totally, the proposed method includes historical data
processing and analysis, defined indicators calculation, deg-
radation assessment and RUL prediction, and specific defini-
tions and calculations are emphasized in section B.

3.2. Definition and Calculation. In order to get a better per-
formance of assessment and RUL prediction, the fundamen-
tal and important work is to select appropriate features. In
this paper, based on the results of trend analysis, in all cycle
data of a single engine, the parameter that has the obvious
monotonic change trend with time is selected. There are
two advantages: one is to remove parameters that are not
related to performance degradation; the other is to avoid
the influence of parameters with inconsistent trends on eval-
uation and prediction. Mann-Kendall is a common monoto-
nousness detection method, which can realize rapidly
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Figure 3: Overall framework for degradation assessment and RUL prediction.
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Table 1: Summary of previous works related to CMAPSS.

Type Method Purpose Reference

Statistical-based

KNN+Bayesian filter RUL prediction Mosallam et al. [30]

Entropy-based
Condition monitoring and

prognostics
Liu et al. [31]

Signal fusion + stochastic degradation model RUL prediction Wen et al. [32]

Machine
learning

PSO+ SVM RUL prediction García Nieto et al. [15]

ARIMA+SVM RUL prediction Ordóñez et al. [16]

LR+OS-ELM Degradation prognostics Lu et al. [18]

Deep learning

Deep RNN Degradation prognostics Behera, Misra, and Sillitti [33]

LSTM+GMM RUL prediction Sayah et al. [34]

Bidirectional handshaking LSTM RUL prediction Elsheikh, Yacout, and Ouali [35]

MLE+CCF Predictive maintenance Pillai and Vadakkepat [36]
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The degradation detection for historical datasets.
Step1. Initialization. L represents the moving detection window length, w represents the window width of ALWS, and let
L = L1,w=w1.
Step2. According formula(3), calculate the SD sequence([SD1,SD2,...,SDN]) of full cycles.
Step3. Calculate the ALWS sequence of full cycles.
For i in (w,N):
sd= [SDi-w +1,SDi-w +1,...,SDi]
According the formula (), calculate a(i) =ALWS(sd)
End for
Get the sequence [a1, a2,..., aN-w +1]. Add m-1 zero before it and get the new ALWS sequence [A1, A2,...,Am-1,a1,...aN-w +1], where
A1 = ... = Aw-1 =0.
Step4. Using Z to represent the number of nonzeros in the detection window sequence and [T_low,T_up] represents the time interval
when the obvious degradation point.
For j in (1, N-L), do:
Get the detection window sequence: [Aj,...,Aj+L]
Count the number Z of nonzero in the detection sequence: Z = is_not_zero([Aj,...,Aj+L])
If Z more than int (0.5*L)
T_low= j
T_up = j + L1
break
Else
continue
End if
End for
Step5. For each engine in the historic database, according to the above step 1-4, the degradation interval is determined, and the orig-
inal historical database D0 can be divided into two datasets, D1 in the health stage and D2 in the obvious degradation stage.

Pseudocode 1: The pseudocode of degradation detection for historical datasets.

The degradation detection for new observations
Step1. Initialization, if K>100, L = L1 and w=w1; else L =w=w2. And score sequence S= [ ]
Step2. Based on the health stage datasets D1, calculating the ALWS(D1) sequence, and taking the maximum value max(ALWS(D1))
as the threshold e_upper.
Step3. Calculating ALWS(X) sequence A and adding w-1 zeros before it. Getting the new sequence A: [A1,A2,Aw-1,Aw,...,AK] with
length K, and A1 =A2 = ... = Aw-1 =0.
Step4. Updating sequence A([A1,A2,Aw-1,Aw,...,AK]).
For a in A, do:
If a less than or equal to e_upper:
a =0.
Else:
Continue
End if
End for
Step5. Degradation assessment for the observation.
For i = L,2,..,K, do:
Get detecting window [Ai-L +1,...,Ai]
Count the number Si of zeros in [Ai-L +1,...,Ai]
Add new element into the score sequence S, S=S+ Si
End for
If max(S) more than int (0.5∗L):
This observation is in the degradation stage.
Else:
This observation is in the health stage.

Pseudocode 2: The pseudocode of degradation detection for new observations.
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simultaneous detection for multiple parameters. This paper
used the Mann-Kendall method select features and proposed
the required characteristics from the original parameter set
based on the detection results.

With selected features, the baseline can be determined by
the specific cycle. In this paper, features at the first cycle of
all engines constitute the considered absolute health set,
denoted as H. Obviously, the mean value of H can be used
as the healthy baseline.

3.3. Definition and Calculation of Standardized Deviation
(SD). In existing studies, there are three methods for con-
structing health indicator (HI) for state evaluation: one is
to directly select sensor parameter as HI, the other is con-
structing HI based on deviation between the original input

and the health baseline, and the third is constructing HI
based on data fusion model such as the autoencoding model.

Comprehensively, the first method is difficult to find the
sensor parameter that directly characterizes the degradation,
and the third HI construction method has the disadvantage
of complex calculation and low applicability. In contrast, the
second deviation-based HI construction method is better.

Deviation is direct and accessible to show the difference
between the new observation and the healthy baseline. How-
ever, one latent mistake will affect the correctness of the
healthy baseline that some extreme values of wrong record-
ing or invalid will be used in H, because the healthy baseline
is the mean value of health set H, and H comes from historic
database D0. In this paper, we use the amplitude value of the
individual parameter in H to correct deviation, and for mul-
tivariate parameters, define a dimensionless value standard-
ized deviation to represent the difference between the
observation and the baseline, denoted as SD.

H with n features is represented as H = fS1, S2,⋯, Sng;
thus, the healthy baseline is mean (H), and the parameter
amplitude value inH is (max(H)-min(H)). For the observation
data with n parameters, expressed as X = ½x1, x2,⋯, xn�, the
standard deviation SD can be calculated by the following (3).

SD =
1
n
× 〠

n

i=1
Sign ið Þ · X −mean Hð Þ

max Hð Þ −min Hð Þ
� �� �

, ð3Þ

where sign(i) represents identification function of the
monotonic trend of the ith feature. If it is increased, sign = 1;
on the contrary, sign = −1.

Table 2: Description of CMAPSS simulation data.

Data set Operation environment Fault mode

FD001 1 1

FD002 6 1

FD003 1 2

FD004 6 2

Table 3: Parameter types and description in datasets.

Symbol Description Units

Id Engine number —

Cycle Current engine cycle —

Setting1 Operation parameter setting 1 —

Setting2 Operation parameter setting 2 —

Setting3 Operation parameter setting 3 —

Sensor parameters available for analysis

S1 T2 Total temperature at fan inlet °R

S2 T24 Total temperature at LPC outlet °R

S3 T30 Total temperature at HPC outlet °R

S4 T50 Total temperature at LPT outlet °R

S5 P2 Pressure at fan inlet Psia

S6 P15 Total pressure in bypass-duct Psia

S7 P30 Total pressure at HPC outlet Psia

S8 Nf Physical fan speed rpm Rpm

S9 Nc Physical core speed rpm Rpm

S10 Epr Engine pressure ratio (P50/P2) —

S11 Ps30 Static pressure at HPC outlet Psia

S12 Phi Ratio of fuel flow to Ps30 Pps/psi

S13 NRf Corrected fan speed Rpm

S14 NRc Corrected core speed Rpm

S15 BPR Bypass ratio —

S16 farB Burner fuel-air ratio —

S17 htBleed Bleed enthalpy —

S18 Nf_dmd Demanded fan speed Rpm

S19 PCNfR_dmd Demanded corrected fan speed Rpm

S20 W31 HPT coolant bleed Lbm/s

S21 W32 LPT coolant bleed Lbm/s

Table 4: Results of Mann Kendall test for all parameters in FD001.

Sensor Trend Hypothesis P value Score

S1 No trend False 1.0 0.0

S2 Increasing True ≤0.001 9066.0

S3 Increasing True 4.44e-16 7212.0

S4 Increasing True ≤0.001 11796.0

S5 No trend False 1.0 0.0

S6 No trend False 1.0 0.0

S7 Decreasing True ≤0.001 -10865.0

S8 Increasing True ≤0.001 11211.0

S9 Decreasing True 2.58e-09 -5303.0

S10 No trend False 1.0 0.0

S11 Increasing True ≤0.001 12172.0

S12 Decreasing True ≤0.001 -11910.0

S13 Increasing True ≤0.001 11859.0

S14 Decreasing True ≤0.001 -9269.0

S15 Increasing True ≤0.001 9409.0

S16 No trend False 1.0 0.0

S17 Increasing True ≤0.001 8653.0

S18 No trend False 1.0 0.0

S19 No trend False 1.0 0.0

S20 Decreasing True ≤0.001 -9651.0

S21 Decreasing True ≤0.001 -10487.0
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Considering some random errors in monitoring data,
the SD sequence should be smoothed before analyzing.
There three commonly used smoothing methods: simple
moving average (SMA), SMA with Hanning window, and
exponentially weighted moving average (EWMA). After
processing a sample as shown in Figure 4, it is found that
three smoothed results are basically same, but SMA is easy
and efficient in processing speed; so, SMA is used as the
smoothing method in this paper.

3.3.1. Definition and Calculation of Average Local Window
Slope (ALWS). SD is an effective indicator for state evaluation,
but it is not sensitive to early degradation warning, which
means that it is difficult to find the two-stage change interval.
In order to find the time point of the state change in the deg-
radation process, this paper uses average local window slope
(ALWS) as the detection index. ALWS is the corrected slope
of the SD sequence in a certain time length. According to
Figure 4, the trend of SD shows as consistently increasing.
For any time t, the time window set is fSDt−w, SDt−w+1,⋯,
SDtg, the mean value of first w-1 data is used as the first ele-
ment, the w-th data SDt is used as the second element, and
ALWS at time t is calculated by the following (4).

ALWS tð Þ =
0, if SDt −mean SDt−w, SDt−w+1,⋯, SDt−1½ �ð Þ < 0

SDt −mean SDt−w, SDt−w+1,⋯, SDt−1½ �ð Þ
w

, else if

8<
: :

ð4Þ

3.4. Degradation Assessment

3.4.1. For Historic Database. For any engine with full use
cycles and the number of cycles of this engine is N , the pro-

cess of degradation detection called the SD-ALWS method
and is as the Pseudocode 1.

3.4.2. For New Observations. For any observation X with K
elements, the process of degradation detection is shown in
Pseudocode 2.

3.5. Remaining Useful Life Prediction. According to the result
of degradation assessment, a similarity-based method is used
to predict the remaining life of the observation which in the
healthy stage. And for the observation in the obvious degra-
dation stage, the mapping function based on SOH and SD is
used to calculate the remaining life.

3.5.1. Similarity-Based RUL Prediction for Stage 1
(Observations in Health Condition). For observations in
health condition, we proposed the similarity-based RUL pre-
diction method. The similarity-based method is a general
data driven approach [37]. X represents the observation, f
Y1, Y2,⋯, YMg represents the historical samples, fT1, T2,
⋯, TMg represents the true used cycles of historic engines,
andM is the engine number in D0. The RUL of X can be cal-
culated by the following equation (5).

RUL Xð Þ = 〠
M

i=1
w X, Yið Þ ∗ Ti = 〠

M

i=1
C ið Þ ∗ R X, Yið Þ ∗ Ti, ð5Þ

where wðX, YiÞ represents the weight of the ith historical
sample that predicts the RUL of the observation in the healthy
state, CðiÞ represents the survival rate corresponding to the life
value of the ith historical sample, and RðX, YiÞ represents the
similarity between the observation and the ith sample.
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In order to ensure the reasonableness of RUL prediction,
the survival analysis based on the Kaplan Meier model is
performed on the historical samples, and the survival rate
corresponding to each life value is the reliability CðiÞ.

There are many studies on similarity, including point to
point, point to sample, and sample to sample. Generally, dis-
tance and KL divergence are used as the measurement index.
However, for high-dimensional samples, distance or KL
divergence cannot perform well in the two-sample test.
The literature introduces common methods for the two-
sample test. Satisfactorily, the maximum mean discrepancy
(MMD) is an excellent method that can solve the problem
of high-dimensional samples [38]. In this paper, MMD is
selected as the index of the similarity between the observa-
tion and historical samples, HðY iÞ ði = 1,⋯,MÞ is used to
represent the length of used cycles in the health stage of
the historical sample Y i, and Y i½0 : TSIðXÞ� is used to repre-
sent the historical sample Y i compressed to the same length
of cycles as the observation. The similarity weight is calcu-
lated by the following equation (6).

R X, Yið Þ =
0, H Yið Þ < TSI Xð Þ
MMD X, Yi 0 : TSI Xð Þ½ �ð Þ, H Yið Þ ≥ TSI Xð Þ

(
, i = 1,⋯,M:

ð6Þ

For two samples p and q, the definition of MMD [39] is
shown in (7).

MMD F , p, q½ �≔ sup
f ∈F

Ex∼p f xð Þ½ � − Ey∼q f yð Þ½ �� �
= sup

f ∈F
f , μp − μqh iH ,

ð7Þ

whereF represents the unit ball in reproducingHilbert ker-
nel space(RHKS,H), f ð⋅Þ represents the datamapping function
to RHKS, and μ represents the expected value of sample.

Let Z = Y ½0 : TSIðXÞ�, and (7) can be solved by (8).

MMD2 X, Zð Þ = 1
n
〠
n

i=1
f xið Þ − 1

m
〠
m

j=1
f z j
� ������

�����
2

H

=
1
n2

〠
n

i=1
〠
n

j≠i
f xið Þf xið Þ − 2

nm
〠
n

i=1
〠
m

j=1
f xið Þf z j

� ������
+

1
m2 〠

m

i=1
〠
m

j≠i
f z j
� �

f z j
� ������

2

H

:

ð8Þ

With kernel trick, we skip calculating function f and
using kðxiÞkðxjÞ instead, and kð⋅Þ represents the kernel
function.
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Figure 7: The diagram of survival analysis for the historical life
data.
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Unbiased value can be calculated by (9).

MMD2
u X, Zð Þ = 1

n n − 1ð Þ〠
n

i=1
〠
n

j≠i
k xi, xj
� �

−
2
nm

〠
n

i=1
〠
m

j=1
k xi, zj
� ������

+
1

m m − 1ð Þ〠
m

i=1
〠
m

j≠i
k zi, zj
� ������

2

H

:

ð9Þ

3.5.2. Mapping Function-Based RUL Prediction for Stage II
(Observations in Degradation Stage). For engines in the deg-
radation process, different objects will have unique gradation
trajectories; so, the similarity-based RUL prediction method
is not suitable for this problem. In this paper, the mapping
function-based RUL prediction method is proposed for
observations in degradation process.

Generally, there are several difficulties in directly con-
structing the functional relationship between multiple per-
formance parameters and SOH: one is that this
relationship is difficult to express by a known functional
form; another problem is that the accuracy of the functional
relationship established directly using original performance
parameters with random errors is poor. According to the
above introduction and calculation process about the fusion
parameter SD of multiple performance parameters, it can be
seen that SD can completely characterize the performance
degradation process, and in the obvious degradation stage,
there is a mapping function that can be expressed by a math-
ematical model with SOH.

The mapping function is an abstract expression about the
relationship between SD and SOH. Exactly, there is no fixed
mathematical expression for the mapping function. According
to the fitting result of datasets of SD and SOH, optimal map-
ping function is determined, and function parameters are esti-
mated by the Levenberg-Marquardt method.

θð⋅Þ is used to represent the mapping function between
SD and SOH, and for any using cycle time t, the observation

at time t is Xt , SOH can be represented as SOHðXtÞ = θð
SDðXtÞÞ.

With the formula, RUL at time t of the new observation
can be calculated by (10).

RUL = TSI∗t
SOHt

1 − SOHt
= TSI∗t

θ SDtð Þ
1 − θ SDtð Þ , ð10Þ

where TSIt represents time since installment at time t,
SOHt represents the SOH value at time t, θðSDÞ represents
the mapping function of SD and SOH, and SDt represents
the SD value at time t.

3.6. Evaluation Metric. A reasonable evaluation metric is
necessary to improve and optimize the proposed assessment
and prediction method. Generally, for methods of
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Raw data
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Figure 8: Drawing diagram of fitting results.

Table 5: Function forms and parameters estimation of fitting results.

Function form Mathematical expression Parameter estimation R-square

Quadratic polynomial y = pi ∗ x + p2 ∗ x2 + p3

p1 = −1:99
p2 = 1:95
p3 = 0:51

0.71

Inverse function y = p1 + p2/x
p1 = −0:079
p2 = 0:049 0.7

Power function y = p1 ∗ xp2 + p3

p1 = −12:45
p2 = 0:019
p3 = 12:25

0.73

Negative exponential y = exp −p1 ∗ xð Þ + p2
p1 = 1:33
p2 = −0:58 0.69

Logarithmic function y = p1 + p2 ∗ Ln xð Þ p1 = −0:195
p2 = −0:234 0.74

Hybrid function y = exp −p1 ∗ xð Þ + p2/x + p3 ∗ Ln xð Þ
p1 = 4:82
p2 = 0:015
p3 = 0:145

0.76
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assessment and prediction, accuracy and root mean square
error (RMSE, as (12)) are used commonly. These symmetry
indicators are feasible and easily accessible for evaluating the
accuracy of RUL prediction results. However, for RUL pre-
diction of aircraft engine, considering that the prediction
result is greater than the actual available time will lead to
maintenance decision fall behind the actual failure occur-
rence time, which will bring unacceptable unsafe conse-
quences and economic loss. On the other hand, the
prediction result is less than the actual value, and the result
leads to advanced maintenance works and loss of useful life,
which is safer and conservative. Therefore, in order to rea-
sonable and acceptable RUL prediction results of the aircraft
engine, an asymmetric indicator is used for evaluation in this
paper, which is noted as the score function (calculated by
(13)).

d = RULpredict‐RULtrue, ð11Þ

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠d2i

r
 i = 1, 2,⋯, n ð12Þ

s
e − d

13ð Þ − 1, for d < 0

e
d
10ð Þ − 1, for d ≥ 0

8<
: ð13Þ

4. Implementation and Analysis

4.1. Data Description. In this paper, the NASA’s CMAPSS
simulation data is selected to verify the proposed method.
There are four types of training data and corresponding
ground time from the beginning of the simulation to the
occurrence of an engine failure. FD001 is the basic simula-
tion data set with a single operating environment and one
failure mode. FD002 has six operating environments and
one failure mode. FD003 has a single operating environment
and two failure modes. FD004 has six operating environ-
ments and two failure modes. The training data of CMAPSS
is shown in Table 2.

In this study, the purpose is to establish degradation
assessment and remaining life prediction model for the air-
craft engine and is not focused on fault diagnosis and identifi-
cation. Therefore, FD001 with a single operating environment
and one failure mode is selected as the research data.

For any data sample, the parameter types and descrip-
tions are the same, as shown in Table 3.

4.2. Feature Selection and Target Calculation. Feature selec-
tion is the essential and fundamental work for the proposed
method. The Pseudocodes 1 shows there 21 sensors param-
eters in datasets, and one thing is important, these parame-
ters are different in meaning, unit and value range.

For the training data FD001, to select features, as described
in sectionII, the first task is to calculate the trend of parame-
ters.The results of Mann Kendall test are shown in Table 4.

Pseudocode 2 shows that parameters {“s2,” “s3,” “s4,”
“s7,” “s8,” “s9” “s11,” “s12,” “s13,” “s14,” “s15,” “s17,”
“s20,” “s21”} are selected as features, because these parame-
ters have the monotonous trend, increasing, or decreasing,
as bold objects in the table.
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Figure 9: SD and ALWS of test samples in the health stage.

Table 6: Results of test examples in the health stage.

Test sample
ID

Current using
cycle

Predict
RUL

True
RUL

Error Score

#25 48 134 145 -11 1.33

#39 37 143 142 1 0.11
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The next important task is the calculation of the target
value. Using D0 to represent the FD001 train data, all the
first cycle of each engine in D0 is extracted and formed into
the absolute healthy sample set H. Therefore, it is easy to get
the healthy baseline of H.

For all samples in D0, based on the definition and calcu-
lation of SD, the SD value for each sample can be calculated.
Let L1 =w1 = 10, and SD value sequences of some engines in
D0 are shown in Figure 5.

According to the definition and calculation of ALWS,
the ALWS value of each engine can be calculated. Some
samples of ALWS are shown in Figure 6.

For the life data in D0, the Kaplan Meier model is used
to fit the survival process that is from the installation to
the failure occurrence of an engine, as shown in Figure 7.
The solid blue line in the figure is the survival curve, and
the light blue band represents the 95% confidence interval.
With time increasing, the probability of survival CðtÞ (in this
study, the functioning engine is considered in survival)
becomes smaller and smaller.

Based on the aforementioned SD-ALWS method, for
historical datasets, it is feasible to divide D0 into D1 and
D2 and represents the healthy datasets and the obvious deg-
radation datasets, respectively, for the datasets D1 with
healthy stage samples.

For the datasets D2 with obvious degradation samples,
SD is used as the independent variable, and SOH is used as
the dependent variable to establish the mapping function
between SD and SOH. In this paper, several common and
suitable functional forms are used to fit the mapping rela-
tionship, in which the hybrid function is composed of three
basic functions, and the Levenberg-Marquardt method is
selected to estimate parameters of each function. The fitting
results of the mapping function are shown in the following
Table 5 and Figure 8.

For data fitting, the R-square determination coefficient (R2)
is a comprehensive evaluation index. As shown in the table, the
hybrid function proposed in this paper performs best in these
functions. Obviously, the value range of SOH is (0,1). On the

Table 7: Results of test examples in the degradation stage.

Test sample
ID

Current using
cycle

Predict
RUL

True
RUL

Error Score

#20 184 15 16 -1 0.08

#46 146 35 47 -12 1.52
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Figure 11: Complete RUL prediction process of test engine #20.
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other hand, from the view of the fitting diagram (Figure 8),
there are some points that exceed the margin in the inverse
function, power function, negative exponential function, and
logarithmic function. Comprehensively consider the fitting
effect and rationality, the proposed hybrid function is used to
fit the mapping relationship between SD and SOH. For any
moment t of the test sample in gradation stage, the SOH can
be calculated by the following formula (14).

SOH tð Þ = Exp −4:82 × SD tð Þð Þ + 0:015
SD tð Þ + 0:145 × Ln SD tð Þð Þ:

ð14Þ

4.3. Assessment and Prediction for New Observations. For any
new test sample, L and w take the value 5 when the length of
the sample is less than 100; otherwise, take the value to 10.
Therefore, referred to introductions in Section III, the SD and
ALWS value can be calculated. Moreover, according the degra-
dation assessment rule in Section III, the proposed SD-ALWS
method can realize the performance evaluation of the test sam-
ple, that is, determining the stage of the sample.

4.3.1. For a Test Sample in the Health Stage. Taking engines
#25 and #39 in test datasets as examples to illustrate calcula-
tion results of test samples in the health stage, the SD and
ALWS are shown in Figure 9.

According to the rule, these two test samples are diagnosed
as the healthy observation. With historical samples and life
data reliability distribution (CðtÞ), according to formulae (5)-
(9), the RUL of test sample in the health stage can be predicted,
and the results of the two samples are shown in Table 6.

From Table 6, the predict RUL of engine #25 is less than
true RUL; that is, the error is -11,which means the predicted
life time before the actual life, in other words, that is a safe
prediction. For #39, the predict error is 1, which means the
predicted life time is late than the actual life and a potential
accidental failure.

4.3.2. For a Test Sample in the Degradation Stage. Taking
engine #20 and #46 in test datasets to illustrate calculation
results of test samples in the degradation stage, the SD and
ALWS are shown in Figure 10.

It can be seen from the figure that there is obvious
upward trend of the SD, and the value of ALWS exceeds
the threshold in the continuous detection window.

Table 8: Results of all test samples.

Test_id Predict RUL True RUL d = predict true Score d2

1 96 91 5 0.65 25

2 102 96 6 0.82 36

3 115 124 -9 1 81

4 82 84 -2 0.17 4

5 87 87 0 0 0

6 15 16 -1 0.08 1

... ... ... ... ... ...

Total — — — 193.39 8886, RMSE = 13:33

Working time = 50 FC

Working time=100FC

Working time =150FC

Working time = 184 FC

True RUL = 150FC

True RUL = 100FC

True RUL = 50FC
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Figure 12: SD and prediction RUL under different cycle of truncations of test engine #20 in FD001.
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According to the rule, these two test samples are diagnosed
as the degraded observation. Furthermore, according to for-
mulae (10) and (14), the RUL of test sample in the degrada-
tion stage can be predicted, and the results are shown in
Table 7.

From Table 7, the predict RUL of engine #20 (as is
shown in Figure 11) in the degradation stage is less than true
RUL, which means the predicted life time before the actual
life, in other words, that is a safe prediction.

As shown in Figure 11, the ordinate is the RUL, and the
abscissa is using the cycle. On the figure of the RUL-using

cycle, the prediction methods of two stages are different.
Obviously, the prediction method based on similarity in
the health stage causes greater deviation, which is related
to the prior knowledge of historical samples. With the degra-
dation of engine, it is critical to predict the accurate RUL for
safety, and the new prediction method based on the map-
ping function can provide better results.

Furthermore, to illustrate the prediction effect of the
proposed method on a single engine, Figure 12 shows SD
and prediction RUL under different cycle of truncations
(50 fc, 100 fc, 150 fc, the last flight cycle). It can be seen from

0

0

20

20

40

40

60

60

80

80

100

100

120

120

140

140

160

160

Predict RUL

Re
al

 R
U

L

Y = X
Raw data

Figure 14: The results of RUL prediction of test samples in FD003.

0

20

40

60

80

100

120

140

Re
al

 R
U

L

Y = X
Raw data

0 20 40 60 80 100 120 140

Predict RUL

Figure 13: The results of RUL prediction of test samples in FD001.

13International Journal of Aerospace Engineering



the figure that the proposed method has a better prediction
effect under the use cycle with a shorter real life.

4.4. Result Analysis and Discussion. For test samples in
FD001, one thing is important that the degradation assess-
ment is a meaningful work, but RUL prediction is our con-
cern and the purpose of degradation assessment. The
results of RUL prediction for test samples are shown in
Table 8 and Figure 13.

From Figure 13, this black solid line (Y = X) indicates
that the predicted value is equal to the true value, and any
point on this line indicates that the predicted result is
completely consistent with the true value. The point below
this line indicates that the predicted result is greater than
the true value, which means the predicted failure time is
too late. The point above this line indicates that the pre-
dicted result is less than the true value, which means the pre-
dicted failure time is too early. According to equations (12)
and (13), the total score and RMSE of test samples in
FD001 can be calculated, 193.39 and 13.33, respectively.

Because FD002 and FD004 have six operation environ-
ment types, it is difficult to extract the degradation feature
using the proposed method. In order to further verify the
model method on FD003, the RUL prediction results of test
samples is shown in Figure 14.

Comparing Figures 13 and 14, for FD003 with two fail-
ure modes are mixed, the prediction results are also concen-
trated on the line (Y = X), which means the proposed
prediction method is effective for multiple failure mode sam-
ples. According to equations (12) and (13), the total score
and RMSE of test samples in FD003 are 209.1 and 13.38,
respectively.

In order to better highlight the proposed method, the
RUL prediction results of this study are compared with other
methods in related references, as shown in Table 9. It can be
seen that the proposed method performs better on compre-
hensive indicators.

From Table 9, the proposed method has a lower total
score in predicting RUL of single fault mode and multiple
fault modes, which mean the prediction results are better
than other methods in the table in score.

5. Conclusions

A novel method based on data fusion for aeroengine degra-
dation assessment and RUL prediction is proposed in this
paper, and the engineering feasibility is verified in the public

simulation data. The key issue is to establish a two-stage per-
formance degradation assessment and prediction model,
which is by calculating the proposed health index and under
the specific evaluation rule. Once a new observation is
obtained, the new health status can be estimated by the pro-
posed method, and furthermore, the corresponding residual
life is calculated for different degradation stages.

For the prospect of practical application, the proposed
two-stage degradation assessment model is more effective
in detecting early failures, which is of great significance to
the realization of condition-based maintenance and can
avoid unplanned shutdowns and maintenance events caused
by unexpected failures. For more accurate prediction results
and better sensitivity, future research will focus on how to
solve and quantify uncertain factors in the prediction pro-
cess to enhance robustness.
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