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A dual-sidestay landing gear is prone to locking failure in the deployed state due to the restriction of movement between two
sidestays. However, the principle of its locking movement still remains unclear. The present study is aimed at investigating the
synchronous locking performance of the dual-sidestay landing gear based on the singularity and bifurcation theory. From the
perspective of the kinematic mechanism, the reason for high sensitivity to structural dimensions in the locking process is
explained, and the locked position is investigated by employing the numerical continuation method in the case of a single-
sidestay landing gear. Afterwards, the reason for the locking failure of the dual-sidestay landing gear is analyzed, and a
kinematic optimization method for the synchronous locking is proposed. The results reveal that the lock links must reach the
lower overcenter singular point to fully lock the landing gear, and the singular point is sensitively affected by structural
parameters. Owing to the different positions of singular points, the movements of fore and aft sidestays seriously restrict each
other, causing locking failure of the dual-sidestay landing gear. The singular points of two sidestays can be optimized to be
approximately identical, making their movements more coordinated.

1. Introduction

A supercritical wing is extensively used in large aircraft for
attaining better aerodynamic performance [1, 2]. For the
supercritical wing, however, the stowage for the landing gear
is considerably smaller than that for the conventional wing.
Narrow space signifies that a conventional planar (2D) land-
ing gear can hardly comply with the design requirements,
since the sidestay links are located above the main strut after
folding, which occupy a large vertical space, as shown in
Figure 1(a). In contrast, for a three-dimensional (3D) landing
gear, the sidestay plane can be rotated about a specific axis, so
that it is overall folded over the side of the main strut. As a
result, the 3D landing gear excellently reduces the size of
the vertical space, as shown in Figure 1(b).

The extensive use of composite material has contributed
hugely to the reduction in aircraft weight. A composite wing,
however, does not carry as much ground load as a metallic
one. From the load transfer perspective, the ground impact
load should not be borne entirely by the wing. Thus, a

dual-sidestay (DS) landing gear is used to transfer ground
load to the wing and fuselage [3, 4]. Compared to a single-
sidestay (SS) landing gear, the DS landing gear has an
additional sidestay, as shown in Figure 2, and the motion
coordination between fore and aft sidestays appears partic-
ularly important. In the case of an unreasonable design of
structural parameters, the two sidestays can hinder and
constrain each other, disallowing its complete locking.
Hence, it is imperative to investigate the motion coordina-
tion between two sidestays.

The multidisciplinary time-domain cosimulation tech-
nology [5–7] has often been adopted to research landing gear
mechanisms. However, this approach requires substantial
iterations in handling highly nonlinear problems, which is
time- and labour-consuming. Numerical continuation [8, 9]
has been applied to aircraft design for several years [10],
which can enable fast and efficient exploration of highly non-
linear problems of the landing gear. Following the initial pro-
posal of this method for analyzing landing gear mechanisms
by Knowles et al. [11], the research approach integrating

Hindawi
International Journal of Aerospace Engineering
Volume 2021, Article ID 6685635, 15 pages
https://doi.org/10.1155/2021/6685635

https://orcid.org/0000-0001-6106-9907
https://orcid.org/0000-0003-2553-7595
https://orcid.org/0000-0001-7160-4838
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6685635


numerical continuation and bifurcation analysis has become
increasingly mature [12]. Exploiting this method, Knowles
et al. [13–16] and Yin et al. [17] analyzed the bifurcation
characteristics of different landing gear mechanisms sequen-
tially and concluded that the landing gear would inevitably
undergo a jump phenomenon at bifurcation points in the
locking process. However, when solving the dynamic equa-
tions of the DS landing gear using the numerical continua-
tion method, it has been found that the appearance of
bifurcation points does not necessarily imply that two
sidestays can be locked synchronously, which indicates the
limitation of using the dynamic equations in solving DS
mechanisms with extremely high motion sensitivity.

The DS landing gear has several singular points in its
retraction cycle, which cause extremely high sensitivity of
mechanism motion. Hence, the DS mechanism is analyzed
from a kinematic singularity perspective in this paper. Exist-
ing methods concerning singularity include the Jacobian
matrix method [18], the Grassmann line geometry [19],
and the differential geometric theory [20], while attempting
to avoid the singular position in the mechanism as far as
possible [21, 22]. For instance, Xie et al. [23] and Li and
Herve [24] used the above methods to explore the singular-
ity characteristics of different mechanisms. Nevertheless, lit-
tle literature focuses on the singularity of landing gear
mechanisms, particularly the complex spatial DS mecha-
nisms. Therefore, continuation analysis on the kinematics
equations of the DS landing gear is performed, and the

locked position as well as the underlying jump phenomenon
of the mechanism is analyzed from the kinematic singularity
and bifurcation perspective in this paper. Furthermore, the
fundamental causes of mutual hindrance and restriction
between fore and aft sidestays are explained, which can pro-
vide crucial guidance for the design of DS landing gear
mechanisms.

Initially, the locking performance of a 3D SS mechanism
is analyzed. On this basis, the reasons for incomplete locking
caused by mutual restriction between two sidestays are inves-
tigated. Finally, a novel method for analyzing the synchro-
nous locking of the DS landing gear is developed, which is
based on the singularity and bifurcation theory. The struc-
ture of this paper is organized as follows: In Section 2, the
kinematic model of a 3D SS landing gear mechanism is built,
after analyzing its bifurcation and singularity characteristics,
and the jump phenomenon and the locked position are ana-
lyzed in Section 3. Meanwhile, the effects of structural
parameters on the locked position are explored. In Section
4, the principle of mutual hindrance between fore and aft
sidestays for the 3D DS landing gear mechanism is investi-
gated based on the foregoing analysis, and the fundamental
causes of asynchronous locking are identified. Furthermore,
a set of optimal solutions satisfying constraints are given with
the aid of multiobjective particle swarm optimization (PSO).
The application of the proposed method can effectively
achieve the synchronous locking at the initial design phase
of DS landing gear mechanisms.
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Figure 1: Vertical storage space of 2D versus 3D landing gear.
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Figure 2: Changes in the DS versus SS landing gears.
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2. Kinematic Model of the Landing
Gear Mechanism

In Figure 3, a certain 3D landing gear mechanism is illus-
trated, which consists of five links (two sidestay links, two
lock links, and a main strut), as well as three nodes (two side-
stay nodes and a lock node). These various components are
connected via planar revolute joints. To achieve the 3D
retraction function, the axes of sidestay nodes (axes 2 and 4
in Figure 3), the axis of the lock node (axis 1), and the rota-
tion axis of the main strut (axis 3) must intersect at one point
(point o) [25]. In this way, the motion of sidestay can be
always within the same plane. During the retraction cycle of
the landing gear, the main strut rotates along the axis 3, while
the sidestay not only performs the folding motion but also
rotates about the axis 2, so that the rotation plane of the main
strut is not in the same plane as the sidestay. The entire
retraction and extension processes can be summarized as fol-
lows: When retracting the gear, the unlock actuator is needed
to unlock the lock links. Then, the retraction actuator can be
engaged to allow the main strut to rotate about axis 3, and the
sidestay moves accordingly. Finally, the landing gear reaches
the deployed position and gets locked. When extending the
gear, after upper unlocking, the retraction actuator supplies
a pushing force to enable slow extension of the main strut
around axis 3. When approaching the lower locked position,
the lock links jump from the upper to the lower overcenter
state by the action of locking springs, thereby reaching a
downlock state. The lock links are equipped with a stop block
to prevent excessive downward folding. Eventually, the
landing gear stops at the deployed position to complete the
locking procedure.

2.1. Coordinate Transformation. Since the rotation plane of
the main strut is not in the same plane as the sidestay, it
can hardly analyze the mechanism in the same coordinate
system. Owing to the fact that the motion of the sidestay is
always within the same plane [6, 26], the mechanism model
can be divided into different coordinate systems to describe

the motion of the main strut and sidestay. The transforma-
tion matrix is employed to accomplish the data exchange
between them.

Figure 3 presents the establishment of the coordinate sys-
tems. In the global coordinate system O − XYZ, the origin O
is the intersection between the main strut and the axis 3; the
X-axis is parallel to axis 3 (positive forward); the Z-axis is
aligned with the gravity vector (positive down); and the
direction of the Y-axis is determined by the right-hand rule.
In the local coordinate system o − xyz, the origin o is the
intersection point of four axes (axes 1-4); the y-axis is the
direction of axis 2; the z-axis is defined to be perpendicular
to the y-axis within the sidestay plane; and the direction of
the x-axis is determined by the right-hand rule.

With the operation of the landing gear, the main strut
rotates about the X-axis, and the sidestay plane rotates about
the y-axis. Accordingly, the total transformation matrix T for
the global-to-local coordinate system is

T = T0 ⋅ T1, ð1Þ

where T0 is the transformation matrix of the global to the
local coordinate system in the initial state (extended, locked
position) and T1 is the transformation matrix of the local
coordinate system rotating about the y-axis.

In the initial state, given the presence of both transla-
tional and rotational transformations during the global-
to-local system conversion, the homogeneous coordinate
transformation is adopted herein. Let e1 = ½e11 e12 e13�T and
e2 = e21 e22 e23½ �T be the base vectors in the global and
local systems, respectively, and oO be the vector of origin O
in the local system; then,

T0 =
e1 ⋅ e2T oOT
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Figure 3: A certain 3D landing gear mechanism.
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Assuming α is the rotation angle of local system about the
y-axis, then

T1 =

cos α 0 sin α 0
0 1 0 0

−sin α 0 cos α 0
0 0 0 1

2
666664

3
777775: ð3Þ

2.2.Motion Constraint Equations. In Figure 4, the schematic of
the landing gear mechanism is presented. The constraint rela-
tions between various links can be derived from eight variables
ðXi, Yi, Zi,Θi, xi, yi, zi, and θiÞ , where ðXi, Yi, ZiÞ and ðxi, yi,
ziÞare the global and local coordinates of the gravity center
of the i-th link, respectively; Θi denotes the angle between
the i-th link and the Z-axis (specifically, Θ1 is the retraction
angle of the main strut); and θi is the angle between the i-th
link and the y-axis.

Since the global and local coordinates can be intercon-
verted through the coordinate transformation, the position
of various links can be identified independently with ðXi, Yi,
Zi,ΘiÞ or ðxi, yi, zi, θiÞ . There are twenty independent geo-
metric variables for the SS mechanism. As the analysis
reveals, the mechanism has nineteen independent constraint
equations (see Equation (4) and Table 3 in the Appendix), so
the degree of freedom (DOF) is one.

X1
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x2

y2 − 0:5l2 ⋅ cos θ2 − yA
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y4 + 0:5l4 ⋅ cos θ4‐y2 − 0:5l2 ⋅ cos θ2
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y5‐0:5l5 ⋅ cos θ5‐yE
z5 − 0:5l5 ⋅ sin θ5‐zE
y3 + 0:5l3 ⋅ cos θ3‐yC
z3 + 0:5l3 ⋅ sin θ3‐zC
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= 0, ð4Þ

where li denotes the length of the i-th link; y∗, z∗ denote the
local coordinates of the points ∗ (points A/C/E in Figure 4),
which can be derived from the node parameters as follows:

yA
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zE

2
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3
777777777775
=

yF + lAF ⋅ cos φAF

lAF ⋅ sin φAF

yG‐lCG ⋅ cos φCG

zG‐lCG ⋅ sin φCG

yH‐lEH ⋅ cos φEH

zH‐lEH ⋅ sin φEH

2
666666666664

3
777777777775
, ð5Þ

where lAF, lCG, lEH denote the node lengths and φAF, φCG, φEH
denote the angles between the node axes and the y-axis.
Meanwhile, the local coordinates of points G and H are
obtained through coordinate transformation as follows:
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2.3. Bifurcation Equation of Mechanism Motion. Given the
one DOF of the 3D mechanism, Θ1 is selected as the inde-
pendent control parameter, while the other variables can be
regarded as the state variables. Accordingly, Equation (4)
can be rewritten as

F x, λð Þ = 0, ð8Þ
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Figure 4: Schematic diagram of the 3D landing gear mechanism.

4 International Journal of Aerospace Engineering



where x = ðX1, Y1, Z1, x2, y2, z2, θ2,⋯,x5, y5, z5, θ5Þ and λ =
Θ1.

Equation (8) expresses the variation of state parameter x
with the bifurcation control parameter λ, which is called the
bifurcation equation of the 3D mechanism. Utilizing this
equation, the bifurcation characteristics of the mechanism
can be analyzed.

3. Analysis of the SS Landing Gear Mechanism

3.1. Bifurcation Analysis. The retraction and extension pro-
cesses of the landing gear can be simulated through numeri-
cally continuing Equation (8), and the variation of state
parameters (e.g., the overcenter angle θoc = θ4‐θ5 of lock
links) with the control parameter Θ1 can be derived, as
shown in Figure 5. For convenience of observation, the kine-
matic sketches of the mechanism are given in Figure 6, which
correspond to various points in Figure 5.

In Figure 5, the motion bifurcation curve is symmetrical
about θoc = 0. The upper half of the curve represents the
upward folding of lock links (U1, U2, and S1), while the
lower half represents their downward folding (D1, D2, and
S3). Three bifurcation points (S1, S2, and S3) appear in the
figure, at which two types of motion trends of links are pres-
ent. As the landing gear extends, it moves along the curve
from U1 to U2. At the beginning, Θ1 changes drastically,
while θoc changes a little. On the contrary, when the landing
gear gets close to the deployed state,Θ1 is almost unchanged,
while θoc changes drastically. Bifurcation occurs when the
landing gear moves to the point S1, and two motion branches
appear, which correspond to the two motion trends of side-
stay links (the dashed lines in Figure 6(c)). The point S1 cor-
responds to the collinear position of upper and lower sidestay
links. At this time, Θ1 is the smallest, implying that the main
strut is extended to the farthest position. By the favorable
action of locking springs, the landing gear will move to point
S2, at which the upper and lower lock links are collinear. Sim-
ilarly, two motion branches appear when the mechanism
moves to S2, which correspond to the two motion trends of
lock links (the dashed lines in Figure 6(d)). When moving

to S3 by the action of springs, the upper and lower sidestay
links are collinear again, and the lock links are folded down.
The appearance of two motion branches of sidestay links is
noted (the dashed lines in Figure 6(g)). Generally, the landing
gear is provided with a stop block here to prevent further
downward motion of lock links, so it is impossible to reach
the states D1 and D2 in reality.

3.2. Singularity Analysis. Derivation of Equation (8) with
respect to time yields is as follows:

Ax: + B λ
:

= 0, ð9Þ

where A = ∂F/∂x and B = ∂F/∂λ. Let J = ‐A‐1 ⋅ B; then,

x: = J ⋅ λ
:

: ð10Þ

When the mechanism is in a singular position, det
ðAÞ = 0 [27], i.e., det ðJÞ⟶∞. Since the bifurcation points
of a mechanism must be in a singular position [28], the
points S1, S2, and S3 are the singular positions of the landing
gear mechanism.When considering the locking status of lock
links, Equation (10) can be rewritten as

θ
:

oc = J ⋅Θ
:

1: ð11Þ

It can be seen from Equation (11) that in the vicinity of
singular positions, due to J ⟶∞, the lock link speed θ

:

oc
is considerably high even if Θ

:

1 is very low. Accordingly, the
lock links undergo a quick jump when the landing gear is
close to locking. The slope of the curve in Figure 5 can be
derived as

k = ∂θoc
∂Θ1

= ∂θoc/∂t
∂Θ1/∂t

= θ
:

oc

Θ
:

1
: ð12Þ

The equation of k = J can be derived from Equations (11)
and (12). That is, the value of J corresponds to the slope of
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Figure 5: Bifurcation curve of the 3D SS landing gear ((b) presents an enlarged view of the rectangular frame in (a)).
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motion trajectory in Figure 5. Meanwhile, using the principle
of virtual work and combining with Equation (11), Equation
(13) can be obtained.

M1 = J ⋅Moc, ð13Þ

whereM1 denotes the external moment of the main strut and
Moc denotes the internal moment of lock links (centered on
the intersection of the lock links).

In the unlocking process of the landing gear, the sidestay
links and lock links must be folded. Since the stop block
restricts the downward folding of lock links, the lock links
can only be folded upwards. Unlocking is impossible to
achieve without unlocking the actuator force at the singular
points (Figure 7). If the unlocking force is not provided, over-
coming the drag load from the upward folding of lock links
will be required. This drag load is the equivalent moment
Moc of locking springs. From Equation (13), it is clear that
J ⋅Moc ⟶∞ when J ⟶∞. In theory, the landing gear
can be unlocked only when the external moment M1 is infi-
nite. In other word, the landing gear will never be unlocked
at the singular point. Therefore, the singular feature can be
exploited to lock the landing gear near the singular point.

3.3. Analysis of Locked Position. As is clear from the above
analysis, the landing gear should be locked near a singular
position. A total of three singular positions are present. This
section analyzes at which singular position the landing gear
should be locked.

The overcenter angle of sidestay links is defined as θd =
θ2‐θ3. Figure 8 shows the curves obtained by numerically
continuing Equation (8), where θd is used as the state param-
eter andΘ1 is used as the control variable. The black line rep-
resents the upward folding of lock links (U1, U2, and S1),
whereas the grey line represents the downward folding of
lock links (D1, D2, and S3). The black and grey lines overlap

each other. Corresponding to Figures 5 and 6, there are three
singular points on the motion trajectories. The point S2 is at
the intersection of black and grey lines.

The landing gear is highly likely to vibrate during the air-
craft take-off, landing, and taxiing [29, 30], so the downlock
mechanism must possess a certain function of perturbation
resistance. The stop block, as the important component of
the downlock mechanism, is mainly used to prevent the
excessive motion of lock links. Eventually, the landing gear
is locked by the stop block. The locked position can be con-
trolled by setting up the stop block, which is generally
arranged at the lock links. To achieve complete locking, the
motion of lock links must be restricted in both upward and
downward directions. The stop block restricts the downward
motion of lock links, while the upward motion is restricted by
the structural design and locking springs. In this process, the
unlocking of the downlock mechanism can be avoided.

The locked position of landing gear can be analyzed
based on Figure 8 combined with Figure 6.

U1

(a)

U2

(b)
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Figure 6: Sketches of the retraction and extension motion of a landing gear: (a) U1; (b) U2; (c) S1; (d) S2; (e) D1; (f) D2; (g) S3.
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Figure 7: Load analysis at the singular position of landing gear.
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(1) In case the landing gear is locked at the point S1, the
stop block will restrict the further downward folding
of the lock links and sidestay links. At this time, the
upper and lower sidestay links are collinear, while
the lock links are in the upper overcenter state. When
the sidestay links are subjected to a perturbation to
leave the collinear state, they will drive the lock links
to fold upward and get unlocked. As is clear from
Figure 8, when the sidestay links are subjected to a
perturbation of Δθd > 0, the landing gear will leave
the singular point S1, thereby resulting in unlocking

(2) In case the landing gear is locked at the point S2, the
stop block will restrict the downward folding of the
lock links. At this time, the upper and lower lock links
are collinear. It is not difficult to find that when the
lock links are subjected to a perturbation to leave
the collinear state, they will drive the sidestay links
to make Δθd > 0. Thus, the landing gear will leave
the singular point S2, resulting in unlocking. Further-
more, according to the force transmission relation-
ship, the lock links need to bear ground load, which
will compromise the reliability of the downlock
mechanism [31]

(3) In case the landing gear is locked at the point S3, the
stop block will restrict the downward folding of lock
links and the upward folding of sidestay links. At this
time, the upper and lower sidestay links are collinear
again, while the lock links are in the lower overcenter
state. When the sidestay links are subjected to a
downward perturbation of Δθd < 0, the lock links will
leave point S3 and move to point S2. Although the
landing gear will not be unlocked since the lock links
will not go beyond point S2, the main strut may rotate
due to the perturbation. To diminish the rotation
angle, the value of ðθocÞS3 should not be excessively
large in the deployed state. According to Figure 5,
the landing gear is designed to have ðθocÞS3 = 2°.

To sum up, the locked position of the landing gear should
be at the point S3. As described in the foregoing analysis,

when the landing gear is at the singular position, the main
strut is unable to move regardless of how large the load of
the retraction actuator is. If the landing gear is locked at the
point S3, it needs to pass the singular points S1 and S2. At this
time, the action of locking springs assists in passing the sin-
gular points, so that the landing gear does not return along
the original trajectory.

3.4. Effects of Structural Parameters on the Locked Position.
Once the installation location of the landing gear is decided,
the link length parameters will directly affect its locked posi-
tion (point S3). With changes in the link lengths, the number
of singular points also changes accordingly. Thus, selecting
appropriate link lengths to ensure the smooth and complete
locking of the landing gear is necessary. When considering
the effects of link lengths on the point S3, Θ1 can be treated
as a fixed parameter (Θ1 = 0), where θoc is used as the state
parameter, and the link lengths l2 and l4 are used as the control
parameters. Figure 9 presents the variation curves of the sin-
gular point S3 through numerically continuing Equation (8).

The singular points exhibit a consistent variation trend
with the link lengths in the two subfigures. As l2/l4 decreases,
the points S1 and S3 come together and disappear at the
point SN. A new bifurcation point SN appears. As described
in the previous section, the landing gear should be locked at
the point S3. If the link lengths are decreased past the point
SN, the point S3 will disappear, which means failure of lock-
ing. Therefore, the feasible range of l2 > 549:9mm or l4 >
249:9mm should be selected to accomplish the locking of
the landing gear. In addition, it is clear that l4 is more sensi-
tive to the influence of θoc.

In actuality, the point SN corresponds to the state of
θoc = θd = 0, as shown in Figure 10(b). The state wherein link
lengths are not in the feasible range is shown in Figure 10(a).
In this scenario, the landing gear cannot be locked in the
deployed position. The point SN is determined jointly by
the link lengths. When one of the parameters is changed,
the remaining several parameters may also undergo corre-
sponding changes. Their mutual coupling together influences
the landing gear locked position. For a more detailed analysis
of the effects of link lengths, it can be computed directly by
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Figure 8: Bifurcation curves for variation of θd with Θ1.
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using two-parameter continuation, thereby obtaining a two-
parameter continuation of the point SN locus, as shown by
the black line in Figure 11. Figure 11(a) is a 3D view, and
Figure 11(b) is the projections of the black curve in the l2‐l4
plane. With changes in the parameters, the bifurcation point
SN changes accordingly, which in turn affects the point S3 as
well as the locked position.

From Figure 11(b), it is clear that when the values of l2
and l4 locate at the left side of the black curve, points S1
and S3 are absent, implying that the landing gear cannot be
locked at the S3 position. In contrast, when the values of l2
and l4 locate at the right side of black curve, points S1 and
S3 are present, and the landing gear can be fully locked. Con-
sequently, the right side of the curve is the feasible region of
link lengths.

The research on the SS landing gear suggests that the
lock links must be folded down, in order to achieve full lock-
ing. For the SS landing gear, the downward folding motion
of lock links will not be hindered due to the promotion by
locking springs. In the case of the DS landing gear, however,
the sidestay links on both sides may affect each other. Even
with the beneficial effect of locking springs, it is highly likely
that lock links on the one side undergo locking failure.
Hence, the next section carries out research focusing on
the DS landing gear.

4. Analysis of DS Landing Gear Mechanism

Compared to the SS landing gear, the DS landing gear will
encounter difficulty in synchronous locking of fore and aft
sidestays if the additional sidestay is unreasonably designed.
An obvious conclusion is that if the fore and aft sidestays are
fully symmetrical, their motion trajectories will completely
overlap. However, since the ground load needs to be trans-
ferred separately to the fuselage and wing via the two side-
stays, full symmetry of sidestays can hardly be achieved
due to the difference in attachment points. In case the unrea-
sonable design of structural parameters causes mutual
restriction between the fore and aft sidestays, incomplete
locking will be unavoidable. Thus, the motion coordination
between the two sidestays appears particularly important.

4.1. Constraint Equations of DS Landing Gear. Figure 12 plots
the schematic diagrams of a DS landing gear mechanism.
Clearly, the mechanism comprises nine links, which has
thirty-six independent geometric variables, and thirty-five
independent constraint equations, as shown in the appendix.
Compared to the SS mechanism, the number of constraint
equations increases by sixteen. The superscripts f and a rep-
resent the relevant parameters of fore and aft sidestays,
respectively, and the definitions of other parameters are con-
sistent with those of the SS landing gear.

4.2. Singularity Analysis of DS Landing Gear. The retraction
and extension processes of the DS landing gear can be simu-
lated through numerically continuing the constraint equa-
tions, and the singular points and bifurcation curves of two
sidestays can be derived, as shown in Figure 13. The ordinate
θoc denotes the difference between angles of lock links, which
is θoc = θ4 − θ5 for the fore lock links and θoc = θ8 − θ9 for the
aft lock links.

Figure 13 shows the relationship between θoc and the
retraction angle, where the grey and black lines represent
the motion trajectories of the fore and aft lock links, respec-
tively. The fore sidestay has three singular points (S1f, S2f,
and S3f). In contrast, the aft sidestay has only one singular
point (S1a). It can be seen intuitively that the fore lock links
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Figure 9: Variations of points S1 and S3 with the link length parameters.
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Figure 10: Landing gear mechanism corresponding to the vicinity
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can move to the area of θoc < 0, while the aft lock links only
move within the area of θoc > 0. This indicates that the fore
lock links can be locked, while the aft lock links cannot be
locked. To better explain the motion of the studied landing
gear, Figure 14 provides the kinematic sketches of mecha-
nism that correspond to various points in Figure 13.

In Figure 14, the grey lines represent the fore sidestay,
whereas the black lines represent the aft sidestay. It is not
difficult to find that the sketches of fore and aft sidestays
are similar in Figures 14(a)–14(c). When the fore sidestay
reaches the singular point S2f, the aft sidestay moves to
point A2a, as shown in Figure 14(d). At this time, the fore
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Figure 11: Bifurcation point SN variation under two-parameter continuation.
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lock links are collinear, while the aft lock links are still in
the upper overcenter state. By the beneficial action of lock-
ing springs, the fore sidestay reaches the singular point S3f,
while the aft sidestay can only return to the singular point
S1a, as shown in Figure 14(g). As a result, only the fore
sidestay is locked. Due to stop block, the landing gear does
not move to the states shown in Figures 14(e) and 14(f) in
reality.

To explain the reason that the aft sidestay cannot be fully
locked, numerical continuation independently on the fore
and aft sidestays is performed, as shown in Figure 15.

According to Figure 15, the motion trajectory of the aft
sidestay also has three singular points when the two sidestays
are computed separately, with S2a appearing later than S2f.
When the landing gear reaches the point S1f(S2a), the main
strut rotates to the farthest end, then begins to move back-
wards. At the time the fore sidestay reaches the point S2f,

the main strut has moved backwards to the farthest position
(Figure 14(d)). To allow the aft sidestay to reach the S2a

point, the main strut needs to move continuously backwards
to a position farther than S2f. However, such motion is
restricted by the fore sidestay, thereby creating a contradic-
tion in motion coordination. Precisely, this contradiction of
mutual restriction between the fore and aft sidestays is the
fundamental reason why the DS landing gear is unable to
be fully locked. To achieve complete locking, the retraction
angle corresponding to the singular points S2f and S2a must
be identical (i.e., ðΘ1ÞS2 f = ðΘ1ÞS2a).

4.3. Effects of Link Length Parameters on the Synchronous
Locking. In this section, the effects of link lengths on the sin-
gular points S2f and S2a are analyzed. It can be seen from
Figure 15 that θfoc and θaoc are equal to zero at the points S2f

and S2a. Hence, when considering the effects of points S2f

and S2a, the parameters θfoc and θaoc can be used as the fixed
parameters (θfoc = θaoc = 0), where Θ1 is used as the state
parameter, and the link lengths are used as the control
parameters. Figure 16 plots the analytical results.

In Figure 16, the grey solid lines represent the influence
of l2 and l4 on the singular point S2f, while the black dashed
lines represent the influence of l6 and l8 on the singular
point S2a. It is clear that the singular points exhibit gener-
ally consistent trends of variation with the link lengths. As
described in the previous section, the synchronous locking
can only be achieved when ðΘ1ÞS2 f = ðΘ1ÞS2a . So once the
value of Θ1 is determined (e.g., Θ1 = 0:1°), the link lengths
can be obtained intuitively, as shown by the dotted lines in
Figure 16. The effects of variations in other link lengths can
be analyzed in a similar way, which are thus not detailed
herein.

Although changing the link lengths can yield ðΘ1ÞS2 f =
ðΘ1ÞS2a , it also changes the θfoc and θaoc in a deployed state.
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Figure 14: Sketches of DS mechanism motions: (a) U1f(U1a); (b) U2f(U2a); (c) S1f(S1a); (d) S1f(A2a); (e) D1f(U1a); (f) D2f(U2a); (g) S3f(S1a).
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Hence, a comprehensive consideration of the link lengths is
needed based on multiple parameters.

4.4. Optimization of Synchronous Locking. In this section, an
optimization is carried out to accomplish fully locking of the
DS landing gear via the PSO, which is achieved by integrating
ISIGHT with MATLAB for cosimulation analysis. Through
optimization of link lengths, the fore and aft sidestays can
be locked synchronously. PSO is a population-based optimi-
zation algorithm proposed by Kennedy and Eberhart [32] in
1995, who got inspiration from birds hunting for food. It
initializes a system with a substantial number of random
solutions and performs search for the optimal solution by
updating generations. The PSO algorithm features very
high probability of convergence to a global optimal solu-
tion, very fast computation, and strong global search ability.
Existing research and applications indicate that PSO is a
promising and effective optimization method [33–35].
Hence, the PSO algorithm is used for the optimization pur-
pose in this paper.

As suggested in the foregoing analysis, θfoc and θ
a
oc should

not be excessively large when the landing gear is locked.
Thus, the invariant overcenter angles of the lock links is used
as one of the constraints, i.e., ðθfocÞS3 f = ðθaocÞS3 f = 2°. LetΔΘ =
jðΘ1ÞS2 f ‐ðΘ1ÞS2a j; then, the synchronous locking of fore and
aft sidestays necessitates ΔΘ = 0. The smaller the value of Δ
Θ, the lesser the mutual restraint effect between the fore and
aft sidestays. Accordingly, the optimization objective is set as
min ΔΘ. The optimization variables are the lengths of various
links. Due to the constraints, there are only four independent
optimization variables, i.e., liði = 2, 4, 6, 8Þ.

In Figure 17, the cosimulation-based optimization pro-
cess is displayed, where the operators include the ISIGHT
algorithmmodule and the MATLAB numerical continuation
module. As a first step, the ISIGHT generates a set of initial
parameters li based on the PSO algorithm and then passes
the parameters to the MATLAB module. Afterwards, the
MATLAB calculates the bifurcation points of the fore and

aft sidestays based on the numerical continuation, as well as
ΔΘ, ðθfocÞS3 f , and ðθaocÞS3 f , which are then transferred back
to the ISIGHT. Finally, the ISIGHT identifies the optimal
results that conform to the constraints.

Since the change in link lengths leads to changed solu-
tions of constraint equations, the starting point that sat-
isfies the constraint equations is solved initially based on
the PSO algorithm. To reduce the computational burden,
the solution at Θ1 = 5° is chosen as the starting point.
Afterwards, the singular points S2f and S2a are obtained
through the parameter continuation analysis for reducing
Θ1, and the corresponding Θ1 is identified. Finally, ΔΘ
is solved.

Based on the consideration of the mechanism motion
interference, the optimization variables are set to l2 ∈ ½450
mm, 650mm� and l6 ∈ ½450mm, 650mm�, and the lock link
lengths are set to l4 ∈ ½200mm, 300mm� and l8 ∈ ½200mm,
300mm�. The optimization results are shown in Tables 1
and 2 and Figure 18.

According to the optimization results in Figure 18, the
points S2f and S2a are almost completely coincident, which
allow simultaneous locking of the fore and aft sidestays,
respectively, at S2f and S2a. When the two sidestays are in a
locked state, the angle between lock links remains constant
at 2°.
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Figure 16: Curves describing the effects of link lengths on the second singular point.
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5. Conclusion

A bifurcation theory-based method for analyzing the kine-
matics of sidestay landing gear locking mechanisms is pro-
posed in this paper. Initially, the simple single-sidestay (SS)
mechanism is analyzed, and then, the complex dual-
sidestay (DS) mechanism is investigated based on SS. The
main conclusions are as follows:

(1) Based on the bifurcation theory and singularity, the
locked position of the SS landing gear is analyzed,
clarifying that the lock links must be at the singular
point of a lower overcenter angle, in order to achieve
fully locking. Besides, the effect of link lengths on the
locked position is analyzed, concluding that the link
lengths should be within a feasible range

(2) For DS, the presence of an additional sidestay poses an
adverse impact on the downward folding motion of
lock links. The kinematic cause underlying the adverse
impact is analyzed. Owing to the different positions of
singular points, the movements of fore and aft side-
stays seriously restrict each other, causing locking
failure of the DS landing gear

(3) A kinematic optimization method for the synchro-
nous locking of the DS landing gear is proposed. This
study indicates that the full locking of the DS gear is
achievable on condition that the overcenter angle of
lock links is invariant.

Table 1: Synchronous locking optimization results.

l2 l4 l6 l8 ΔΘ

Before 550mm 250mm 550mm 250mm 7:72e − 08°

Optimization 532.4655mm 258.8501mm 538.6727mm 288.9462mm 2:24e − 10°

Table 2: Synchronous locking optimization results (other parameters).

l3 l5 l7 l9
Before 550mm 260mm 550mm 260mm

Optimization 567.5345mm 261.2052mm 561.3273mm 227.5027mm
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Figure 18: Singular points of dual-sidestay links after optimization.

Table 3: Parameters of the SS landing gear.

Parameters Values

l1 (mm) 1800

l2 (mm) 550

l3 (mm) 550

l4 (mm) 250

l5 (mm) 260

αð ÞΘ1=90 (deg) 115.3917

lAF (mm) 98.6181

lCG (mm) 60

lEH (mm) 40

φAF (deg) 130.0157

φCGð ÞΘ1=0 (deg) 125

φEHð ÞΘ1=0 (deg) 105

oO (mm) (-69.2820, 39.1058, 8.4104)

e21ð ÞΘ1=0 (mm) (0.8660, -0.5000, 0)

e22ð ÞΘ1=0 (mm) (0.4888, 0.8467, 0.2103)

e23ð ÞΘ1=0 (mm) (-0.1051, -0.1821, 0.9776)

Gð ÞΘ1=0 (mm) (105, 43.3013, 1000)

Hð ÞΘ1=0 (mm) (92.5, 21.6506, 500)
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Appendix
The motion constraint equations of the DS landing gear are
as follows (Tables 3 and 4):

X1

Y1‐0:5l1 ⋅ cos Θ1

Z1‐0:5l1 ⋅ sin Θ1

xf2

yf2 − 0:5l2 ⋅ cos θ
f
2 − yfA

zf2 − 0:5l2 ⋅ sin θf2 − zfA

xf3

yf3 − 0:5l3 ⋅ cos θ
f
3‐y

f
2 − 0:5l2 ⋅ cos θ

f
2

zf3 − 0:5l3 ⋅ sin θf3‐z
f
2 − 0:5l2 ⋅ sin θf2

xf4

yf4 + 0:5l4 ⋅ cos θ
f
4‐y

f
2 − 0:5l2 ⋅ cos θ

f
2

zf4 − 0:5l4 ⋅ sin θf4‐z
f
2 − 0:5l2 ⋅ sin θf2

xf5

yf5 + 0:5l5 ⋅ cos θ
f
5‐y

f
4 + 0:5l4 ⋅ cos θ

f
4

zf5 − 0:5l5 ⋅ sin θf5‐z
f
4 + 0:5l4 ⋅ sin θf4

yf5‐0:5l5 ⋅ cos θ
f
5‐y

f
E

zf5 − 0:5l5 ⋅ sin θf5‐z
f
E

yf3 + 0:5l3 ⋅ cos θ
f
3‐y

f
C

zf3 + 0:5l3 ⋅ sin θf3‐z
f
C

xa6

ya6 − 0:5l6 ⋅ cos θa6 − yaI

za6 − 0:5l6 ⋅ sin θa6 − zaI

xa7

ya7 − 0:5l7 ⋅ cos θa7‐ya6 − 0:5l6 ⋅ cos θa6
za7 − 0:5l7 ⋅ sin θa7‐za6 − 0:5l6 ⋅ sin θa6

xa8

ya8 + 0:5l8 ⋅ cos θa8‐ya6 − 0:5l6 ⋅ cos θa6
za8 − 0:5l8 ⋅ sin θa8‐za6 − 0:5l6 ⋅ sin θa6

xa9

ya9 + 0:5l9 ⋅ cos θa9‐ya8 + 0:5l8 ⋅ cos θa8
za9 − 0:5l9 ⋅ sin θa9‐za8 + 0:5l8 ⋅ sin θa8

ya9‐0:5l9 ⋅ cos θa9‐y
f
P

za9 − 0:5l9 ⋅ sin θa9‐z
f
P

2
6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666664

ya7 + 0:5l7 ⋅ cos θa7‐y
f
M

za7 + 0:5l7 ⋅ sin θa7‐z
f
M

� = 0, ðA:1Þ

Table 4: Parameters of the DS landing gear.

Parameters Values

l1 (mm) 1800

l2 (mm) 550

l3 (mm) 550

l4 (mm) 250

l5 (mm) 260

αf
� �

Θ1=90
(deg) 115.3917

l6 (mm) 550

l7 (mm) 550

l8 (mm) 250

l9 (mm) 260

αað ÞΘ1=90 (deg) 111.4145

lAF (mm) 98.6181

lCG (mm) 60

lEH (mm) 40

φAF (deg) 130.0157

φCGð ÞΘ1=0 (deg) 125

φEHð ÞΘ1=0 (deg) 105

lIQ (mm) 98.6181

lMR (mm) 60

lPS (mm) 40

φIQ (deg) 130.0157

φMRð ÞΘ1=0 (deg) 125

φPSð ÞΘ1=0 (deg) 105

of
O (mm) (-69.2820, 39.1058, 8.4104)

ef21
� �

Θ1=0
(mm) (0.8660, -0.5000, 0)

ef22
� �

Θ1=0
(mm) (0.4888, 0.8467, 0.2103)

ef23
� �

Θ1=0
(mm) (-0.1051, -0.1821, 0.9776)

Gð ÞΘ1=0 (mm) (105, 43.3013, 1000)

Hð ÞΘ1=0 (mm) (92.5, 21.6506, 500)

oaO (mm) (65.5322, -44.8604, 9.6280)

ea21ð ÞΘ1=0 (mm) (0.8192, -0.5736, 0)

ea22ð ÞΘ1=0 (mm) (-0.5608, 0.8008, 0.2103)

ea23ð ÞΘ1=0 (mm) (0.1206, -0.1722, 0.9776)

Rð ÞΘ1=0 (mm) (-108.6788, 40.9576, 1000)

Sð ÞΘ1=0 (mm) (-94.3394, 20.4788, 500)
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where

yfA

zfA
yfC

zfC

yfE

zfE

yaI

zaI
yaM

zaM

yaP

zaP

2
66666666666666666666666666666664

3
77777777777777777777777777777775

=

yfF + lAF ⋅ cos φAF

lAF ⋅ sin φAF

yfG‐lCG ⋅ cos φCG

zfG‐lCG ⋅ sin φCG

yfH‐lEH ⋅ cos φEH

zfH‐lEH ⋅ sin φEH

yaQ + lIQ ⋅ cos φIQ

lIQ ⋅ sin φIQ

yaM‐lMR ⋅ cos φMR

zaM‐lMR ⋅ sin φMR

yaP‐lPS ⋅ cos φPS

zaP‐lPS ⋅ sin φPS

2
66666666666666666666666666666664

3
77777777777777777777777777777775

,

xfG

yfG

zfG

1

2
6666664

3
7777775
= T f ⋅

XG

YG

ZG

1

2
666664

3
777775,

xfH

yfH

zfH

1

2
6666664

3
7777775
= T f ⋅

XH

YH

ZH

1

2
666664

3
777775,

xaM

yaM

zaM

1

2
666664

3
777775 = Ta ⋅

XM

YM

ZM

1

2
666664

3
777775,

xaP

yaP

zaP

1

2
666664

3
777775 = Ta ⋅

XP

YP

ZP

1

2
666664

3
777775: ðA:2Þ

Notations

T0, T1, T: Transformation matrix of the global coordi-
nate system to the local system

lAF, lCG, lEH: The node lengths
li: The length of link i
e1, e2: The base vectors in the global and local

coordinate systems

xi, yi, zi: The local coordinate values at the center of
gravity of the i-th link

Xi, Yi, Zi: The global coordinate values at the center of
gravity position of the i-th link

lAF, lCG, lEH: The node lengths
φAF, φCG, φEH: The angles of node axes with respect to the y

-axis of local coordinates
Θi: The angle of the i-th link with respect to the

Z-axis of global coordinates
θi: The angle of the i-th link with respect to the y

-axis of local coordinates
α: The rotation angle of local coordinate system

about the y-axis
θd: Overcenter angle of sidestay links
θoc: Overcenter angle of lock links
y∗, z∗: The local coordinate values at the positions

of node ∗
Superscript f: The relevant parameters of fore sidestay
Superscript a: The relevant parameters of aft sidestay.
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