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During emergency return or mission change, the boost-glide vehicle needs to meet the nonregular reachable area constraints
(NRACs). Therefore, this paper introduced NRACs into boost-phase trajectory planning to extend the maneuvering range and
enhance the mission adaptability of boost-glide vehicle. Firstly, the library of the reachable area boundaries was constructed
with the fast computation method under the deviations of boost terminal states, and the polynomials were used to fit the
boundary parameters. Secondly, the nonlinear mapping relationship between the reachable area boundary parameters and the
deviations of boost terminal states was obtained by the deep neural networks (DNNs). Then, the new boundary parameters
were obtained by the constraint transformation rules under NRACs and the separation window constraints and transformed
into the constraints of the boost-phase terminal states by DNNs. Finally, the hp-adaptive pseudospectral method (hpPM) was
adopted to complete the trajectory planning considering the path and terminal constraints. The simulation results showed that
the proposed trajectory planning method considering NRACs had high trajectory planning accuracy and good deviation
adaptability and exhibited excellent performance in the adjustment of reachable area. This study provides theoretical support
for integrate mission decisions and trajectory planning of boost-glide vehicles.

1. Introduction

Proposed by X. S. Qian in 1948, boost-glide vehicles, charac-
terized with high lift-to-drag ratio, high altitude and velocity,
and large flight envelope, are capable of long-range maneu-
vering, defense penetration, and target changing [1]. Diversi-
fied launch modes and multistage boosters have greatly
expanded the glider’s application scope. In particular, the
air-based launch mode allows the glider to quickly obtain
the initial states in a specified direction, which brings great
convenience for mission expansion. To reach the designated
mission area precisely, suitable initial conditions of the
glider are required for the boost-phase trajectory planning.
Compared with the gliding phase, the boost phase is charac-
terized by shorter flight time and weaker mobility, and it can
significantly affect the reachable area by changing the initial
conditions of the glider. Therefore, boost-phase trajectory
planning has become one of the critical technologies affect-
ing mission reachability.

Under the preset separation conditions, boost-glide
vehicles only depend on the gliding phase trajectory plan-
ning to meet the landing point constraints. In the case of
emergency return of lift-body spacecraft with a booster
during the ascending phase or in the case of the terminal
mission change of the boost-glide vehicle during the boost
stage, the spacecraft or the vehicle needs to meet the tem-
porary constraints of terminal reachable area, and the
adjustment ability of the gliding phase may not be enough
to meet the constraints. Therefore, the authors consider
using the remaining fuel in the booster to replan the
boost-phase trajectory, make the glider reach more appro-
priate separation conditions, and make full use of the
maneuverability of different flight phases to meet the ter-
minal constraints. At the same time, the boost-phase tra-
jectory is affected by the initial state of the vehicle, the
combined action of aerodynamic force and engine thrust,
and the environmental disturbances and needs to satisfy
various constraints such as process state quantity, control
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angle, angular rate, and the quantity of terminal state
quantity. Therefore, boost-phase trajectory planning is a
complex practical problem to be addressed.

With the rapid development of trajectory optimization
theory [2–4], trajectory planning methods are mainly
divided into methods based on optimal control principle,
optimization theory, and artificial intelligence technology.
Among them, the methods based on optimization theory
have advantages in flexibility, but the online computing
performance under complex constraints needs to be
improved; the methods based on artificial intelligence tech-
nology have advantages in efficiency and adaptability [5].
The multiconstraint trajectory planning problem can be
better solved with the rapid development of optimization
theory and artificial intelligence technology [6]. In literature
[7], a full-phase optimization model of the boost-glide vehi-
cle was established, and the furthest range trajectory plan-
ning problem was solved via segment optimization. In
literature [8–10], the gliding-phase trajectory planning
problem satisfying the range and path constraints was
investigated. In literature [11], the orthogonal test method
was used to determine the optimal initial glide conditions
and effective results were obtained. However, the connec-
tion between the reachable area and the boost terminal
states was not established. In literature [12], the solution
of the reachable area was transformed into a series of lon-
gest ranges to the virtual target points, and the optimal
control theory and quasi-equilibrium glide condition were
adopted to turn the longest ranges into univariate iterative
problems, so that high computational accuracy and conver-
gence speed were obtained. However, the actual coverage
requirements were not considered in the boost-phase tra-
jectory planning.

DNNs/heuristic-based trajectory optimization algo-
rithms have been widely studied. In reference [13, 14], a
two-step strategy based on the trajectory optimization
method and DNN attitude controller was proposed, which
could better solve the problems in real-time attitude and
trajectory planning and control for hypersonic vehicles.
The desensitized/multiobjective trajectory optimization
method generated the optimal reentry trajectory. In con-
trast, DNNs were used to obtain the optimal control atti-
tude command matching the states, which could not
realize the feedback from the reachable area constraints
to the boost terminal states. Moreover, the thrust was
not considered in the optimization model, so it could
not be applied to the powered boost-phase trajectory opti-
mization. In reference [15], a stochastic trajectory optimi-
zation framework was proposed to solve chance
constraints, which could be used for the reentry trajectory
planning of hypersonic vehicles under noise-perturbed
dynamics and probabilistic constraints. In reference [16],
a hybrid optimization algorithm composed of an initial
value generator and an internal solver was proposed,
which showed improved the convergence and stability.
However, the algorithm proposed could not quickly calcu-
late and adjust the reachable area.

Although heuristic algorithms such as the multiobjective
genetic algorithm [17] and gray wolf algorithm [18] have

been widely studied and developed, the pseudospectral
method is still one of the mainstream algorithms applied
in the field of ascending trajectory planning [19]. On the
basis of the equivalence between the Karush-Kuhn-Tucker
(KKT) conditions of the parametric nonlinear program
problem (NLP) and the discrete Hamiltonian boundary
value problem (HBVP) [20], the Gaussian pseudospectral
method with higher accuracy and convergence speed has
been widely used in the boost-phase trajectory planning
[21, 22]. With ever-increasing solution scale of trajectory
planning problem under complex constraints in recent
years, the hp-adaptive discrete grid updating method has
been integrated into the Gaussian/Radau pseudospectral
method for trajectory planning [23].

To extend the maneuvering range of the boost-glide
vehicle and meet NRACs, parametric descriptions of the
reachable area, reachable area constraint transformation,
and the boost-phase trajectory planning were studied in this
paper. The main contributions of the work in this paper are
drawn from the following three aspects.

(1) The NRACs were introduced into the boost-phase
trajectory planning via constraint transformation to
extend the maneuvering range and enhance mission
adaptability

(2) A parametric method was designed to describe the
reachable area boundary of the boost-glider vehicle,
and DNNs were adopted to obtain the mapping rela-
tionship between the reachable area boundary and
the booster’s separation point states

(3) The energy equivalence principles were proposed to
deal with the separation window constraints, and
the hp-adaptive pseudospectral method was adopted
to plan the trajectory under path and terminal
constraints

The remainder of this paper is organized as follows.
Firstly, the problem formulation and methodological frame-
work are established in Section 2. Secondly, the reachable
area boundary library is established by the reachable area
fast calculation method under initial deviations of states
and environmental perturbations. And the boundaries of
the reachable area are parameterized by the polynomial in
Section 3. Next, constraints transformation rules, relational
mapping of deep neural networks, and energy equivalence
principles are proposed to transform the nonregular reach-
able area constraints into the terminal state constraints of
the boost phase in Section 4. Then, the hpPM is adopted
to plan the boost-phase trajectory under the path and termi-
nal constraints in Section 5. Finally, the simulation analyses
of the proposed method are carried out under the nonregu-
lar reachable area constraints in Section 6.

2. Problem Formulation and
Methodological Framework

2.1. Problem Formulation. The boost-glide vehicle has two
flight phases: the boost phase and gliding phase. The
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mathematical motion model of the boost phase can be estab-
lished in the launch coordinate system as follows [24].

where v denotes the velocity vector; x, y, and z denote the
three components of position, respectively; GB and GV
denote the transformation matrix from the body-fixed coor-
dinate system and velocity coordinate system to the launch
coordinate system, respectively; P denotes the engine’s
thrust; Cx, Cy , and Cz denote the drag, lift, and lateral force
coefficients, respectively; q and SM denote the dynamic pres-
sure and pneumatic reference area, respectively; r and ωe
(which can be decomposed into ωex, ωey, and ωez) denote
the geocentric vector diameter and earth rotation rate,
respectively; gr′ and gωe

denote the gravitational components
along the direction of the geocentric vector and the direction
of the earth’s rotation, respectively; g0 is the gravitational
acceleration at sea level; Isp is specific impulse; _m is engine
consumption per second.

The dynamics model of the gliding phase is given as fol-
lows [12].

_r = V sin γ,

_θ =
V cos γ sin ψ

r cos φ
,

_φ =
V cos γ cos ψ

r
,

_V = −
D
m

+ gr sin γ + gω sin γ sin φ + cos φ cos ψ cos γð Þ +

rω2
E cos φ cos φ sin γ − cos γ sin φ cos ψð Þ,
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L cos σ
mV

+
V
r
cos γ +

gr
V

cos γ +
gω

V
sin φ cos γ − cos φ cos ψ sin γð Þ +

2ωE sin ψ cos φ +
ω2
Er cos φ
V

cos φ cos γ + sin φ cos ψ sin γð Þ,

_ψ =
L sin σ

mV cos γ
+
V
r
cos γ sin ψ tan φ −

gω

V cos γ
cos φ sin ψ −

2ωE tan γ cos ψ cos φ − sin φð Þ + ω2
Er

V cos γ
sin ψ sin φ cos φ,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð2Þ

where r = Re + h; Re denotes the radius of the earth, and h is
the height; L and D denote the aerodynamic lift and drag,
respectively; θ and φ denote the latitude and longitude,

respectively; V is the velocity; γ and ψ denote the flight path
angle and heading angle, respectively.

The state equations of the boost terminal point need to
be introduced to ensure the continuity of the motion equa-
tion.

V =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x + v2y + v2z

q
,

r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x + R0xð Þ2 + y + R0y

� �2 + z + R0zð Þ2
q

,

φ = arcsin
r ⋅ ωe
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� �
,

θ = arctan
rdy
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� �
,

γ = arctan
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� �
,

ψ = arctan
vENUx
vENUy

 !
,

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð3Þ

where rdx and rdy denote the geocentric distance compo-
nents in the X and Y directions in the geocentric coordinate
system, respectively; vENUx and vENUy denote the velocity
vector components in the X and Y directions in the local
Cartesian coordinate coordinate system (ENU), respectively.

GD denotes the coordinate conversion matrix from the
launch coordinate system to the geocentric coordinate sys-
tem, GE denotes the coordinate conversion matrix from the
geocentric coordinate system to ENU. GD, GE, GB, and GV
can be represented as follows [24].

GD = Ly − 90° + A0ð Þð ÞLx φ0ð ÞLz − 90° − θ0ð Þð Þ,
GE = Lz 180°ð ÞLy 90°ð ÞLy −φð ÞLz θð Þ,
GB = Lx γað ÞLy ψað ÞLz φað Þ,GV = Lx νð ÞLy σvð ÞLz θvð Þ,

8>><
>>:

ð4Þ
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where LiðΔÞ, i = x, y, z is the direction cosine matrix of Δ
rotation about i axis; φa, ψa, and γa denote the pitch angle,
yaw angle, and roll angle, respectively; θv, σv, and ν denote
the trajectory inclination angle, trajectory deflection angle,
and velocity inclination angle, respectively; θ0, φ0, and A0
denote the initial latitude, longitude, and launch azimuth,
respectively.

2.2. Methodological Framework. The boost-phase trajectory
planning method considering NRACs proposed in this
paper mainly consists of six parts. ① Polynomial was
selected to parameterize the reachable area boundary
obtained by the fast calculation method. ② The constraint
transformation rules were proposed to calculate the new
reachable area boundary parameters under NRACs. ③

DNNs were trained for the relationship mapping between
the boost terminal states and the boundary parameters. ④
The initial values of the boost terminal states were obtained
by the trained DNNs and the new reachable area boundary
parameters. ⑤ Energy equivalence principles were proposed
for the optimal boost terminal states under the separation
window constraints. ⑥ The hpPM was used to plan the
boost-phase trajectory considering path and terminal con-
straints. Therefore, the methodological framework is shown
in Figure 1.

3. Parametric Description of the
Reachable Area

3.1. Fast Calculation Method of the Reachable Area. The
problem of the reachable area calculation can be decom-
posed into the issues on the longest ranges from the separa-
tion point to the virtual target points, as shown in Figure 2.
VT iði = 1, 2⋯ nÞ denotes the virtual target points; v0 is the
initial velocity direction of the vehicle; Fiði = 1, 2⋯ nÞ rep-
resents the longest ground projection points under the
energy management conditions, i.e., the farthest arrival
points.

When solving the issues on the longest range in the
reachable area solution, the earth rotation, oblateness, and

gravitational perturbation can be ignored, and the dynamic
equations can be simplified based on the quasi-equilibrium
glide condition.

_θ =
V sin ψ

cos ϕ
,

_ϕ = V cos ψ,

_V = −
1

CL/CD

1 −V2

cos σ
,

_ψ =
1
V

1 −V2� �
tan σ + V2 sin ψ tan ϕ

� �
,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð5Þ

where CL and CD denote the aerodynamic lift coefficient and
drag coefficient in the gliding phase, respectively.

The subproblem can be transformed into the following
optimal control form:

min Js =min −cos Sf
	 


,

_xs = f xs, u, tð Þ,
H = λθ

_θ + λϕ _ϕ + λV _V + λψ _ψ,

_λ = −
∂H
∂xs

∂H
∂u

= 0,

8>>>>>>><
>>>>>>>:

ð6Þ

where Sf denotes the range; Js denotes the performance

index; xs = ½θ, ϕ, V , ψ�′ denotes the states; f ð⋅Þ denotes the
right end term of the system differential equations; λθ, λϕ,
λV , and λψ represent the corresponding covariate variables,
respectively; H is Hamiltonian. The pitch angle σ is the only
control variable when the attack profile α = αðVÞ is given in
segments.

Since the Hamiltonian function does not consider time,
the analytical form of the optimal control solution can be
obtained by using the control equation and the costate Equa-
tion (12):

where ΘT and ΦT denote the latitude and longitude of the
virtual target point, respectively; θf and ϕf denote the termi-
nal latitude and longitude of the gliding phase, respectively.

The optimal control solution satisfying the requirements of
the longest range can be found by iterating the univariate
χ. The reachable area boundary can be obtained by connect-

η1 = sin χη2 = −η1 tan ΦT η3 = cos χ,

tan σ =
1 − 1/V2� �

η1 sin ϕ + η2 cos θ + η3 sin θð Þ cos ϕð Þ
η1 cos ϕ sin ψ + η2 sin θ cos ψ − cos θ sin ψ sin ϕð Þ − η3 sin θ sin ϕ sin ψ + cos θ cos ψð Þ

sin χ sin ϕf − sin χ tan ΦT cos θf −ΘT

� �
cos ϕf + cos χ sin θf −ΘT

� �
cos ϕf = 0,

8>>>><
>>>>:

ð7Þ
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ing the farthest arrival point obtained by solving the issues
on the longest range.

The nominal initial states and deviations are designed as
shown in Tables 1 and 2.

The reachable area shown in Figure 3 can be obtained by
the fast calculation method by superimposing the normal
distribution deviation shown in Table 2 on the nominal ini-
tial states. At the same time, the coordinate data of the
reachable area is normalized to facilitate the fitting calcula-
tion of large data samples.

3.2. Parametric Description. Considering that the boundary
of the reachable area is a continuous closed curve connected
by a series of boundary points, it can be described by curve
parameters. Suppose that the boundary of the reachable area
can be defined in the form of the following curve:

y = a + b1x + b2x
2+⋯+c sin wxð Þ + de−ξx + ηe− x−δ1ð Þ/δ2ð Þ2 :

ð8Þ

Non regular
reachable area

constraints
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deep neural networks
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Figure 1: Methodological framework.
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Figure 2: Schematic diagram of the vehicle’s reachable area.

Table 1: Nominal states.

Item Value (unit)

Height 70 km

Velocity 5000m/s

Flight path angle -1°

Heading angle 90°

Table 2: List of initial state deviations.

Item Maximum value (unit)

Height deviation ±20 km
Velocity deviation ±200m/s

Flight path angle deviation ±5°
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The least-square method is used to select the best fitting
curves in different forms. The fitting results of different
forms of curves are shown in Table 3.

The fitting results show that too much increase in the
order and complexity of the curve will increase the fitting
deviation. Therefore, the curve form corresponding to No.
3 is finally selected as the parametric description form of
the reachable area boundary. The results after parameter
normalization are shown in Figure 4.

4. Reachable Area Constraint Transformation

4.1. Constraint Transformation Rules. This section describes
the method to transform NRACs to generate new coverage
envelopes about the reachable area. As shown in Figure 5,
the projection of the boost terminal point on the ground is
the origin O, and the coordinate system is established in
the horizontal plane, with the axis Ox in the same direction
as the projection of the initial velocity direction v0 on the
ground. The original terminal states of the boost phase are
ðh0, v0, γ0Þ; x = a0y

2 + b0ð−ymax ≤ y ≤ ymaxÞ is the reachable
area boundary curve generated by ðh0, v0, γ0Þ; the nonregu-
lar reachable area is Q; the distance from the farthest point
in Q to the coordinate origin is R; the angle between lL and
lR formed by the left and right boundary points of Q and
the coordinate origin O is Δξ; the centerline of Δξ is the
new axis Ox′; the angle between Ox′ and Ox is Δψt ; LT : x
= ay2 + b denotes the new reachable area boundary curve,
so the key of the issue is to solve the parameters of LT .

Whether the original terminal states of the boost phase
are appropriate can be judged by the relative position rela-
tionship between the boundary points of Q and the bound-
ary of the original reachable area.
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Figure 3: The reachable area under nominal conditions.

Table 3: List of fitting results of different forms of curves.

Order Curve form R-square RMSE

1 y = a + b1x + b2x
2 0.93560 0.04251

2 y = a + b1x + b2x
2 + b3x

3 0.93560 0.04440

3 y = a + b2x
2 0.93560 0.04084

4 y = a + b2x
2 + c sin wxð Þ 0.93560 0.04656

5 y = a + b2x
2 + de−ξx 0.93560 0.04440

6 y = a + b2x
2 + ηe− x−δ1ð Þ/δ2ð Þ2 0.93230 0.04552

Judgment 1 : a0 R sin Δψtð Þð Þ2 + b0 > R cos Δψtð Þ,

Judgment 2 : a0 l0 sin Δψt −
1
2
Δξ + Δξ

0
n

� �� �2
+ b0 > l0 cos Δψt −

1
2
Δξ + Δξ

0
n

� �
,

Judgment 3 : a0 l1 sin Δψt −
1
2
Δξ + Δξ

1
n

� �� �2
+ b0 > l0 cos Δψt −

1
2
Δξ + Δξ

1
n

� �
⋯

Judgment i : a0 li−2 sin Δψt −
1
2
Δξ + Δξ

i − 2
n

� �� �2
+ b0 > li−2 cos Δψt −

1
2
Δξ + Δξ

i − 2
n

� �
,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð9Þ
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where n is the number of divisions when judging the bound-
ary for Q; li is the distance from the coordinate origin to the
i‐th boundary judgment point. The n + 2 judgment condi-
tions must be satisfied simultaneously to determine whether
the original terminal states of the boost phase are appropri-
ate. The number of divisions can be obtained according to

the description accuracy of the reachable area and the shape
of Q.

When the original terminal states of the boost phase do
not meet NRACs, the change of initial heading angle can
bring great convenience to the adjustment of the reachable
area. However, the reachable area adjusted by the initial

0.4
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y

O

Q

R

x

x = a0y2 + b0

ymaxy′
x′

Δ𝜓t

Δ𝜓t

Δ𝜉

Δ𝜉

Δ𝜉R

l1
l2

LT

b0

2
1

2
1

Figure 5: Description of the coverage requirements of the nonregular reachable area.

i = 1

i > n + 2 ?

b < R ? b = R

y2

b = xi – ayi2
ka = (a –a0) /Δa

x1 – b

i = i + 1 Judge the coverage
boundary conditions

Obtain the boundary
that meets the

coverage requirements

Adjustment strategy
of the reachable
area boundary

parameters

Whether the i-th
condition is satisfied

a = amin

ymax = ymax 0 (1 – ka.Δymax)

amin ≤ a ≤ amax ?
or a = amax

a =

Yes

Yes

Yes

Yes

No

No

No

No

Figure 6: Adjustment strategies for the reachable area boundary parameters.

7International Journal of Aerospace Engineering



flight direction may still not meet the coverage require-
ments. Therefore, the judgments need to be reconducted in
the new Ox′y′-coordinate system.

When the n + 2 judgment conditions cannot be satisfied
simultaneously, the new boundary parameters can be
adjusted and determined according to the range of values
of the boundary parameters.

amin ≤ a ≤ amax,

bmin ≤ b ≤ bmax,

ymaxð Þmin ≤ ymax ≤ ymaxð Þmax:

8>><
>>: ð11Þ

As a supporting parameter, the parameter ymax varies
inversely and equivalently with the adjustment of a. The
adjustment strategies for the three parameters are shown in
Figure 6.

4.2. Relational Mapping of Deep Neural Networks. The rela-
tionship between the reachable area boundary parameters
and the boost terminal states needs to be mapped to obtain
effective boost terminal states. The same reachable area
may correspond to multiple sets of boost terminal states.
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However, the reachable area boundary parameters caused by
the deviation of the boost terminal states are unique. There-
fore, it is possible to construct the mapping relationship to
realize the transformation from the reachable area boundary
to the terminal state increments of the boost phase. Thus,
the networks of altitude, velocity, and flight path angle as
shown in Figure 7 are established.

Generally, the neural networks with 1~2 hidden layers
can fit the nonlinear smooth mapping with arbitrary accu-
racy, and the ability of neural networks to describe complex
learning can be increased by introducing the third hidden
layer [25]. For the training of neural networks with three
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Figure 8: Effect of terminal states of the boost phase on the reachable area.

Table 4: Relationship between boost terminal states and reachable area boundary parameters.

States States change Variation of boundary curve parameters

Height (km)

0 Δa = 1:0068719 × 10−9, Δb = 4:7115307 × 10−8, Δymax = 0

10.4 Δa = 8:3883981 × 10−3, Δb = 1:0403449 × 10−2, Δymax = 3:3730000 × 10−3

17.3 Δa = 1:0925126 × 10−2, Δb = 2:0196111 × 10−2, Δymax = 2:6560000 × 10−3

23.25 Δa = 5:5262781 × 10−3, Δb = 2:7402044 × 10−2, Δymax = 4:5460000 × 10−3

Velocity (m/s)

0 Δa = 1:0068719 × 10−9, Δb = 4:7115307 × 10−8, Δymax = 0

69.2 Δa = 4:2817309 × 10−2, Δb = 4:9985394 × 10−2, Δymax = 1:8905000 × 10−2

142 Δa = −9:6140915 × 10−2, Δb = 1:0372763 × 10−1, Δymax = 4:4436000 × 10−2

216.3 Δa = −1:4838703 × 10−1, Δb = 1:5801915 × 10−1, Δymax = 6:5828000 × 10−2

Flight path angle (°)

4.25 Δa = 8:9585021 × 10−2, Δb = 6:2255655 × 10−2, Δymax = −3:6950000 × 10−3

6.5 Δa = −1:5504815 × 10−1, Δb = 8:8706775 × 10−2, Δymax = −9:7200000 × 10−3

7.8 Δa = 2:1084387 × 10−1, Δb = 1:0807930 × 10−1, Δymax = −1:0417000 × 10−2

8.9 Δa = 2:1735414 × 10−1, Δb = 1:0080363 × 10−1, Δymax = −2:1716000 × 10−2

Table 5: General parameters of the vehicle.

Item Value (unit)

Boost phase

Initial mass 10000 kg

Consumption per second 60 kg/s

Specific impulse 300 s

Pneumatic reference area 1m2

Fuel mass 5850 kg

Gliding phase
Mass 1000 kg

Pneumatic reference area 0.5m2
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parameters of the reachable area boundary as input and one
terminal state increment of the boost phase as output, the
number of hidden layers was set to 3 in this study. For the
hyperparameter setting of other hidden layer neural net-
works, some meaningful manual optimization rules were
given in Nielsen’s works [26]. In literature [27, 28], an auto-
matic optimization method of hyperparameters using grid
search technology was introduced. Therefore, this paper
only briefly gives the process of determining the number of
hidden layers: firstly, the number of nodes in each hidden

layer is set to 2~20; then, the number of hidden layer nodes
is increased in turn for network training; finally, the network
structure with the least total error on the verification is
recorded as the optimal neural network structure.

4.3. Energy Equivalence Principles. It is necessary to adopt
the optimal adjustment strategy of the reachable area
according to the influence of the boost terminal states con-
sidering limited fuel. Under fixed time constraints, the tra-
jectory optimization was carried out with the boost

Table 6: Mission parameters.

Item Value (unit)

Air-based launch point θ = 0°, φ = 0°

The initial velocity of the boost phase V = 3101m/s, θv = 9:31°

The initial position of the boost phase x = 635000m, y = −3000m, z = 10000m

Nominal terminal states of the boost phase h = 70 km, v = 5000m/s, γ = −1°, ψ = 111°

Control constraints −20° ≤ α ≤ 20°, −10° ≤ β ≤ 10°

Control rate constraints _αj j ≤ 10°/s, _β
��� ��� ≤ 5°/s

Separation window constraints Δvmax = 100m/s, Δγmax = 3°, Δhmax = 10 km

Terminal states of the gliding phase hf = 20 km, vf = 1000m/s

Required coverage area P1 : 54°, 18°ð Þ, P2 : 59°, 18°ð Þ, P3 : 56°, 13°ð Þ, P4 : 52°, 11°ð Þ

Table 7: Disturbances and deviation conditions.

Item Deviation value
Maximum energy Minimum energy

Initial state deviations
Position (m) [2000, 2000, 1000] [-2000, -2000, -1000]

Velocity (m/s) [20, 20, 10] [-20, -20, -10]

Power system deviation Fuel mass (kg) 50 -50

Environmental disturbances

Resistance coefficient (%) -15 15

Lift coefficient (%) 15 -15

Atmospheric density (%) -10 10
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Figure 9: Training results of velocity neural networks.
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terminal point’s altitude, velocity, and flight path angle as
performance indexes. By taking the obtained boost terminal
states as the initial condition for the glider, the reachable
area boundaries under different energy consumption condi-
tions (100 kg, 200 kg, and 300 kg fuel increase, respectively)

as shown in Figure 8 are obtained by the method in Section
3.1.

Under the same energy consumption conditions, the
reachable area obtained by raising the velocity of the boost
terminal was larger than the reachable area obtained by rais-
ing the flight path angle of the boost terminal, and both were
larger than the reachable area obtained by increasing the
height of the boost terminal. Therefore, on the basis of get-
ting the new reachable area boundary parameters, the termi-
nal states of the boost phase can be obtained through DNNs
described in Section 4.2. The selection priority of the map-
ping networks is velocity networks>flight path angle net-
works>altitude networks.

Although the selection priority can maximize the reach-
able area, the terminal states of the boost phase must be
within a certain limit due to the debris drop point con-
straints, separation conditions, and the limitation of the
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Figure 10: Training results of flight path angle neural networks.
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Figure 11: Training results of high neural networks.

Table 8: Parameters of NSGA II.

Item Value

PopulationSize 200

Generations 80

StallGenLimit 40

CrossoverFraction 0.8

MigrationFraction 0.4

ParetoFraction 0.3
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glider’s navigation communication window. Assume that
the separation window constraints of the booster based on
the nominal terminal states are ðΔhmax, Δvmax, ΔγmaxÞ.
When the boost terminal states obtained by DNN exceed
the separation window constraints, the energy equivalence
principles are adopted to obtain the new boost terminal
states.

The method described in Section 3 can be used to obtain
the relationship between the boost terminal states and the
reachable area boundary parameters, as shown in Table 4.

The contents of the energy equivalence principles are as
follows.① After the reachable area boundary parameters are
obtained by the constraint transformation rules, the velocity
networks can be used to obtain the boost terminal velocity
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increment Δv. If Δv ≤ Δvmax, the final boost terminal state
constraints are ðh0, v0 + Δv, γ0Þ; if Δv > Δvmax, proceed to
the next step. ② Let δΔv = Δv − Δvmax and interpolate
Table 4 with δΔv to obtain the reachable area boundary
parameter increment Δða, b, ymaxÞΔv; then, the flight path
angle neural networks can be used to obtain the new boost

terminal increment of the flight path angle Δγ. If Δγ ≤ Δ
γmax, the final boost terminal state constraints are ðh0, v0 +
Δvmax, γ0 + ΔγÞ; if Δγ > Δγmax, proceed to the next step. ③
Let δΔγ = Δγ − Δγmax and interpolate Table 4 with δΔγ to
obtain the increment of reachable area boundary parameters
Δða, b, ymaxÞΔγ; then, the height neural networks are used to
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obtain the new boost terminal height increment Δh. If Δh
≤ Δhmax, the final boost terminal state constraints are ðh0
+ Δh, v0 + Δvmax, γ0 + ΔγmaxÞ; if Δh > Δhmax, the constraint
window is exceeded, and the boost terminal states are set
to the maximum separation window constraints ðh0 + Δ
hmax, v0 + Δvmax, γ0 + ΔγmaxÞ.

5. Boost-Phase Trajectory Planning

After obtaining the terminal state constraints of the boost
phase, the trajectory from the initial point to the new termi-
nal point needs to be replanned. Unlike the trajectory track-
ing with a known reference trajectory [29], the boost-phase

trajectory is replanned under the condition that the initial
value is not ideal or there is no reference trajectory in this
study. At the same time, the trajectory planning method
needs to overcome the impacts of initial deviation and envi-
ronmental disturbance conditions and needs to meet the
process constraints such as states and control and the given
terminal states constraints.

The Gaussian pseudospectral method can be used to
realize fast and accurate trajectory replanning to meet the
requirements of low sensitivity to initial values, good conver-
gence, and high accuracy. Aiming at the “Dimensional
Catastrophe” of Jacobian and Hessian matrices and the slow
convergence speed when solving nonsmooth problems, the
hp-type adaptive finite element method (hp-FEM) is used,
which allows the segment length and the order of basis func-
tion to change adaptively on the mesh profile at the same
time.

By taking the longest range of the boost phase is taken as
the performance index, the boost-phase trajectory planning
problem is converted into an optimal control problem:

J = −Re ⋅ arc cos cos φf

� 

cos φ0ð Þ cos θf − θ0

� �
+ sin φf

� 

sin φ0ð Þ

� 

,

_x tð Þ = f x tð Þ, u tð Þ, tð Þ, t ∈ t0, t f
� �

,

ϕ x t0ð Þ, t0, x t f
� �

, t f
� �

= 0,

C x tð Þ, u tð Þ, tð Þ ≤ 0, t ∈ t0, t f
� �

,

8>>>>>>><
>>>>>>>:

ð12Þ

where xðtÞ denotes the states; uðtÞ denotes the control vari-
ables; _xðtÞ = fðxðtÞ, uðtÞ, tÞ denotes the dynamic equations
corresponding to Equation (1); ½t0, t f � is the time interval;
ϕðxðt0Þ, t0, xðt f Þ, t f Þ denotes the boundary constraints; Cðx
ðtÞ, uðtÞ, tÞ denotes the path constraints; ðθ0, φ0Þ is the lati-
tude and longitude of the launch point; ðθf , φf Þ is the
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latitude and longitude of the terminal location of the boost
phase.

The control variables are the attack angle and sideslip
angle:

u tð Þ = α, β½ � ð13Þ

Boundary constraints are as follows:

h x t f
� �

, t f
� �

− hf = 0,

v x t f
� �

, t f
� �

− vf = 0,

γ x t f
� �

, t f
� �

− γf = 0,

ψ x t f
� �

, t f
� �

− ψf = 0,

8>>>>>><
>>>>>>:

ð14Þ

where hf , vf , γf , and ψf denote the terminal altitude, veloc-
ity, flight path angle, and heading angle, respectively.

Path constraints are as follows:

xmin ≤ ϕ x tð Þ, tð Þ ≤ xmax,

αmin ≤ α ≤ αmax,

_αj j ≤ _αj jmax,

βmin ≤ β ≤ βmax,

_β
��� ��� ≤ _β

��� ���
max

:

8>>>>>>>>><
>>>>>>>>>:

ð15Þ

The time, states, and control variables must be trans-
formed and discretized. XðτÞ denotes the discretized states,
and UðτÞ denotes the control variables. The time interval ½
t0, t f � is converted into [-1,1].

τ =
2t

t f − t0
−
t f + t0
t f − t0

: ð16Þ
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Table 9: Comparison results.

Item hpPM NSGA II

Terminal deviations

Height (m) 0.0 76.0

Velocity (m/s) 0.0 9.6

Flight path angle (°) 0.0 −3:4 × 10−2

Heading angle (°) 1:0 × 10−3 −5:0 × 10−3

Performance index Maximum range (km) 988.5 987.1

Path constraints

Maximum attack angle (°) 20.0 20.0

Maximum change rate of attack angle (°/s) 5.8 34.2

Maximum sideslip angle (°) 10.0 7.3

Maximum change rate of sideslip angle (°/s) 1.4 3:0 × 10−2

Timeliness Calculation time (s) 2.8 318.3
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Figure 24: Flight path angle.

89.6

89.8

90

90.2

90.4

90.6

90.8

91

H
ea

di
ng

 an
gl

e (
°)

Time (s)

Nominal
Minimum energy
Maximum energy

0 20 40 60 80 100

Figure 25: Heading angle.

18 International Journal of Aerospace Engineering



–25

–20

–15

–10

–5

0

5

10

15

20

A
tta

ck
 an

gl
e (

°)

Time (s)

Nominal
Minimum energy
Maximum energy

0 20 40 60 80 100

Figure 26: Attack angle.

–15

–10

–5

0

5

10

Si
de

sli
p 

an
gl

e (
°)

Time (s)

Nominal
Minimum energy
Maximum energy

0 20 40 60 80 100

Figure 27: Sideslip angle.

19International Journal of Aerospace Engineering



Taking K‐th Legendre-Gauss points fτ1,⋯,τKg and τ0
= −1 as nodes, the K + 1‐th Lagrange interpolation polyno-
mials are formed as basis functions to approximate the
states.

x τð Þ ≈X τð Þ = 〠
K

i=0
Li τð Þx τið Þ

Li τð Þ =
YK
j=0,j≠i

τ − τj
τi − τj

:

8>>>>><
>>>>>:

, ð17Þ

The approximation of control variables are as follows:

u τð Þ ≈U τð Þ = 〠
K

i=1

~Li τð Þu τið Þ,

~Li τð Þ =
YK
j=1,j≠i

τ − τj
τi − τj

:

8>>>>><
>>>>>:

ð18Þ

Furthermore, the kinetic differential equations can be
transformed into algebraic constraints.

_x τkð Þ ≈ _X τkð Þ = 〠
K

i=0

_Li τkð ÞX τið Þ = 〠
K

i=0
Dki τkð ÞX τið Þ,

〠
K

i=0
Dki τkð ÞX τið Þ − t f − t0

2
f X τkð Þ,U τkð Þ, τk ; t0, t f
� �

= 0, k = 1,⋯,Kð Þ,

8>>>>><
>>>>>:

ð19Þ

where Dki is the differential matrix derived from the
Legendre polynomial; PKðτÞ is the root of the K‐th Legendre
polynomial [20].

Dki = _Li τkð Þ =

1 + τkð Þ _PK τkð Þ + PK τkð Þ
τk − τið Þ 1 + τið Þ _PK τið Þ + PK τið Þ� � , i ≠ k,

1 + τið Þ€PK τið Þ + 2 _PK τið Þ
2 1 + τið Þ _PK τið Þ + PK τið Þ� � , i = k,

8>>>><
>>>>:

PK τð Þ = 1
2KK!

dK

dτK
τ2 − 1
� �Kh i

:

8>>>>>>>>><
>>>>>>>>>:

ð20Þ

Discrete approximation of path constraints are as fol-
lows:

xmin ≤X τð Þ ≤ xmax,

αmin ; βmin½ � ≤U τð Þ ≤ αmax ; βmax½ �,

_U τj
� ��� �� = 〠

K

i=1

_~Li τj
� �

U τið Þ
�����

����� ≤ _αj jmax ; _β
��� ���

max

h i
:

8>>>>><
>>>>>:

ð21Þ

Discrete approximation of boundary constraints are as
follows:

h X τf
� �

, τf
� �

− hf = 0,

v X τf
� �

, τf
� �

− vf = 0,

γ X τf
� �

, τf
� �

− γf = 0,

ψ X τf
� �

, τf
� �

− ψf = 0:

8>>>>>><
>>>>>>:

ð22Þ

–10
–8
–6
–4
–2

0
2
4
6
8

10
Ch

an
ge

 ra
te

 o
f a

tta
ck

 an
gl

e (
°/s

)

Time (s)

Nominal
Minimum energy
Maximum energy

0 20 40 60 80 100
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Since the terminal states are not included in the state
approximation, a discrete approximation can be performed
using Gaussian integration to satisfy the dynamics constraints.

X τf
� �

−X τ0ð Þ − t f − t0
2

〠
K

k=1
wkf X τkð Þ,U τkð Þ, τk ; t0, t f
� �

= 0,

wk =
ð1
−1
~Lk τð Þdτ = 2

1 − τ2k
� �

_PK τkð Þ� �2 :

8>>>>><
>>>>>:

ð23Þ

The optimal control problem has been transformed into a
discrete nonlinear programming problem, which can be
solved using the large-scale sequential quadratic
programming-based SNOPT solver.

There have been a great number of research achieve-
ments on using the hp-adaptive pseudospectral method to
solve the trajectory planning problem [30–32]. The conver-
gence of the Gaussian pseudospectral method has been stud-
ied and described in reference [33]. Therefore, this paper will
not repeat this part but only discuss the convergence range
of the deviation conditions in the simulation section.

6. Simulation and Analysis

6.1. Simulation Settings. The simulation configuration is
Intel (R) Core (TM) i7-10510U. The general parameters
of the vehicle, mission parameters, disturbances, and devia-
tion conditions required for the simulation are given in
Tables 5–7.

Table 10: Results of model uncertainty and disturbances.

Item Maximum energy Minimum energy

Terminal deviation

Height (m) 500.0 0.0

Velocity (m/s) 0.0 -71.0

Flight path angle (°) 0.0 0.0

Heading angle (°) 0.0 0.0

Performance index Maximum range (km) 996.0 978.5

Path constraints

Maximum attack angle (°) 20.0 20.0

Maximum change rate of attack angle (°/s) 10.0 10.0

Maximum sideslip angle (°) 10.0 10.0

Maximum change rate of sideslip angle (°/s) 5.0 2.8

Timeliness Calculation time (s) 8.6 14.9
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6.2. Simulation Results

(1) Training results of deep neural networks

Three different DNNs were trained using the parameter-
ized reachable area boundary library in Section 3.2 as the
samples. From the single hidden layer network structure of
three neurons, the depth and breadth of neural network
are gradually increased until the accuracy requirements are
met. The training, verification, and test results are shown
in Figures 9–11.

The simulation results show that all three deep neural
networks have achieved convergence, with training and test-
ing accuracy higher than 99%. The generated demand reach-
able area boundary parameter increments are
Δa = 0, Δb = 0:055, Δymax = 0 based on the previous geomet-
ric relations.

(2) Simulation of boost-phase trajectory planning

To verify the effectiveness of the proposed trajectory
planning method and analyze the algorithm’s performance,
NSGA II as a widely used evolutionary algorithm was used
in simulation experiments for comparison. The principle of
NSGA II is referred to in [34].

Optimization objectives

JN1 = Δhf ,

JN2 = Δvf ,

JN3 = Δγf ,

JN4 = Δψf ,

JN5 = −Lrange,

8>>>>>>>><
>>>>>>>>:

ð24Þ

where Δhf , Δvf , Δγf , and Δψ f are the terminal states devia-
tions; Lrange denotes the terminal range.

Control variables

uNi = αNi, i = 1, 2,⋯, 5,

uN6 = _βN ,

(
ð25Þ

where αNi denotes i‐th of the attack angle at linear interpo-
lation node; _βN denotes the change rate of sideslip angle.

Constraints

−20° ≤ uNi ≤ 20°, i = 1, 2,⋯, 5,

−5°/s ≤ uNi ≤ 5°/s, i = 6:

(
ð26Þ

Other main parameters are shown in Table 8.
The terminal constraints of the boost phase obtained by

using neural networks are Δv = 100m/s, Δγ = 0:8°, Δh = 0km
, Δψ = −21:3°. “hpPM” represents the planning result of the
hp-adaptive pseudospectral method, “verification” denotes
the integral verification result of the hp-adaptive pseudos-
pectral method, and “ NSGA II” represents the planning
result of the improved nondominated sorting genetic algo-

rithm. The trajectory planning curves are shown in
Figures 12–21, and the comparison results of two methods
are shown in Table 9.

The results show that① the boost-phase flight trajectory
obtained by the hpPM that met the requirements of dynamic
integration verification;② the terminal planning accuracy of
hpPM was higher than that of NSGA II; ③ the trajectory
obtained by hpPM had a larger range than that obtained
by NSGA II; ④ the change rate of control angle planned
by hpPM was more stable than that by NSGA II in longitu-
dinal profile; the control angle and the change rate of control
angle were the same in transverse profile;⑤ the timeliness of
hpPM was significantly better than that of NSGA II.

(3) Influence of disturbances and deviations

Due to the influence of NRACs, the boost-phase trajec-
tory planning with fixed working time has been a challenge.
To analyze the impacts of initial state deviations, power sys-
tem deviation, and environmental disturbances on hpPM, it
is necessary to conduct simulation experiments under the
limit energy deviation as shown in Table 7. The trajectory
planning curves are shown in Figures 22–31, and the results
of model uncertainty and disturbances are shown in
Table 10.

Due to limited fuel, the adjustment ability of the boost-
glide vehicle is limited. Therefore, a limited energy deviation
of trajectory planning failure is of great importance. The
minimum energy deviation will seriously reduce the flight
maneuverability, making the boost-glide vehicle barely reach
the designated mission point with the loss of working per-
formance; the maximum energy deviation will make the
boost-glide vehicle produce excess flight maneuverability,
leading to a large oscillation of attitude angle and instability
of flight.

The results show that ① for the maximum energy devi-
ation, the velocity, flight path angle, and heading angle of
boost-glide vehicle met the terminal indexes, but the altitude
and range were greater than the nominal case, and an over
large change rate of control angle was produced. If the mag-
nitude of energy deviations continued to increase, the boost-
glide vehicle would lose stability easily or exceed the separa-
tion window constraint; ② for the minimum energy devia-
tion, the altitude, flight path angle, and heading angle of
the boost-glide vehicle fully met the terminal indexes, but
the velocity and range were less than the nominal case. If
the magnitude of energy deviations continued to increase,
the reachable area of the boost-glide vehicle would be seri-
ously reduced. Therefore, the disturbances and deviations
listed in Table 7 can be considered as the failure range of
the trajectory planned by hpPM under the mission specified
in Table 6.

(4) The verification simulation of the reachable area

After obtaining the deviations of the range, height, and
velocity of the boost terminal point, the distribution of
reachable area can be calculated, and the effectiveness of
the proposed trajectory planning method considering
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NRACs can be further analyzed. In the comparison of reach-
able area distribution, “nominal reachable area” refers to the
maneuvering range of the boost-glider vehicle without any
adjustments; “demand boundary” refers to the maneuvering
range meeting NRACs obtained by the constraint transfor-
mation rules; “maximum/minimum energy” represents the
maneuvering range under the influence of disturbances
and deviations. The results are shown in Figure 32.

The results show that ① the nominal reachable area
could not meet the requirements of NRACs, but the demand
boundary transformed by the method proposed in this paper
completely covered the area specified by NRACs; ② the
actual maneuvering range of the boost-glide vehicle still
met NRACs under the influence of disturbances and devia-
tions; ③ the average deviation between the actual reachable
area boundary and the demand boundary under the limit
energy deviation was 3.9%. The above results indicated that
the proposed trajectory planning method considering
NRACs was sufficiently capable of adjusting the reachable
area and had high trajectory planning accuracy and good
deviation adaptability.

7. Conclusion

Aiming at the boost-phase trajectory planning under
NRACs, this paper studies the parametric description of
the reachable area, the reachable area constraint transforma-
tion, and the boost-phase trajectory planning. The NRACs
were successfully transformed into the terminal state con-
straints of the boost phase, and the hpPM was used to com-
plete the trajectory planning. The main conclusions are as
follows.

(1) The reachable area boundary of the boost-glide vehi-
cle can be described and represented in a simple
parametric form. The quadratic form is a feasible
solution considering the accuracy and parameter
complexity

(2) There is a clear relationship between the reachable
area boundary described by parameterization and
the boost terminal state change. The DNNs can be
used for model learning and parameter mapping,
with accuracy of model training and testing greater
than 99%. In addition, the changes of boost terminal
states pose a significant influence on the reachable
area, that is, the influence of velocity was greater
than that of flight path angle, and the influence of
altitude is the most insignificant

(3) Using the constraint transformation rules, it is possi-
ble to quickly determine the reachable area boundary
parameters that meet NRACs after changing the ini-
tial flight direction of the boost-glide vehicle through
the air-based launch mode or the promotion of the
front stage

(4) Based on the deep neural networks model and the
energy equivalence principles, the appropriate boost

terminal states under the separation window con-
straints can be obtained

(5) The boost-phase trajectory planning method based
on the hpPM has good timeliness, high planning
accuracy, and strong deviation adaptability

Since this paper focuses on the boost-phase trajectory
planning method considering NRACs, the determination
of the reachable area of the boost-glide vehicle is mainly
depended on the fast calculation method described in Sec-
tion 3.1 in spite of the influences of the deviations and dis-
turbances of the gliding phase. Future research will focus
on the influences of combined deviations in different stages.
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