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In this work we introduce new spaces𝑚2(𝐹, 𝜙, 𝑝) of double sequences defined by a double sequence of modulus functions, and we
study some properties of this space.

1. Introduction

In this work, by 𝑤 and 𝑤
2, we denote the spaces of single

complex sequences and double complex sequences, respec-
tively.N andC denote the set of positive integers and complex
numbers, respectively. If, for all 𝜀 > 0, there is 𝑛

𝜀
∈ N such

that ‖𝑥
𝑘,𝑙
− 𝑎‖
𝑋
< 𝜀 where 𝑘 > 𝑛

𝜀
and 𝑙 > 𝑛

𝜀
, then a double

sequence {𝑥
𝑘,𝑙
} is said to be converge (in terms of Pringsheim)

to 𝑎 ∈ C. A real double sequence {𝑥
𝑘,𝑙
} is nondecreasing, if

𝑥
𝑘,𝑙
≤ 𝑥
𝑝,𝑞

for (𝑘, 𝑙) < (𝑝, 𝑞). A double series is infinity sum
∑
∞

𝑘,𝑙=1
𝑥
𝑘,𝑙
and its convergence implies the convergence by | ⋅ |

of partial sums sequence {𝑆
𝑛,𝑚
}, where 𝑆

𝑛,𝑚
= ∑
𝑛

𝑘=1
∑
𝑚

𝑙=1
𝑥
𝑘,𝑙

(see [1–3]).
For 1 ≤ 𝑝 < ∞, ℓ(2)

𝑝
denote the space of sequences 𝑥 =

{𝑥
𝑘,𝑙
} such that

∞

∑

𝑘,𝑙=1

󵄨󵄨󵄨󵄨𝑥𝑘,𝑙
󵄨󵄨󵄨󵄨

𝑝

< ∞. (1)

(see [4]).
A double sequence 𝑥 = {𝑥

𝑘,𝑙
} is said to be bounded if

and only if sup
𝑘,𝑙
|𝑥
𝑘,𝑙
| < ∞. The space of all bounded double

sequences is denoted by ℓ(2)
∞
. It is known that ℓ(2)

∞
is Banach

space (see [5, 6]).
A double sequence space𝐸 is said to be normal if (𝑦

𝑘𝑙
) ∈ 𝐸

whenever |𝑦
𝑘𝑙
| ≤ |𝑥
𝑘𝑙
| for all 𝑘, 𝑙 ∈ N and (𝑥

𝑘𝑙
) ∈ 𝐸.

The double sequence spaces in the various forms were
introduced and studies by Khan and Tabassum in [7–14], by
Khan in [15], and by Khan et al. in [16, 17].

Now let 𝜑
𝑠
be a family of subsets 𝜎 having most elements

𝑠 in N. Also 𝜑
𝑠,𝑡

denote the class of subsets 𝜎 = 𝜎
1
× 𝜎
2
in

N × N such that the elements of 𝜎
1
and 𝜎

2
are most 𝑠 and 𝑡,

respectively. Besides {𝜙
𝑘,𝑙
} is taken as a nondecreasing double

sequence of the positive real numbers such that

𝑘𝜙
𝑘+1,𝑙

≤ (𝑘 + 1) 𝜙
𝑘,𝑙
, 𝑙𝜙

𝑘,𝑙+1
≤ (𝑙 + 1) 𝜙

𝑘,𝑙
. (2)

(see [18]).
Let 𝑥 = {𝑥

𝑘,𝑙
} be a double sequence. A set 𝑆(𝑥) is defined

by

𝑆 (𝑥) = {{𝑥
𝜋
1
(𝑘),𝜋
2
(𝑘)
} : 𝜋
1
and 𝜋

2
are permutations of N} .

(3)

A double sequence space 𝐸 is said to be symmetric if 𝑢 =

(𝑢
𝑘𝑙
) ∈ 𝐸 and ‖𝑢‖ = ‖𝑥‖whenever𝑥 = (𝑥

𝑘𝑙
) ∈ 𝐸 and 𝑢 ∈ 𝑆(𝑥).

A BK-space is a Banach sequence space 𝐸 in which the
coordinate maps are continuous.

A function 𝑓 : [0,∞) → [0,∞) is said to be a modulus
function if it satisfies the following:

(1) 𝑓(𝑥) = 0 if and only if 𝑥 = 0;
(2) 𝑓(𝑥 + 𝑦) ≤ 𝑓(𝑥) + 𝑓(𝑦) for all 𝑥, 𝑦 ∈ [0,∞);
(3) 𝑓 is increasing;
(4) 𝑓 is continuous from right at 0.

It follows that 𝑓 is continuous on [0,∞). The modulus
function may be bounded or unbounded. For example, if we
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take 𝑓(𝑥) = 𝑥/(𝑥+1), then 𝑓(𝑥) is bounded. But, for 0 < 𝑝 <
1, 𝑓(𝑥) = 𝑥𝑝 is not bounded.

The BK-spaces 𝑚(𝜙), introduced by Sargent in [19], is in
the form
𝑚(𝜙)

= {𝑥 = {𝑥
𝑘
} ∈ 𝑤 : ‖𝑥‖𝑚(𝜙) = sup

𝑠≥1,𝜎∈𝜑
𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨 < ∞} .

(4)

Sargent studied some properties of this space and exam-
ined relationship between this space and 𝑙

𝑝
-space.

The space𝑚(𝜙) was extended to𝑚(𝜙, 𝑝) by Tripathy and
Sen [20] as follows:

𝑚(𝜙, 𝑝) =

{

{

{

𝑥 = {𝑥
𝑘
} ∈ 𝑤 : ‖𝑥‖𝑚(𝜙,𝑝)

= sup
𝑠≥1,𝜎∈𝜑

𝑠

1

𝜙
𝑠

(∑

𝑘∈𝜎

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨

𝑝

)

1/𝑝

< ∞

}

}

}

.

(5)

Recently, Raj et al. [21] introduced and studied the following
sequence space𝑚(𝐹, 𝜙, 𝑝).

Let 𝐹 = (𝑓
𝑘
) be a sequence of modulus functions. Then

the space𝑚(𝐹, 𝜙, 𝑝) is defined by

𝑚(𝐹, 𝜙, 𝑝)

=

{

{

{

𝑥 = {𝑥
𝑘
} ∈ 𝑤 : sup

𝑠≥1,𝜎∈𝜑
𝑠

1

𝜙
𝑠

(∑

𝑘∈𝜎

[𝑓
𝑘
(

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨

𝜌
)]

𝑝

)

1/𝑝

< ∞, for some 𝜌 > 0
}

}

}

.

(6)

In this work we introduce sequence spaces 𝑚2(𝐹, 𝜙, 𝑝)
defined by

𝑚
2
(𝐹, 𝜙, 𝑝)

=

{

{

{

𝑥 = (𝑥
𝑘𝑙
) ∈ 𝑤
2
:

sup
(𝑠,𝑡)≥(1,1)

sup
𝜎
1
×𝜎
2
∈𝜑
𝑠𝑡

1

𝜙
𝑠𝑡

{

{

{

∑

𝑖∈𝜎
1

∑

𝑗∈𝜎
2

[𝑓
𝑖,𝑗
(

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨

𝜌
)]

𝑝

}

}

}

1/𝑝

< ∞ for 𝜌 > 0
}

}

}

,

(7)

where 𝐹 = (𝑓
𝑖,𝑗
) is a double sequence of modulus functions.

2. Main Results

The result stated in the first theorem is not hard. So, we give
it without proof.

Theorem 1. The sequence space𝑚2(𝐹, 𝜙, 𝑝) is a linear space.

Theorem 2. The sequence spaces𝑚2(𝐹, 𝜙, 𝑝) are complete.

Proof. Let {𝑥(𝑖)} be a double Cauchy sequence in 𝑚2(𝐹, 𝜙, 𝑝)
such that 𝑥(𝑖) = {𝑥(𝑖)

𝑘,𝑙
}
∞

𝑘,𝑙=1
for all 𝑖 ∈ N. Then

sup
(𝑠,𝑡)≥(1,1)

sup
𝜎
1
×𝜎
2
∈𝜑
𝑠𝑡

1

𝜙
𝑠𝑡

{

{

{

∑

𝑘∈𝜎
1

∑

𝑙∈𝜎
2

[𝑓
𝑘,𝑙
(

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑖)

𝑘,𝑙

󵄨󵄨󵄨󵄨󵄨

𝜌
)]

𝑝

}

}

}

1/𝑝

< ∞

(8)

for some 𝜌 > 0 and for all 𝑖 ∈ N. For each 𝜀 > 0, there exists a
positive integer 𝑛

0
such that
󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑖)
− 𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩𝑚2(𝐹,𝜙,𝑝)

< 𝜀 (9)

for all 𝑖, 𝑗 ≥ 𝑛
0
. Hence

sup
(𝑠,𝑡)≥(1,1)

sup
𝜎
1
×𝜎
2
∈𝜑
𝑠𝑡

1

𝜙
𝑠𝑡

{{

{{

{

∑

𝑘∈𝜎
1

∑

𝑙∈𝜎
2

[

[

𝑓
𝑘,𝑙
(

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑖)

𝑘,𝑙
− 𝑥
(𝑗)

𝑘,𝑙

󵄨󵄨󵄨󵄨󵄨󵄨

𝜌
)]

]

𝑝

}}

}}

}

1/𝑝

< 𝜀

(10)

for some 𝜌 > 0 and for all 𝑖, 𝑗 ≥ 𝑛
0
. This implies that

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑖)

𝑘,𝑙
− 𝑥
(𝑗)

𝑘,𝑙

󵄨󵄨󵄨󵄨󵄨󵄨
< 𝜀𝜙
1,1

(11)

for all 𝑖, 𝑗 ≥ 𝑛
0
and for each fixed (𝑘, 𝑙) ∈ N × N. Hence {𝑥(𝑖)}

is a Cauchy sequence in C.
Then, there exists 𝑥

𝑘,𝑙
∈ C such that 𝑥(𝑖)

𝑘,𝑙
→ 𝑥
𝑘,𝑙

as 𝑖 →
∞ and let us define 𝑥 = (𝑥

𝑘,𝑙
). From (10), for each fixed (𝑠, 𝑡),

{{

{{

{

∑

𝑘∈𝜎
1

∑

𝑙∈𝜎
2

[

[

𝑓
𝑘,𝑙
(

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑖)

𝑘,𝑙
− 𝑥
(𝑗)

𝑘,𝑙

󵄨󵄨󵄨󵄨󵄨󵄨

𝜌
)]

]

𝑝

}}

}}

}

< 𝜀
𝑝
𝜙
𝑝

𝑠𝑡
(12)

for some 𝜌 > 0, for all 𝑖, 𝑗 ≥ 𝑛
0
and 𝜎

1
× 𝜎
2
∈ 𝜑
𝑠𝑡
.

Letting 𝑗 → ∞, we get

{

{

{

∑

𝑘∈𝜎
1

∑

𝑙∈𝜎
2

[𝑓
𝑘,𝑙
(

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑖)

𝑘,𝑙
− 𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨󵄨

𝜌
)]

𝑝

}

}

}

< 𝜀
𝑝
𝜙
𝑝

𝑠𝑡
(13)

for some 𝜌 > 0, for all 𝑖, 𝑗 ≥ 𝑛
0
, and 𝜎

1
× 𝜎
2
∈ 𝜑
𝑠𝑡
. Thus we

obtain

sup
(𝑠,𝑡)≥(1,1)

sup
𝜎
1
×𝜎
2
∈𝜑
𝑠𝑡

1

𝜙
𝑠𝑡

{

{

{

∑

𝑘∈𝜎
1

∑

𝑙∈𝜎
2

[𝑓
𝑘,𝑙
(

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑖)

𝑘,𝑙
− 𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨󵄨

𝜌
)]

𝑝

}

}

}

1/𝑝

< 𝜀

(14)

for some 𝜌 > 0 and for all 𝑖, 𝑗 ≥ 𝑛
0
. This implies that 𝑥(𝑖) −𝑥 ∈

𝑚
2
(𝐹, 𝜙, 𝑝) for all 𝑖, 𝑗 ≥ 𝑛

0
.
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Hence 𝑥 = 𝑥(𝑛0) + 𝑥 − 𝑥(𝑛0) ∈ 𝑚2(𝐹, 𝜙, 𝑝). By (14),
󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑖)
− 𝑥

󵄩󵄩󵄩󵄩󵄩𝑚2(𝐹,𝜙,𝑝)
< 𝜀 (15)

for all 𝑖 ≥ 𝑛
0
. This means that 𝑥(𝑖) → 𝑥 as 𝑖 → ∞. Hence

𝑚
2
(𝐹, 𝜙, 𝑝) is a Banach space.

Theorem 3. The space𝑚2(𝐹, 𝜙, 𝑝) is a BK-space.

Proof. Suppose that {𝑥
(𝑖)
} ∈ 𝑚

2
(𝐹, 𝜙, 𝑝) with

‖𝑥
(𝑖)
− 𝑥‖
𝑚
2
(𝐹,𝜙,𝑝)

→ 0 as 𝑖 → ∞. For each 𝜀 > 0 there
exists 𝑛

0
∈ 𝑁 such that

󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑖)
− 𝑥

󵄩󵄩󵄩󵄩󵄩𝑚2(𝐹,𝜙,𝑝)
< 𝜀 (16)

for all 𝑖 ≥ 𝑛
0
. Thus

sup
(𝑠,𝑡)≥(1,1)

sup
𝜎
1
×𝜎
2
∈𝜑
𝑠𝑡

1

𝜙
𝑠𝑡

{

{

{

∑

𝑘∈𝜎
1

∑

𝑙∈𝜎
2

[𝑓
𝑘,𝑙
(

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑖)

𝑘,𝑙
− 𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨󵄨

𝜌
)]

𝑝

}

}

}

1/𝑝

< 𝜀

(17)

for some 𝜌 > 0 and for all 𝑖 ≥ 𝑛
0
. Hence we obtain

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑖)

𝑘,𝑙
− 𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨󵄨
< 𝜀𝜙
1,1

(18)

for all 𝑖 ≥ 𝑛
0
and for all (𝑘, 𝑙) ∈ N × N. This implies |𝑥(𝑖)

𝑘,𝑙
−

𝑥
𝑘,𝑙
| → 0 as 𝑖 → ∞. This completes the proof.

Corollary 4. The space𝑚2(𝐹, 𝜙, 𝑝) is a symmetric space.

Proof. Let 𝑥 = {𝑥
𝑘,𝑙
} ∈ 𝑚

2
(𝐹, 𝜙, 𝑝) and let 𝑦 = {𝑦

𝑘,𝑙
} ∈ 𝑆(𝑥).

Then we can write 𝑦
𝑘,𝑙
= 𝑥
𝑚
𝑘
,𝑚
𝑙

. Thus we obtain

‖𝑥‖𝑚2(𝐹,𝜙,𝑝) =
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑚2(𝐹,𝜙,𝑝)

. (19)

Corollary 5. The space𝑚2(𝐹, 𝜙, 𝑝) is a normal space.

Proof. It is obvious.

Theorem 6. Consider

𝑚
2
(𝜙) ⊆ 𝑚

2
(𝐹, 𝜙, 𝑝) . (20)

Proof. Suppose that 𝑥 ∈ 𝑚2(𝜙). Then we have

‖𝑥‖𝑚2(𝜙) = sup
(𝑠,𝑡)≥(1,1)

sup
𝜎
1
×𝜎
2
∈𝜑
𝑠𝑡

1

𝜙
𝑠𝑡

{

{

{

∑

𝑘∈𝜎
1

∑

𝑙∈𝜎
2

󵄨󵄨󵄨󵄨𝑥𝑘,𝑙
󵄨󵄨󵄨󵄨

}

}

}

= 𝐾 < ∞.

(21)

Thus for each fixed (𝑠, 𝑡) and for 𝜎
1
× 𝜎
2
∈ 𝜑
𝑠𝑡
,

∑

𝑘∈𝜎
1

∑

𝑙∈𝜎
2

󵄨󵄨󵄨󵄨𝑥𝑘,𝑙
󵄨󵄨󵄨󵄨 ≤ 𝐾𝜙𝑠𝑡 (22)

for some 𝜌 > 0. Hence

sup
(𝑠,𝑡)≥(1,1)

sup
𝜎
1
×𝜎
2
∈𝜑
𝑠𝑡

1

𝜙
𝑠𝑡

{

{

{

∑

𝑘∈𝜎
1

∑

𝑙∈𝜎
2

[𝑓
𝑘,𝑙
(

󵄨󵄨󵄨󵄨𝑥𝑘,𝑙
󵄨󵄨󵄨󵄨

𝜌
)]

𝑝
}

}

}

1/𝑝

≤ 𝐾

(23)

for some 𝜌 > 0. This implies that 𝑥 ∈ 𝑚
2
(𝐹, 𝜙, 𝑝). Hence

𝑚
2
(𝜙) ⊆ 𝑚

2
(𝐹, 𝜙, 𝑝).

Theorem 7. 𝑚2(𝐹, 𝜙, 𝑝) ⊆ 𝑚
2
(𝐹, 𝜓, 𝑝) if and only if

sup
(𝑠,𝑡)≥(1,1)

(𝜙
𝑠𝑡
/𝜓
𝑠𝑡
) < ∞.

Proof. Let 𝐾 = sup
(𝑠,𝑡)≥(1,1)

(𝜙
𝑠𝑡
/𝜓
𝑠𝑡
) < ∞. Then 𝜙

𝑠𝑡
≤ 𝐾𝜓

𝑠𝑡

for all (𝑠, 𝑡) ≥ (1, 1). If 𝑥 ∈ 𝑚2(𝐹, 𝜙, 𝑝), then

sup
(𝑠,𝑡)≥(1,1)

sup
𝜎
1
×𝜎
2
∈𝜑
𝑠𝑡

1

𝜙
𝑠𝑡

{

{

{

∑

𝑘∈𝜎
1

∑

𝑙∈𝜎
2

[𝑓
𝑘,𝑙
(

󵄨󵄨󵄨󵄨𝑥𝑘,𝑙
󵄨󵄨󵄨󵄨

𝜌
)]

𝑝
}

}

}

1/𝑝

< ∞

(24)

for some 𝜌 > 0. Thus

sup
(𝑠,𝑡)≥(1,1)

sup
𝜎
1
×𝜎
2
∈𝜑
𝑠𝑡

1

𝐾𝜓
𝑠𝑡

{

{

{

∑

𝑘∈𝜎
1

∑

𝑙∈𝜎
2

[𝑓
𝑘,𝑙
(

󵄨󵄨󵄨󵄨𝑥𝑘,𝑙
󵄨󵄨󵄨󵄨

𝜌
)]

𝑝
}

}

}

1/𝑝

< ∞

(25)

for some 𝜌 > 0. Hence 𝑥 ∈ 𝑚
2
(𝐹, 𝜓, 𝑝). This shows that

𝑚
2
(𝐹, 𝜙, 𝑝) ⊆ 𝑚

2
(𝐹, 𝜓, 𝑝). Conversely, let 𝑚2(𝐹, 𝜙, 𝑝) ⊆

𝑚
2
(𝐹, 𝜓, 𝑝). We define 𝛾

𝑠,𝑡
= 𝜙
𝑠𝑡
/𝜓
𝑠𝑡
. Let sup

(𝑠,𝑡)≥(1,1)
𝛾
𝑠,𝑡

=

∞. Then there exists a subsequence {𝛾
𝑠
𝑖
,𝑡
𝑖

} of {𝛾
𝑠,𝑡
} such that

𝛾
𝑠
𝑖
,𝑡
𝑖

→ ∞ as 𝑖 → ∞. Then for 𝑥 ∈ 𝑚2(𝐹, 𝜙, 𝑝) we have

sup
(𝑠,𝑡)≥(1,1)

sup
𝜎
1
×𝜎
2
∈𝜑
𝑠𝑡

1

𝜓
𝑠𝑡

{

{

{

∑

𝑘∈𝜎
1

∑

𝑙∈𝜎
2

[𝑓
𝑘,𝑙
(

󵄨󵄨󵄨󵄨𝑥𝑘,𝑙
󵄨󵄨󵄨󵄨

𝜌
)]

𝑝
}

}

}

1/𝑝

≥ sup
(𝑠,𝑡)≥(1,1)

sup
𝜎
1
×𝜎
2
∈𝜑
𝑠𝑡

𝛾
𝑠,𝑡

𝜙
𝑠𝑡

{

{

{

∑

𝑘∈𝜎
1

∑

𝑙∈𝜎
2

[𝑓
𝑘,𝑙
(

󵄨󵄨󵄨󵄨𝑥𝑘,𝑙
󵄨󵄨󵄨󵄨

𝜌
)]

𝑝
}

}

}

1/𝑝

= ∞

(26)

for some 𝜌 > 0. This is a contradiction as 𝑥 ∉ 𝑚2(𝐹, 𝜓, 𝑝) and
this completes the proof.

Proposition 8. Consider

ℓ
(2)

𝑝
⊆ 𝑚
2
(𝐹, 𝜙, 𝑝) ⊆ ℓ

(2)

∞
. (27)

Proof. Clearly, ℓ(2)
𝑝

= 𝑚
2
(𝐹, 𝜓, 𝑝), where 𝜓

𝑠𝑡
= 1 for 𝑠, 𝑡 =

1, 2, . . . when 𝑓
𝑘,𝑙
(𝑥) = 𝑥 and sup

(𝑠,𝑡)≥(1,1)
(𝜓
𝑠𝑡
/𝜙
𝑠𝑡
) < ∞ by
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nondecreasing (𝜙
𝑠𝑡
). Then, by Theorem 7, first inclusion is

obtained. Suppose 𝑥 ∈ 𝑚2(𝐹, 𝜙, 𝑝). Then

sup
(𝑠,𝑡)≥(1,1)

sup
𝜎
1
×𝜎
2
∈𝜑
𝑠𝑡

1

𝜙
𝑠𝑡

{

{

{

∑

𝑘∈𝜎
1

∑

𝑙∈𝜎
2

[𝑓
𝑘,𝑙
(

󵄨󵄨󵄨󵄨𝑥𝑘,𝑙
󵄨󵄨󵄨󵄨

𝜌
)]

𝑝
}

}

}

1/𝑝

= 𝐾

< ∞

(28)

for some 𝜌 > 0. Hence we obtain
󵄨󵄨󵄨󵄨𝑥𝑘𝑙

󵄨󵄨󵄨󵄨 ≤ 𝐾𝜙1,1 (29)

for all 𝑘, 𝑙 ∈ N. Thus 𝑥 ∈ ℓ(2)
∞

and proof is completed.
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