Research Article

A Novel Train-to-Train Communication Model Design Based on Multihop in High-Speed Railway

Pengyu Liu, Bo Ai, Zhangdui Zhong, and Xiaojuan Zhou

1 State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
2 Department of Communication Engineering, University of Armed Police Force Engineering, Xian 710086, China

Correspondence should be addressed to Bo Ai, aibo@ieee.org

Received 22 July 2012; Accepted 16 October 2012

Academic Editor: César Briso Rodríguez

Copyright © 2012 Pengyu Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Railway telematics applications are currently attracting attention and are under intense research. Reliable railway telematics applications increasingly tend to require a subsidiary means to help existent control system make train operation safer and more efficient. Since 2006, train-to-train communication has been studied to respond to such requirements. A key characteristic of train-to-train communication is that operation control to avoid possible accidents is conducted among trains without help of a base station. This paper proposes a novel train-to-train communication model in a physical layer based on multihop and cooperation, taking a high-speed railway propagation channel into account. The mechanism of this model lies in the idea that a source train uses trains on other tracks as relays to transmit signals to destination train on the same track. Based on occurrence of these potential relays, such mechanism can be divided into three cases. In each case, BER is applied to evaluate properties of the proposed communication model. Simulation results show that BER of the train-to-train communication model decreases to 10^{-6} when SNR is 10 dB and that the minimum receiving voltage of this model is -84 dBm, which is 8 dBm lower than the standards established by the International Union of Railways (UIC) in a high-speed railway scenario.

1. Introduction

Railways are a powerful transportation systems which exert significant influence in supporting development of economies. Safety concerns in railways are attracting an increasing amount of attention at present, because the railways have assumed an increased responsibility for safeguarding the personal and property security. Railway accidents generally lead to serious consequences—loss of lives and property. These phenomena directly motivate the researchers to concentrate more on various systems for railway safety. The mainstream technique of railway safety in China is the Chinese Train Control System Level 3 (CTCS-3) based on the Global System for Mobile Communication for Railways (GSM-R) which acts as a radio interface to link trains with control center to exchange safety messages; this system ensures that trains are monitored by a real-time device and that they operate at a certain safe distance from each other [1].

It cannot be denied that the CTCS-3 system has proved to be an accurate technique for positioning and also provides a rapid exchange of motion state and control messages. However, according to statistics provided by the American Federal Railroad Administration (FRA) in the United States, about 8221 accidents threaten the passengers’ personal safety in the past four years [2]. This is because a train driver could only be informed about potential collisions by an operation center. If the operation center fails to transmit control messages in an emergency, an accident will inevitably occur. Therefore, it is imperative to develop a novel technique to assist existing system to make control of train operation safer and more accurate. This technique allows the train conductors to keep updated with accurate information of traffic conditions in their vicinity [3]. On the basis of intertrain multihop communication, the train-to-train communication aims at detecting a potential collision and then broadcast prewarning messages to other trains on the same and neighboring tracks. When a control center system detects potential accidents, the train-to-train communication acts in an assisting role to immediately propagate messages to other trains and provide potential solutions to the driver to avoid
danger. Furthermore, its application also reduces outlays on infrastructure maintenance for base stations [4].

2. Related Work

In recent years, research on train-to-train communication has been carried out by several organizations, including the German Aerospace Center (DLR). Reference [5] discusses communication link design such as maximum data rate, frequency selection, and channel model, while [6] describes an overview of the state of the art in collision avoidance related to transportation systems for maritime, aircraft, and road transportation, and the RCAS is introduced. Reference [7] proposes a channel model for direct train-to-train communication appropriate for the 400 MHz band, and [8] presents analyses and results of a comprehensive measurement campaign investigating the propagation channel in case of direct communication between railway vehicles.

Though the RCAS has undergone some progress in physical-layer design, it only supports train operation velocity of lower than 200 Km/h, which is not applicable to a high-speed railway. Generally, the velocity of a high-speed railway train is up to 360 Km/h. In this case, safety distance among trains is 10 Km [9], which will result in severe path loss and poor receiving signal quality if two trains on the same track perform direct communication. The BER of the receiving signal is about 0.5.

To solve this problem, in this paper, we propose a train-to-train communication model in the physical layer based on multihop. In order to make up a poor receiving signal resulting from path loss, the multihop mechanism in which the source train uses trains operating on other tracks as relays to transmit signals to a destination train on the same track is adopted. This mechanism can be divided into three cases based on occurrence of other relay trains. A presumption can be made that an arrival procedure of a train follows the Poisson distribution and the arrival procedure is a negative exponent [10]. In contrast to the physical-layer model research in other papers [5, 6], the proposed train-to-train communication model, introducing OFDM and MIMO techniques, realizes intertrain adhoc communication based on the Poisson process in the high-speed railway scenarios.

The rest of this paper is organized as follows. Section 3 gives a description of the proposed train-to-train communication model based on multihop, and Section 4 derives BER expressions of three cooperative conditions. In Section 5, the parameter selection of the train-to-train model is discussed. Section 6 shows the simulation results of this model, and this paper is concluded in Section 7.

3. Proposed Train-to-Train Communication Model

The train-to-train communication model is presented in Figure 1, where the S, R1, and D represent a source terminal, a fixed-occurring relay terminal, and a destination terminal, respectively. The R1 is the train that meets S on another rail track, and the R2 and R3, respectively, represent the first possible-occurring relay terminal and the third possible-occurring relay terminal. The average operating velocities of the R1 and R2 are 100 m/s, and those of D and R3 are −100 m/s. Rail 1, Rail 2, Rail 3, and Rail 4 represent four parallel rail tracks.

The communication mechanism of this model can be discussed under three cases based on the Poisson process. In the Poisson process, let sequence \(\{X_n, n \geq 1\} \) denote the time interval between the \((n-1)\)th and the \(n\)th event, which is the sequence of interarrival times, and \(X_n\) follows an exponential distribution. If a certain event definitely occurs, \(X_n\) will be uniformly distributed in the time interval \(T\) [11]. The occurrence of potential relays follows the Poisson process. Due to the concept put forward in China that the train flow density of trains in a high-speed railway network tends to be the same as that of buses in road transportation [12], there is no doubt that a two-train meet among different tracks will always exist. These cases are described below.

3.1. Case I. The S transmits signals to the R1 on different rail tracks when they meet each other. At the same time, the S searches for the potential relay R2 on a neighboring rail track 1. If the R2 is not found, R1 will keep broadcasting messages within its communication coverage (6 Km) [5], and if it receives a response from D, their communication link will be held and the transmission between them is performed.

3.2. Case II. If the R2 is searched, the S and R1 simultaneously transmit the signals to the R2. The R2 also performs the search of the potential relay R3. If the R3 does not exist, it will operate for some seconds until the distance between R2 and D is within a communication range. Finally, the R2 and R1, acting as two relays of the source, will transmit the signals to the destination terminal.

3.3. Case III. If the R3 exists, it will receive the signals from the R2 and R1 and then combine them. Finally, the R3, R2, and R1, as three relays of the source, will forward the signals to the destination terminal.

![Figure 1: Communication mechanism of train-to-train model.](image-url)
Under these cases, this paper respectively analyzes the reliability of the train-to-train communication model using the performance index BER.

4. Analysis of Train-to-Train Communication Model

4.1. Case I. Figure 2 describes the train-to-train communication model of Case I. The source S transmits the signals to the R1 as they meet each other. Total power is E, and the transmit signals are denoted as follows:

$$X_{S,R1,2k+1}(n) = \left(x_{S,R1,2k+1}(n) \right)$$

$$n = \{ N - N_{CP} + 1, \ldots, N, 1, 2, \ldots, 0 \}$$

$$k = \left\{ 1, 2, \ldots, \frac{M - 2}{2} \right\}$$

$$X_{S,R1,2k+2}^*(n) = \left(x_{S,R1,2k+2}^*(n) \right)$$

$$n = \{ N - N_{CP} + 1, \ldots, N, 1, 2, \ldots, 0 \}$$

$$k = \left\{ 1, 2, \ldots, \frac{M - 2}{2} \right\}$$

$$-X_{S,R1,2k+2}^*(n) = \left(-x_{S,R1,2k+2}^*(n) \right)$$

$$n = \{ N - N_{CP} + 1, \ldots, N, 1, 2, \ldots, 0 \}$$

$$k = \left\{ 1, 2, \ldots, \frac{M - 2}{2} \right\}$$

4.2. Analysis of Train-to-Train Reliability of the train-to-train communication model using x_{S}^* of the OFDM symbol. In OFDM modulation, x_{S} is the transmit signals at the transmitter with two antennas (antenna 1 and antenna 2) and is expressed as below:

$$X_{S,R1} = \left[X_{S,R1,2k+1}(n) X_{S,R1,2k+2}(n) X_{S,R1,2k+1}^*(n) X_{S,R1,2k+2}^*(n) \right]$$

(2)

Having taken multipaths and the Doppler effect into account, the impulse response of a channel can be written as

$$H_{1,S,R1} = (a(n - m) \ exp(2\pi T_{s}f_d(n - m)))$$

$$n = \{ N - N_{CP} + 1, \ldots, N, 1, 2, \ldots, 0 \}$$

$$H_{2,S,R1} = (a(n - m) \ exp(2\pi T_{s}f_d(n - m)))$$

$$n = \{ N - N_{CP} + 1, \ldots, N, 1, 2, \ldots, 0 \}$$

$H_{1,S,R1} \ and \ H_{2,S,R1}$ are channel impulse responses of a certain single path from the transmitter to the receiver with a 2×2 MIMO. f_d denotes the maximum Doppler frequency shift, n is the time delay of each path, and T_{s} is the sampling interval.

The $X_{1,S,R1,2k+1}$ and $X_{1,S,R1,2k+2}$ and $Y_{1,S,R1,2k+1}$ and $Y_{1,S,R1,2k+2}$ are the receiving vectors at the receiver for two antennas, and they can be derived as follows:

$$Y_{1,S,R1,2k+1} = \sqrt{E/2} \left[X_{S,R1,2k+1} \bigoplus H_{1,S,R1} \bigoplus X_{S,R1,2k+2} \bigoplus H_{2,S,R1} \bigoplus X_{S,R1,2k+1}^* \bigoplus H_{2,S,R1} \bigoplus X_{S,R1,2k+2}^* \right]$$

$$+ \left[N_{1,S,R1,2k+1} \bigoplus N_{2,S,R1,2k+1} \bigoplus N_{1,S,R1,2k+2} \bigoplus N_{2,S,R1,2k+2} \right]$$

$$= \sqrt{E/2} \left[X_{S,R1,2k+2} \bigoplus H_{1,S,R1} \bigoplus X_{S,R1,2k+1} \bigoplus H_{2,S,R1} \bigoplus X_{S,R1,2k+2}^* \bigoplus H_{2,S,R1} \bigoplus X_{S,R1,2k+1}^* \right]$$

$$+ \left[N_{1,S,R1,2k+1} \bigoplus N_{2,S,R1,2k+1} \bigoplus N_{1,S,R1,2k+2} \bigoplus N_{2,S,R1,2k+2} \right]$$

$$N_{1,S,R1,2k+1,1} \bigoplus N_{2,S,R1,2k+1,1} \bigoplus N_{1,S,R1,2k+2,1} \bigoplus N_{2,S,R1,2k+2,1}$$

$N_{1,S,R1,2k+1,1} \ and \ N_{2,S,R1,2k+1,1} \ and \ N_{1,S,R1,2k+2,1} \ and \ N_{2,S,R1,2k+2,1}$ are the Additive White Gaussian Noise (AWGN) with a zero mean.

$$Y_{1,S,R1,2k+1} = \sum_{i=1}^{L} Y_{1,S,R1,2k+1,i}$$

$$Y_{2,S,R1,2k+1} = \sum_{i=1}^{L} Y_{2,S,R1,2k+1,i}$$

$$Y_{1,S,R1,2k+2} = \sum_{i=1}^{L} Y_{1,S,R1,2k+2,i}$$

$$Y_{2,S,R1,2k+2} = \sum_{i=1}^{L} Y_{2,S,R1,2k+2,i}$$
The channel encoding is applied to enforce the error detection and correction at the receiver, and considering adoption interleaving and a (7, 4) cyclic code, the destination’s BERs of the $(2k+1)$th and $(2k+2)$th OFDM symbols can be

\[
P_{e,1,2k+1} = \sum_{m=0}^{n} C_n^m \left(P_{e,2k+1} \right)^m \left(1 - P_{e,2k+1} \right)^{n-m},
\]

\[
P_{e,1,2k+2} = \sum_{m=0}^{n} C_n^m \left(P_{e,2k+2} \right)^m \left(1 - P_{e,2k+2} \right)^{n-m}.
\]

$P_{e,1,2k+1}$ and $P_{e,1,2k+2}$ are the BERs of the $(2k+1)$th and $(2k+2)$th OFDM symbols at the destination terminal, t is the number of errors which can be corrected, and n is the total number of bit streams.

4.2. Case II. The distance between source and destination terminals is 10 Km, which is out of the set communication range (6 Km). It is therefore feasible to communicate with the destination terminal via R2 within the communication range on the neighboring track. Because the average velocity of the R2 is 100 m/s, the operation time interval in the communication range is 50 s, considering 1 km as the reserve margin.

Figure 3 gives a description of the train-to-train communication model of Case II. At time slot m, the source transmits the signals to R1, when they meet each other. The transmit signals are the same as those of Case I. At the same time, S searches R2 on the neighboring track. The occurrence of the R2 is on the basis of the Poisson process. Supposing the occurrence of R2 is event 1, denoted as S1, the coming of S1 follows exponential distribution within the time interval T of which the average strength λ is 180 s [9]. The coming probability P_{S1} of event S1 in the time interval T can be obtained as follows:

\[
T = \frac{10,000 \ m}{(100 \ m/s) - (-100 \ m/s)} = 50 \ s
\]

\[
P_{S1} = 1 - \exp \left(\frac{-1}{\lambda} \right) \bigg|_{T=50} = 0.2425.
\]

When the event S1 is determinately occurring, its distribution in the 50 s is uniform $U (0, 50)$.

At time slot m + 1, the source and R1 simultaneously transmit the signals to the R2, and the transmit signals $X_{S,R2}(n)$ and $X_{R1,R2}(n)$ from S and R2 are written as

\[
X_{S,R2}(n) = (x_{S,R1}(n));
\]

\[
X_{R1,R2}(n) = (x_{S,R1}(n));
\]

Like Case I, the transmitter adopts OFDM and Alamouti coding technique. The transmit signals are transmitted with multipath and Doppler effects and are processed by the relay R2 to acquire the estimation signals.

\[
Y_{1,S,R1,2k+2} = \sum_{l=1}^{L} Y_{1,S,R1,2k+2,l}
\]

\[
Y_{S,R1,2k+1} = Y_{1,S,R1,2k+1} + Y_{2,S,R1,2k+1},
\]

\[
Y_{S,R1,2k+2} = Y_{1,S,R1,2k+2} + Y_{2,S,R1,2k+2}.
\]
After decoding and reencoding the receiving signals, the R2 operates for some seconds until the distance between R2 and D is within the communication range.

R2 and R1, as two relays of the source, jointly transmit the estimation signals X'_R1 and X'_R2 to the destination terminal, on the assumption that the relays R2 and R1 coordinate perfectly. The estimation signals at the destination terminal are X'_R1, X'_R2 and the SNRs Y_R1 and Y_R2 at the destination terminal are as expressed below:

\[Y_R1 = \frac{E}{4N_0N} ||X'_R1||^2, \quad (15) \]

\[Y_R2 = \frac{E}{4N_0N} ||X'_R2||^2. \]

Case II is composed of two links which are a relay link (S-R2-D) and an equivalent direct link (R1-D). The BER of the receiving signal at the destination terminal can be written as

\[P_e = (1 - Q(\sqrt{Y_R2})) Q(\sqrt{Y_R1 + Y_R2}) + Q(\sqrt{Y_R1 - Y_R2}) Q(\sqrt{Y_R2}). \quad (16) \]

Using channel encoding including interleaving and the (7, 4) cyclic code, the P_e,II can be derived as

\[P_{e,II} = \sum_{m=t+1}^{\lambda} C_n^m (P_e)^m (1 - P_e)^{n-m}. \quad (17) \]

4.3. Case III. The occurrence of R3 is like R2, wherein the coming probability P_S2 of event S2 in the time interval T of 50 s is

\[P_{S2} = 1 - \exp\left(-\frac{1}{\lambda}\right) \bigg|_{T=50, \lambda=180} = 0.2425. \quad (18) \]

The communication model in Figure 4 can be considered to be composed of two basic models. One is marked with red lines, while the other is marked with blue lines. The principle of the red model is the same as that of the communication model in Figure 2 of which the SNR Y_R1,R2 at the destination terminal is written as

\[Y_R1,R2 = \frac{E}{4N_0N} ||X'_R1,R2||^2. \quad (19) \]

Then the red model can be considered equivalent to a direct link from the relay R1 to the destination D. The X'_R3 is the estimation signals of the relay link (R1-R3-D) at the destination, and the SNR Y_R3 is

\[Y_R3 = \frac{E}{4N_0N} ||X'_R3||^2. \quad (20) \]

Combining the relay link with the direct link, the BER of the communication model in Figure 4 is

\[P_e = (1 - Q(\sqrt{Y_R3})) Q(\sqrt{Y_R1,R2 + Y_R3}) + Q(\sqrt{(Y_R1,R2 - Y_R3)^2}) Q(\sqrt{Y_R3}), \quad (21) \]

\[P_{e,III} = \sum_{m=t+1}^{n} C_n^m (P_e)^m (1 - P_e)^{n-m}. \quad (22) \]

5. Numerical Analysis

5.1. Frequency Selection. The maximum propagation distance of the proposed train-to-train communication model is 6 Km. In order to avoid drastic signal attenuation of a long transmit distance, considering the Hata-Okumura suburban model [15], it is suitable to choose a frequency among the UHF band. The frequency determined at 300 MHz and the change of the path loss of the signal with distance in a suburban area is presented in Figure 5. As shown in Figure 5, the path loss of the signal in a suburban area at the distance of 6 Km is −142.23 dB.

5.2. Channel Model. The channel model used in this paper is the train-to-train suburban communication model in COST 207 [16, 17], which has six paths and whose maximum time delay is 5 μs. The speed of the high speed train is up to 100 m/s, so the Doppler frequency shift, in the range of [−200, 200] Hz, is added to each of six paths. The parameters of the suburban model in COST 207 are listed in Table 1.

5.3. Transmit Power. The minimum receiving level of the high-speed railway is −92 dBm [18], which is published.
Table 1: Parameters of the suburban model in COST 207.

<table>
<thead>
<tr>
<th>Number of path</th>
<th>Time delay (μs)</th>
<th>Path power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>0.2</td>
<td>0.16</td>
</tr>
<tr>
<td>4</td>
<td>0.3</td>
<td>0.06</td>
</tr>
<tr>
<td>5</td>
<td>0.4</td>
<td>0.03</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Figure 5: Change of the path loss of the signal with distance in suburban area.

Monte Carlo simulation. The results indicate that the train-to-train communication model works better with BER = 10^{-6} at SNR = 10 dB which satisfies the requirements of the transmission of the train control and prewarning messages [19]. The simulation results of the proposed train-to-train communication model are listed below, and as a contrast, the BER of the two-train direct communication on the same track without multihop is also presented.

In Figure 6, two trains on the same track communicate with each other directly without any help from other trains. In this situation, we can see the BER fluctuates around 0.5, which does not ensure messages are transmitted correctly and may easily result in a severe railway traffic accident. This simulation result shows that it is necessary to introduce some trains as relays to help source trains propagate messages to destination trains.

Figure 7 presents the BER performance of train-to-train communication model under Case I, Case II, and Case III with SNR from 0 dB to 12 dB. From Figure 7, Case II has better performance than Case I and Case III at a low SNR. When the SNR is above 4 dB, the performance of Case II is comparable to that of Case III, but is much better than Case III until SNR = 8 dB. It can be concluded that at a low SNR the possible relay R_1 and R_2 are able to ensure accurate transmission of the control and prewarning messages.

From the derivation above, the BERs $P_{e,II}$, $P_{e,I}$, and $P_{e,III}$ of Case I, Case II, and Case III are written as

$$P_{e} = \sum_{m=1}^{n} C_n^m \left(Q\left(\sqrt{2Y_{R1}}\right) + Q\left(\sqrt{2Y_D}\right) - 2Q\left(\sqrt{2Y_{R1}}\right)Q\left(\sqrt{2Y_D}\right) \right)^m \times \left(1 - Q\left(\sqrt{2Y_{R1}}\right) + Q\left(\sqrt{2Y_D}\right) - 2Q\left(\sqrt{2Y_{R1}}\right)Q\left(\sqrt{2Y_D}\right)^{m-1} \right),$$
Supposing $\text{SNR} = 10 \text{ dB}$, the theoretical value of the BERs under Case I, Case II, and Case III all approach zero, which corresponds to the simulation result in Figure 6.

Figures 8 and 9 describe the BER performance of the train-to-train communication model based on the Poisson process when $\text{SNR} = 5 \text{ dB}$ and 10 dB. Using the Monte Carlo method, the simulation is repeated 50 times. At each time, the topology of possibly-occurring relays is different. In these figures, the blue dots represent Case I, while the red and green dots represent Case II and Case III, respectively. At $\text{SNR} = 0 \text{ dB}$, the BERs of Case I, Case II, and Case III are all maintained at about 10^{-2}. At $\text{SNR} = 5 \text{ dB}$, the BER of Case I declines to 10^{-3}, and particularly the BERs of Case II and Case III reach 10^{-4}. When $\text{SNR} = 10 \text{ dB}$, the BER is basically maintained at 0 in 50 Monte Carlo simulations. It is proved that at $\text{SNR} = 10 \text{ dB}$ the reliability of the train-to-train communication model is sufficient to satisfy the needs of safety of the high-speed railway.

According to the analysis above, the train-to-train communication has some advantages over the GSM-R and RCAS
in the physical layer, such as minimum receiving SNR, average BER, and coverage area, which are listed in Table 2 [4–7, 18].

Admittedly, the minimum time delay of the train-to-train communication model is longer than that of the GSM-R. The minimum time delay of train-to-train communication model is 10 s. However, as a subsidiary role, the duty of the train-to-train communication model is to transmit the prewarning messages accurately when the existing train control system is malfunctioning. Once the front train is stopping on the rail track because of an accident, after 10 s’ message transmit delay, the remaining distance S between neighboring trains on the same rail track can be calculated as

\[S = 10 \text{Km} - \left(360 \text{Km/h} \times \frac{10 \text{s}}{3600} \right) = 9 \text{Km}. \quad (25) \]

The braking distance of a high-speed train is about 5 km at the speed of 300 km/h [20]. As seen from (25), the remaining 9 km is sufficient for the drivers to decide how to deal with the emergency. That is, the time delay of 10 s absolutely does not affect the following processes and reaction to the prewarning messages of the following trains on the same track.

7. Conclusion

This paper proposes a novel multihop train-to-train communication model using 300 MHz based on the Poisson process in the scenario of a high-speed railway, introducing OFDM and MIMO. The BER of the train-to-train model is decreased to \(10^{-6}\) when SNR is 10 dB, and the minimum receiving level of this model is \(-84 \text{dBm}\) corresponding to the standards established by UIC in a high-speed railway scenario. In contrast to the GSM-R and RCAS, the train-to-train communication model has advantages in minimum receiving SNR, average BER, and coverage area in the physical layer, which ensures accurate transmission of the control and prewarning messages.

Acknowledgments

This research was supported by the Program for New Century Excellent Talents in University under Grant no. NCET-09-0206, Fundamental Research Funds for the Central Universities under Grant no. 2010JBZ008 and no. 2011YJS010, Key Project of State Key Lab under Grant no. RCS2011ZZ008, National Natural Science Foundation of China under Grant no. 60830001, Beijing Natural Science Foundation under Grant no. 4112048, and Program for Changjiang Scholars and Innovative Research Team in University under Grant no. IRT0949.

References

