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Abstract. 
This paper focuses on the target detection in low-grazing angle using a hybrid multiple-input multiple-output (MIMO) radar systems in compound-Gaussian clutter, where the multipath effects are very abundant. The performance of detection can be improved via utilizing the multipath echoes. First, the reflection coefficient considering the curved earth effect is derived. Then, the general signal model for MIMO radar is introduced in low-grazing angle; also, the generalized likelihood test (GLRT) and generalized likelihood ratio test-linear quadratic (GLRT-LQ) are derived with known covariance matrix. Via the numerical examples, it is shown that the derived GLRT-LQ detector outperforms the GLRT detector in low-grazing angle, and both performances can be enhanced markedly when the multipath effects are considered.


1. Introduction
 MIMO radar has gotten considerable attention in a novel class of radar system, where the term MIMO refers to the use of multiple-transmit as well as multiple-receive antennas. MIMO radar is categorized into two classes: the statistical MIMO radar and the colocated MIMO radar, depending on their antenna placement [1, 2]. The advantages of MIMO radar with colocated antennas have been studied extensively, which include improved detection performance, higher resolution [3], higher sensitivity to or detection of moving targets [4], and increased degrees of freedom for transmission beamforming [5]. MIMO radar with widely separated antennas can capture the spatial diversity of the target’s radar cross section (RCS) [6]. This spatial diversity provides the radar systems with the ability to support the improvement of the target parameter estimation [7, 8], high resolution target localization [9], and tracking performance [10]. The hybrid MIMO radars can obtain superiority both from colocated and separated MIMO radar. Thus, we focus on the hybrid MIMO radar system in this paper.
Much published literature has concerned the issue of MIMO radar detection. Guan and Huang [11] investigated the detection problem of the MIMO radar system with distributed apertures in Gaussian colored noise and partially correlated observation channels. Tang et al. [12] introduced relative entropy as a measure to radar detection theory and analyzed the detection performance of MIMO radar and phased array radar. The authors in [13] investigated detection performance of MIMO radar for Rician target. In [14], the optimal detector in the Neyman-Pearson sense was derived for the statistical MIMO radar using orthogonal waveforms. The authors in [15] applied the Swerling models to target detection and derived the optimal test statistics for a statistical MIMO radar using nonorthogonal signal. For low-grazing angle detection of MIMO radar, the authors in [16] utilized the time reversal technique in a multipath environment to achieve high target detectability.
Low-grazing angle targets are difficult to detect, which is one of the great threats propelling radar development. Otherwise, detection of low-altitude targets is of great significance to counter low-altitude air defense penetration. However, up to now, this problem has not been effectively resolved. Multipath effect plays an important role in the low-altitude target detection, by which the target echo signal is seriously polluted, even counteracted [17]. Two aspects can be considered for multipath: suppressing multipath and utilizing it. However, in a statistical sense, detection may be enhanced by the presence of multipath [18].
In this paper, we consider low-grazing angle target detection in compound-Gaussian clutter for MIMO radar. The compound-Gaussian clutter represents the heavy-tailed clutter statistics that are distinctive of several scenarios, for example, high-resolution or low-grazing angle radars in the presence of sea or foliage clutter [19, 20]. To the end, the generalized likelihood ratio test (GLRT) and generalized likelihood ratio test-linear quadratic (GLRT-LQ) are derived.
2. Multipath Geometry Model
A point source at a distance of 
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 from the receiver is considered. If the source is assumed to be a narrowband signal, it can be represented by 
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To model the received signals more accurately, the curvature of the signal path due to refraction in the troposphere, in addition to the curvature of the earth itself, must be taken into account. The multipath geometry for a curved earth is given in Figure 1. 




	
		
			
		
			
		
	



	
		
			
				
			
				
			
			
				
			
		
	


	
		
			
				
			
				
			
			
				
			
		
	


	
		
			
				
			
				
			
			
				
			
		
	


	
		
			
				
			
				
			
			
				
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
		
			
		
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	





	
		
		
			
		
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
		
			
		
		
			
		
	


	
		
			
		
			
		
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
		
			
		
	


	
		
			
		
			
		
	


	
		
		
		
		
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	


	
		
	
	
		
	


	
		
		
		
		
		
		
		
		
		
		
		
	


	
		
	


	
		
		
		
		
		
		
	


	
		
	


	
		
	
	
		
	


	
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	



Figure 1: Multipath geometry for a curved earth.


In (3), the term 
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 is the complex reflection coefficient. It generally consists of the Fresnel reflection coefficient divided into the vertical polarization 
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 due to a curved surface, and the surface roughness factor; that is, 
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. The vertical polarization and horizontal polarization Fresnel reflection coefficients are, respectively, as presented in [17]. Consider the following:
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 is its conductivity. Thus, the Fresnel reflection coefficient is determined by the grazing angle under a deterministic condition.
When an electromagnetic wave is incident on a round earth surface, the reflected wave diverges because of the earth’s curvature. Due to divergence, the reflected energy is defocused and radar power density is reduced. The divergence factor can be derived solely from geometrical considerations. A widely accepted approximation for the divergence factor 
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The surface roughness factor 
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 is the root-mean-square (RMS) surface height irregularity. For simplicity, the diffuse component is treated as the incoherent white Gaussian noise.
3. MIMO Radar Multipath Signal
Consider a narrowband MIMO radar system with 
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 are the total numbers of transmit and receive antennas, respectively. We assume that the subarrays are sufficiently separated, and, hence, for each target, its RCSs for different transmit and receive subarray pairs are statistically independent of each other. The receive signal of MIMO radar can be expressed as [21] 
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We rewrite the received signal (11) in vector form, given by 
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4. Multipath Signal Model of MIMO Radar
In the presence of multipath, consider atmosphere refraction and the curved earth effect; the reflected signals from a point target of MIMO radar include four parts: directly-directly path, directly-reflected path, and reflected-directly path, reflected-reflected path. Assume the point target is located at 
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. Figure 2 illustrates a four-way MIMO radar propagation model with multipath.








	
		
		
			
		
	


	
		
			
		
			
		
	
















	
		
			
			
			
			
			
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	



(a) Directly-directly path








	
		
		
			
		
	


	
		
			
		
			
		
	
















	
		
			
		
			
		
	


	
		
			
			
			
			
			
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	















(b) Directly-reflected path








	
		
		
			
		
	


	
		
			
		
			
		
	
















	
		
			
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
			
			
			
			
			
		
	















(c) Reflected-directly path








	
		
		
			
		
	


	
		
			
		
			
		
	
















	
		
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
			
			
			
			
			
		
	















(d) Reflected-reflected path
Figure 2: Multipath MIMO radar. 


The directly-directly path echo signal is given by (12). The directly-reflected path echo signal is 
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The reflected-directly path echo signal is 
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Thus, the received signal of MIMO radar with multipath is 
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				+
				𝐤
			

			
				r
				d
			

			
				+
				𝐤
			

			
				r
				r
			

		
	
 and 
	
		
			

				𝟏
			

			

				∼
			

			

				𝑀
			

			

				∼
			

			

				𝑁
			

		
	
 is an 
	
		
			

				∼
			

			

				𝑀
			

			

				∼
			

			
				𝑁
				×
				1
			

		
	
 one vector.
5. MIMO Radar Detector in Compound-Gaussian Clutter
5.1. GLRT Detector Design
The problem of detecting with MIMO radar can be formulated in terms of the following binary hypotheses test: 
								
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝐻
			

			

				0
			

			
				∶
				𝐲
			

			
				m
				p
			

			
				𝐻
				=
				𝐧
				,
			

			

				1
			

			
				∶
				𝐲
			

			
				m
				p
			

			
				=
				𝐓
				(
				𝐤
				⊙
				𝜷
				)
				+
				𝐧
				.
			

		
	

Standard GLRT is the following decision rule: 
								
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				m
				a
				x
			

			
				𝜷
				,
				𝜆
			

			

				1
			

			
				,
				…
				,
				𝜆
			

			

				𝐿
			

			
				𝑓
				
				𝐘
				∣
				𝐻
			

			

				1
			

			
				,
				𝜆
			

			

				1
			

			
				,
				…
				,
				𝜆
			

			

				𝐿
			

			
				
				,
				𝜷
			

			
				
			
			
				m
				a
				x
			

			

				𝜆
			

			

				1
			

			
				,
				…
				,
				𝜆
			

			

				𝐿
			

			
				𝑓
				
				𝐘
				∣
				𝐻
			

			

				0
			

			
				,
				𝜆
			

			

				1
			

			
				,
				…
				,
				𝜆
			

			

				𝐿
			

			

				
			

			

				𝐻
			

			

				1
			

			
				>
				<
			

			

				𝐻
			

			

				0
			

			

				𝛾
			

			

				𝐺
			

			

				,
			

		
	

							where 
	
		
			
				𝑓
				(
				𝐘
				∣
				𝐻
			

			

				1
			

			
				,
				𝜆
			

			

				1
			

			
				,
				…
				,
				𝜆
			

			

				𝐿
			

			
				,
				𝜷
				)
			

		
	
 and 
	
		
			
				𝑓
				(
				𝐘
				∣
				𝐻
			

			

				1
			

			
				,
				𝜆
			

			

				1
			

			
				,
				…
				,
				𝜆
			

			

				𝐿
			

			

				)
			

		
	
 denote the probability density functions (pdfs) of the data under 
	
		
			

				𝐻
			

			

				1
			

		
	
 and 
	
		
			

				𝐻
			

			

				0
			

		
	
, respectively. And the pdfs can be written, respectively, as 
								
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				𝑓
				
				𝐘
				∣
				𝐻
			

			

				1
			

			
				,
				𝜆
			

			

				1
			

			
				,
				…
				,
				𝜆
			

			

				𝐿
			

			
				
				=
				1
				,
				𝜷
			

			
				
			
			

				𝜋
			

			
				𝑁
				𝐿
			

			
				
				𝐂
				d
				e
				t
			

			

				𝐧
			

			
				
				e
				x
				p
				{
				−
				t
				r
				(
				ℑ
				)
				}
				,
			

		
	

							where 
	
		
			
				ℑ
				=
				𝐂
			

			
				𝐧
				−
				1
			

			
				(
				𝐲
				−
				𝐓
				(
				𝐤
				⊙
				𝜷
				)
				)
				×
				(
				𝐲
				−
				𝐓
				(
				𝐊
				⊙
				𝜷
				)
				)
			

			

				†
			

		
	
, and
								
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				𝑓
				
				𝐘
				∣
				𝐻
			

			

				0
			

			
				,
				𝜆
			

			

				1
			

			
				,
				…
				,
				𝜆
			

			

				𝐿
			

			
				
				=
				1
			

			
				
			
			

				𝜋
			

			
				𝑁
				𝐿
			

			
				
				𝐂
				d
				e
				t
			

			

				𝐧
			

			
				
				
				
				𝐂
				e
				x
				p
				−
				t
				r
			

			
				𝐧
				−
				1
			

			
				𝐲
				𝐲
			

			

				†
			

			
				,
				
				
			

		
	

							where 
	
		
			
				d
				e
				t
				(
				•
				)
			

		
	
 and 
	
		
			
				t
				r
			

		
	
 denote the determinant and the trace of a matrix, respectively.
The log-likelihood function of (21) is 
								
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				
				l
				n
				𝑓
				𝐘
				∣
				𝐻
			

			

				0
			

			
				,
				𝜆
			

			

				1
			

			
				,
				…
				,
				𝜆
			

			

				𝐿
			

			
				
				=
				−
				𝑁
				𝐿
				l
				n
				𝜋
				−
				𝐿
				l
				n
				d
				e
				t
				(
				𝐂
				)
				−
				𝑁
			

			

				𝐿
			

			

				
			

			
				ℓ
				=
				1
			

			
				l
				n
				𝜆
			

			

				ℓ
			

			

				−
			

			

				𝐿
			

			

				
			

			
				ℓ
				=
				1
			

			

				𝐲
			

			

				†
			

			
				
				𝐸
			

			
				ℓ
				ℓ
			

			
				⊗
				𝐂
			

			
				−
				1
			

			
				
				𝐲
			

			
				
			
			

				𝜆
			

			

				ℓ
			

			

				,
			

		
	

							where 
	
		
			

				𝐸
			

			
				ℓ
				ℓ
			

		
	
 denotes the elementary matrix with component 
	
		
			
				𝑒
				(
				ℓ
				,
				ℓ
				)
				=
				1
			

		
	
 and zero for others. Then, it is easy to obtain the Maximum Likelihood (ML) estimator of 
	
		
			

				𝜆
			

		
	
 under 
	
		
			

				𝐻
			

			

				0
			

		
	
; that is 
								
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				̂
				𝜆
			

			

				ℓ
			

			
				=
				𝐲
			

			

				†
			

			
				
				𝐸
			

			
				ℓ
				ℓ
			

			
				⊗
				𝐂
			

			
				−
				1
			

			
				
				𝐲
			

			
				
			
			
				𝑁
				.
			

		
	

According to [21], we rewrite the log-likelihood function of (20) as 
								
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				
				l
				n
				𝑓
				𝐘
				∣
				𝐻
			

			

				1
			

			
				,
				𝜆
			

			

				1
			

			
				,
				…
				,
				𝜆
			

			

				𝐿
			

			
				
				,
				𝜷
				=
				−
				𝑁
				𝐿
				l
				n
				𝜋
				−
				𝐿
				l
				n
				d
				e
				t
				(
				𝐂
				)
				−
				𝑁
			

			

				𝐿
			

			

				
			

			
				ℓ
				=
				1
			

			
				l
				n
				𝜆
			

			

				ℓ
			

			

				−
			

			

				𝐿
			

			

				
			

			
				ℓ
				=
				1
			

			
				(
				𝐲
				−
				𝐓
				(
				𝐤
				⊙
				𝜷
				)
				)
			

			

				†
			

			
				
				𝐸
			

			
				ℓ
				ℓ
			

			
				⊗
				𝐂
			

			
				−
				1
			

			
				
				(
				𝑦
				−
				𝐓
				(
				𝐤
				⊙
				𝜷
				)
				)
			

			
				
			
			

				𝜆
			

			

				ℓ
			

			

				.
			

		
	

Thus, the ML estimator of 
	
		
			
				{
				𝜆
			

			

				ℓ
			

			

				}
			

			
				𝐿
				ℓ
				=
				1
			

		
	
 is 
								
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				̂
				𝜆
			

			

				ℓ
			

			
				=
				(
				𝐲
				−
				𝐓
				(
				𝐤
				⊙
				𝜷
				)
				)
			

			

				†
			

			
				
				𝐸
			

			
				ℓ
				ℓ
			

			
				⊗
				𝐂
			

			
				−
				1
			

			
				
				(
				𝐲
				−
				𝐓
				(
				𝐤
				⊙
				𝜷
				)
				)
			

			
				
			
			
				𝑁
				.
			

		
	

The estimator 
	
		
			

				𝜷
			

		
	
is [23] 
								
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				
				
				(
				𝜷
				=
				𝐓
				𝐤
				)
			

			

				†
			

			

				𝐂
			

			
				𝐧
				−
				𝟏
			

			
				(
				
				(
				𝐓
				𝐤
				)
				𝐓
				𝐤
				)
			

			

				†
			

			

				𝐂
			

			
				𝐧
				−
				𝟏
			

			
				𝐲
				.
			

		
	

Substituting the estimator 
	
		
			
				{
				̂
				𝜆
			

			

				ℓ
			

			

				}
			

			
				𝐿
				ℓ
				=
				1
			

		
	
, 
	
		
			
				
				𝜷
			

		
	
under 
	
		
			

				𝐻
			

			

				1
			

		
	
 and 
	
		
			

				𝐻
			

			

				0
			

		
	
 into (19)–(21), the final GLRT becomes 
								
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				𝐿
			

			

				
			

			
				ℓ
				=
				1
			

			

				𝐲
			

			

				†
			

			
				
				𝐸
			

			
				ℓ
				ℓ
			

			
				⊗
				𝐂
			

			
				−
				1
			

			
				
				𝐲
			

			
				
			
			
				
				
				
				𝜷
				𝐲
				−
				𝐓
				𝐤
				⊙
				
				
			

			

				†
			

			
				
				𝐸
			

			
				ℓ
				ℓ
			

			
				⊗
				𝐂
			

			
				−
				1
			

			
				
				
				
				
				𝜷
				𝐲
				−
				𝐓
				𝐤
				⊙
				
				
			

			

				𝐻
			

			

				1
			

			
				>
				<
			

			

				𝐻
			

			

				0
			

			

				𝛾
			

			

				𝐺
			

			

				.
			

		
	

5.2. GLRT-LQ Detector Design
We rewrite the detection problem as 
								
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				𝐻
			

			

				0
			

			
				∶
				𝑦
			

			
				𝑚
				,
				𝑛
			

			
				=
				𝑧
			

			
				𝑚
				,
				𝑛
			

			
				,
				𝐻
			

			

				1
			

			
				∶
				𝑦
			

			
				𝑚
				,
				𝑛
			

			
				=
				𝜌
			

			

				𝑀
			

			

				𝑚
			

			

				𝑁
			

			

				𝑛
			

			
				𝛽
				(
				𝑚
				,
				𝑛
				)
				𝑇
			

			
				𝑚
				,
				𝑛
			

			
				+
				𝑧
			

			
				𝑚
				,
				𝑛
			

			

				,
			

		
	

							where 
	
		
			

				𝜌
			

			

				𝑀
			

			

				𝑚
			

			

				𝑁
			

			

				𝑛
			

			
				=
				(
				1
				+
				𝜌
			

			

				(
			

			
				d
				r
			

			
				)
				𝑀
			

			

				𝑚
			

			

				𝑁
			

			

				𝑛
			

			
				+
				𝜌
			

			
				𝑀
				(
				r
				d
				)
			

			

				𝑚
			

			

				𝑁
			

			

				𝑛
			

			
				+
				𝜌
			

			

				(
			

			
				r
				r
			

			
				)
				𝑀
			

			

				𝑚
			

			

				𝑁
			

			

				𝑛
			

			

				)
			

		
	
; 
	
		
			

				𝜌
			

			

				(
			

			
				d
				r
			

			
				)
				𝑀
			

			

				𝑚
			

			

				𝑁
			

			

				𝑛
			

		
	
, 
	
		
			

				𝜌
			

			
				𝑀
				(
				r
				d
				)
			

			

				𝑚
			

			

				𝑁
			

			

				𝑛
			

		
	
, 
	
		
			

				𝜌
			

			

				(
			

			
				r
				r
			

			
				)
				𝑀
			

			

				𝑚
			

			

				𝑁
			

			

				𝑛
			

		
	
 are the amplitudes of reflect coefficient, because the grazing angles are different; the reflect coefficient 
	
		
			

				𝜌
			

			

				(
			

			
				d
				r
			

			
				)
				𝑀
			

			

				𝑚
			

			

				𝑁
			

			

				𝑛
			

			
				≠
				𝜌
			

			
				𝑀
				(
				r
				d
				)
			

			

				𝑚
			

			

				𝑁
			

			

				𝑛
			

			
				≠
				𝜌
			

			

				(
			

			
				r
				r
			

			
				)
				𝑀
			

			

				𝑚
			

			

				𝑁
			

			

				𝑛
			

		
	
.
As the transmit-receive subarrays are widely separated, the clutter returns can be considered to be independent; hence, the low-grazing angle likelihood ratio test (LRT) detector for MIMO radar in the compound-Gaussian clutter is given by 
								
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				𝑝
				
				l
				o
				g
				𝑦
				∣
				𝐻
			

			

				0
			

			

				
			

			
				
			
			
				𝑝
				
				𝑦
				∣
				𝐻
			

			

				1
			

			

				
			

			

				𝐻
			

			

				1
			

			

				>
			

			

				𝐻
			

			

				0
			

			
				<
				𝛾
			

			
				𝐺
				−
				𝐿
				𝑄
			

			

				.
			

		
	

If we assume that covariance matrix 
	
		
			

				𝐂
			

			

				𝑐
			

		
	
 is known and according to [24], 
	
		
			
				𝑝
				(
				𝑦
				∣
				𝐻
			

			

				0
			

			

				)
			

		
	
 and 
	
		
			
				𝑝
				(
				𝑦
				∣
				𝐻
			

			

				1
			

			

				)
			

		
	
 are replaced by their Bayesian estimates, and, asymptotically, the generalized likelihood ratio test-linear quadratic (GLRT-LQ), extended to the MIMO case, is given by 
								
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				Λ
				=
				𝑝
				
				(
				𝑌
				)
				𝑌
				∣
				𝐻
			

			

				1
			

			

				
			

			
				
			
			
				𝑝
				
				𝑌
				∣
				𝐻
			

			

				0
			

			
				
				=
				∏
			

			
				𝑚
				,
				𝑛
			

			
				𝑝
				
				𝑦
			

			
				𝑚
				,
				𝑛
			

			
				∣
				𝐻
			

			

				1
			

			

				
			

			
				
			
			

				∏
			

			
				𝑚
				,
				𝑛
			

			
				𝑝
				
				𝑦
			

			
				𝑚
				,
				𝑛
			

			
				∣
				𝐻
			

			

				0
			

			
				
				=
				
			

			
				𝑚
				,
				𝑛
			

			
				⎡
				⎢
				⎢
				⎣
				⎛
				⎜
				⎜
				⎝
				|
				|
				𝑇
				1
				×
				1
				−
			

			
				†
				𝑚
				,
				𝑛
			

			

				𝐂
			

			
				−
				1
				𝑚
				,
				𝑛
			

			

				𝑦
			

			
				𝑚
				,
				𝑛
			

			
				|
				|
			

			

				2
			

			
				
			
			
				
				𝑇
			

			
				†
				𝑚
				,
				𝑛
			

			

				𝐂
			

			
				−
				1
				𝑚
				,
				𝑛
			

			

				𝑇
			

			
				𝑚
				,
				𝑛
			

			
				𝑦
				
				
			

			
				†
				𝑚
				,
				𝑛
			

			

				𝑀
			

			
				−
				1
				𝑚
				,
				𝑛
			

			

				𝑦
			

			
				𝑚
				,
				𝑛
			

			
				
				⎞
				⎟
				⎟
				⎠
			

			
				−
				1
			

			
				⎤
				⎥
				⎥
				⎦
			

			

				𝐻
			

			

				1
			

			
				>
				<
			

			

				𝐻
			

			

				0
			

			

				𝛾
			

			
				𝐺
				−
				𝐿
				𝑄
			

			

				,
			

		
	

							where 
	
		
			

				𝐂
			

			
				𝑚
				,
				𝑛
			

		
	
 is the covariance matrix for the 
	
		
			
				𝑚
				−
				𝑛
			

		
	
 transmit-receive pair.
According to [24], the probability of false alarm 
	
		
			

				𝑃
			

			
				f
				a
			

		
	
 is given by 
								
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				𝑃
			

			
				f
				a
			

			
				
				=
				𝑃
			

			

				𝐼
			

			

				
			

			
				𝑖
				=
				1
			

			

				Λ
			

			

				𝑖
			

			
				
				𝑦
			

			

				𝑖
			

			
				
				>
				𝛾
			

			
				𝐺
				−
				𝐿
				𝑄
			

			
				∣
				𝐻
			

			

				0
			

			
				
				=
				𝛾
			

			
				−
				𝐿
				+
				1
				𝐺
				−
				𝐿
				𝑄
				𝐼
				−
				1
			

			

				
			

			
				𝑖
				=
				0
			

			
				(
				𝑊
				−
				𝐼
				)
			

			

				𝑖
			

			
				
			
			
				
				𝑖
				!
				l
				n
				𝛾
			

			
				𝐺
				−
				𝐿
				𝑄
			

			

				
			

			

				𝑖
			

			

				,
			

		
	

							where 
	
		
			
				𝐼
				=
			

			

				∼
			

			

				𝑀
			

			

				∼
			

			

				𝑁
			

		
	
 and 
	
		
			
				𝑊
				=
				𝑀
			

			

				𝑚
			

			

				𝑁
			

			

				𝑛
			

		
	
.
The probability of detection 
	
		
			

				𝑃
			

			

				𝑑
			

		
	
 is given by 
								
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				𝑃
			

			

				𝑑
			

			
				
				=
				𝑃
			

			

				𝐼
			

			

				
			

			
				𝑖
				=
				1
			

			

				Λ
			

			

				𝑖
			

			
				
				𝑦
			

			

				𝑖
			

			
				
				>
				𝛾
			

			
				𝐺
				−
				𝐿
				𝑄
			

			
				∣
				𝐻
			

			

				0
			

			
				
				.
			

		
	

For a given signal-to-clutter ratio (SCR), denoted by 
	
		
			
				S
				C
				R
			

			
				𝑚
				,
				𝑛
			

		
	
, the amplitude of 
	
		
			
				𝛽
				(
				𝑚
				,
				𝑛
				)
			

		
	
 is given by 
								
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				=
				
				𝛽
				(
				𝑚
				,
				𝑛
				)
			

			
				
			
			
				S
				C
				R
			

			
				𝑚
				,
				𝑛
			

			

				𝜎
			

			

				2
			

			

				,
			

		
	

							where 
	
		
			

				𝜎
			

			

				2
			

		
	
 is the clutter power. In this paper, we consider that 
	
		
			
				|
				𝛽
				(
				𝑚
				,
				𝑛
				)
				|
			

		
	
 is the same for all 
	
		
			

				𝑚
			

		
	
 and 
	
		
			

				𝑛
			

		
	
.
6. Numerical Simulations
This section is devoted to the performance