Impact of the Gate Width of Al$_{0.27}$Ga$_{0.73}$N/AlN/Al$_{0.04}$Ga$_{0.96}$N/GaN HEMT on Its Characteristics

Liwei Jin, Zhiqun Cheng, and Qingna Wang

1 Key Laboratory of RF Circuit and System, Education Ministry, Hangzhou Dianzi University, Hangzhou 310018, China
2 Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China

Correspondence should be addressed to Zhiqun Cheng; zhiqun@hdu.edu.cn

Received 17 March 2013; Accepted 25 April 2013

1. Introduction

As the third typical semiconductor material, GaN has been widely investigated for several years due to their wide gap and high breakdown field. It will become an ideal candidate for high-power, high-frequency, and high-temperature electronic devices [1–4]. By the great development of the material quality and device processing techniques, AlGaN/GaN HEMTs have been much improved in both DC and RF performances.

Performances of monolithic microwave integrated circuits (MMICs) are influenced by the characteristics of active devices. There are many papers about improving its DC and AC performances by changing material or structure of epitaxial layer of AlGaN/GaN HEMTs [5–8]. In recent years, a novel structure Al$_x$Ga$_{1-x}$N/Al$_x$Ga$_{1-x}$N/GaN HEXT with low Al composite inserting layer Al$_x$Ga$_{1-x}$N has been reported [9–11] and MMICs based on AlGaN/GaN HEMTs are designed by our group [12]. This paper will present the impact of layout sizes of Al$_{0.27}$Ga$_{0.73}$N/AlN/Al$_{0.04}$Ga$_{0.96}$N/GaN HEMTs based on SiC substrate on its characteristics.

2. Material Preparation and Device Fabrication

The layer structure of the device proposed in the study is grown on a SiC substrate. The epitaxial layer consists of an unintentionally doped 1.5 μm GaN buffer layer, 1 nm AlN spacer layer, 4 nm low Al component Al$_{0.04}$Ga$_{0.96}$N, and a 20 nm Al$_{0.27}$Ga$_{0.73}$N barrier layer as shown in Figure 1. Epitaxial layer structure of Al$_{0.27}$Ga$_{0.73}$N/AlN/Al$_{0.04}$Ga$_{0.96}$N/GaN HEMTs is proposed and optimized by combining theory calculation and TCAD software; detail design process is given in our previous papers [13, 14].

An averaged electron mobility of 1800 cm2/V·s and a sheet carrier density of 1.0 × 1013/cm2 are obtained by room temperature Hall measurement. The AlGaN/GaN HEMT fabrication commences with metalizing by high-vacuum evaporation in drain and source; the Ohmic contacts are formed by depositing the metal Ti/Al/Ti/Au and then rapid thermal annealing (RTA) at 870°C for 50 s in N$_2$ ambient. All these steps above result in a low ohmic contact resistance of 0.6Ω·mm. Si$_3$N$_4$ film used for passivation is grown by...
S Sgs G D

20 nm Al_{0.27}Ga_{0.73} N
1 nm AlN
4 nm Al_{0.04}Ga_{0.96} N
1.5 μm GaN
SiC

Figure 1: Cross section diagram of Al_{0.27}Ga_{0.73} N/AlN/Al_{0.04}Ga_{0.96} N/GaN HEMT.

PECVD. Then, the T-shaped Schottky gate is formed by Ni/Au evaporation and the subsequent lift-off process.

3. The Design of Layout and Analysis of Results

Layout of Al_{0.27}Ga_{0.73} N/AlN/Al_{0.04}Ga_{0.96} N/GaN HEMT is designed including 24 types of samples with different gate fingers numbers and width of each finger. Total gate width of device is supposed to be \(m \times n \) \(\mu m \) \((m = 2, 3, 4, 6, 8, \) and \(10; n = 40, 60, 80, \) and \(100)\), where "\(m \)" represents the finger numbers and "\(n \)" stands for width of each gate finger. The space between gate and source is 1 \(\mu m \) for all of the device.

3.1. Threshold Voltage

Figure 2 presents that threshold voltage of Al_{0.27}Ga_{0.73} N/AlN/Al_{0.04}Ga_{0.96} N/GaN HEMT almost do not change with the width of each gate finger except gate finger number of 10 and change from \(-3.8\) to \(-4.3\) V with number of gate fingers.

3.2. Maximum Transconductance

Figure 3 presents that the maximum transconductance \((G_{m_{\text{max}}}) \) of the GaN HEMTs changes with its gate width. The values of \(G_{m_{\text{max}}} \) reduce with the width of each gate finger. When the number of gate fingers is 8, downslope of the values of \(G_{m_{\text{max}}} \) is the largest of them with the width of each gate finger from 215 to 196 mS/mm.

3.3. Frequency Characteristics

\(S \) parameters are measured on line at the frequency from 500 MHz to 24 GHz. The current gain \((|h_{21}|) \) and the maximum available power gain (MAG) are calculated from measured \(S \) parameters as a function of frequency. The values of characteristic frequency \((f_{t}) \) and the maximum oscillation frequency \((f_{\text{osc}}) \) are determined by extrapolation of the \(|h_{21}|\) and MAG data at \(-20 \text{ dB/decade}\). Figures 4 and 5 present that the characteristic frequency and the maximum oscillator frequency change with the gate width, respectively. Both of \(f_{t} \) and \(f_{\text{osc}} \) reduce with increasing the gate width. Both of \(f_{t} \) and \(f_{\text{osc}} \) are influenced larger by the number of gate fingers than by the width of each gate width.

4. Conclusion

A novel structure of Al_{0.27}Ga_{0.73} N/AlN/Al_{0.04}Ga_{0.96} N/GaN HEMT with different sizes of layout is successfully designed and fabricated. After measurement, the performances of the threshold voltage, the maximum transconductance, characteristic frequency, and the maximum oscillation frequency with different gate widths of Al_{0.27}Ga_{0.73} N/AlN/Al_{0.04}Ga_{0.96} N/GaN HEMT are analyzed carefully. It is
significant for designing AlGaN/GaN HEMT with excellent performance.

Acknowledgment
This work was supported by Natural Science Foundation of Zhejiang Province (no. Z11H0937).

References
[9] Z. Cheng, J. Liu, Y. Zhou, Y. Cai, K. J. Chen, and K. M. Lau, “Broadband microwave noise characteristics of high-linearity composite-channel Al_{0.3}Ga_{0.7}N/Al_{0.05}Ga_{0.95}N/GaN HEMTs,” IEEE Electron Device Letters, vol. 26, no. 8, pp. 521–523, 2005.
[11] Z. Q. Cheng, Q. N. Wang, Z. H. Feng, J. B. Song, and J. Y. Yin, “Design and DC parameter extraction of the high linearity Al_{0.3}Ga_{0.7}N/Al_{0.94}Ga_{0.06}N/GaN HEMT,” in Proceedings of the 1st International Conference on Electronics, Communications and Control, pp. 1979–1981, September 2011.