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Abstract. 
We propose a three-dimensional microwave holographic imaging method based on the forward-scattered waves only. In the proposed method, one transmitter and multiple receivers perform together a two-dimensional scan on two planar apertures on opposite sides of the inspected domain. The ability to achieve three-dimensional imaging without back-scattered waves enables the imaging of high-loss objects, for example, tissues, where the back-scattered waves may not be available due to low signal-to-noise ratio or nonreciprocal measurement setup. The simulation and experimental results demonstrate the satisfactory performance of the proposed method in providing three-dimensional images. Resolution limits are derived and confirmed with simulation examples.


1. Introduction
Better penetration of microwaves inside lossy dielectric objects, compared to visible light, provides a means for inspection of biological tissues, wood, concrete, ceramics, soil, and so forth. Various techniques have been proposed to harness the ability of microwaves for two-dimensional (2D) and three-dimensional (3D) imaging in a wide range of applications such as biomedical imaging [1], concealed weapon detection [2], through-the-wall imaging [3], and nondestructive testing and evaluation [4]. All these methods operate on the scattered signals at the antenna terminals but they differ significantly in the data acquisition schemes and the processing algorithms. A summary of major microwave imaging techniques is available in [5].
In this paper, the focus is on microwave holographic imaging. Microwave holography was originally developed by Farhat et al. [2, 6, 7] in a form similar to acoustic holography [8, 9], which can be viewed as a long-wavelength implementation of the original optical holography developed by Gabor [10]. These microwave/acoustic holography techniques operate by recording a “hologram” which contains information about the magnitude and the phase of the wave reflected by a target. The hologram is captured on a film by interfering the scattered wave due to the examined object with a reference wave. This interference pattern or “hologram” can then be used to reconstruct an image of the object by illuminating the hologram with the same reference wave. In modern microwave/acoustic holography, scanned transceivers capture the scattered wavefront’s phase and amplitude distributions directly. Once recorded, the image can be reconstructed digitally using a Fourier-optics image reconstruction that essentially emulates the hologram-based reconstruction process.
In [11], a 3D microwave holographic imaging technique has been proposed. The authors described the technique as the merging of the single-frequency 2D holographic imaging methods with wideband 2D synthetic aperture radar (SAR). The SAR imaging systems are commonly used to obtain high-resolution 2D images of a terrain at long ranges. These systems operate by scanning a wide bandwidth radar transceiver along a long linear aperture, typically using an airplane. Then they reconstruct a 2D image along the scanned line (e.g., see [12–15]). In [11], wideband back-scattered data is collected over a rectangular aperture. The system is quasi-monostatic that is, the transmitting and the receiving antennas are separate but colocated during the 2D scan. The processing relies on an assumed analytical (exponential) form of the incident field and Green’s function in order to cast the inversion in the form of a 3D inverse Fourier transform (FT). This limits the technique to far-zone imaging. Resampling of the data in 
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-space is also necessary. Also, in [16–18], similar 3D holographic imaging techniques have been proposed where the wideband data is acquired on a cylindrical aperture to extend the “view angles” for the object. This leads to better imaging results.
In [19, 20], we extended the 3D holography technique in [11] to near-field imaging. The proposed method allows for incorporating forward-scattered signals in addition to the back-scattered signals. The method also allows for incident-field and Green’s function distributions in numeric forms. These are obtained through simulations of the particular background medium with the particular Tx/Rx antennas (Tx and Rx stand for transmitter and receiver, resp.). The accurate representations of the incident field and Green’s function for the particular acquisition setup and antennas (not assuming a plane-wave exponential form as in [11]) are crucial in near-field imaging. The procedure in [11] is inapplicable with numeric representations of the incident field and the Green’s function. Thus, the numerical form of the incident field and the Green’s function required a new inversion procedure. In [19, 20], a linear system of equations is solved for each spatial frequency pair (
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) and 2D inverse FT is applied to the solution on planes (slices) at all desired range locations. These linear systems of equations have much smaller dimensions and they are less ill-conditioned compared to the systems of equations in regular optimization-based microwave imaging techniques.
Also, the algorithm is not limited to propagating waves (where 
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 is assumed real as in [11]) and is thus capable of processing the evanescent waves available in near-field imaging. Processing larger values for (
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) leads to better spatial resolution of the reconstructed images. Furthermore, in the approach proposed in [11], resampling of the data in 
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-space is necessary which may lead to additional errors. Algorithms such as the Stolt interpolation [21] and nonuniform fast Fourier transform (NUFFT) [22] have been proposed to alleviate or avoid this problem. Even if the resampling (interpolation) errors can be alleviated, assuming 
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 as independent variables still leads to errors in the image reconstruction process. These issues are irrelevant in our technique since the use of the parameter 
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 is avoided.
In [20], we presented experimental holographic imaging results when employing the TEM horn antennas proposed in [23]. Thus, the main focus was on applications for breast-cancer diagnostics and artificial glycerin-based phantoms emulating the breast tissues were imaged. Only 2D holographic imaging results were presented employing forward-scattered waves. This is due to the fact that the back-scattered (or reflected) signals were measured through the complex reflection coefficient of the Tx antenna. Such signals are so weak that they are masked by the measurement noise and uncertainties. On the other hand, the back-scattered signals are crucial for implementing 3D holographic imaging with planar scanning.
In this paper, we propose a configuration which allows for 3D holographic imaging where only forward-scattered data is available. We develop expressions for the resolution limits of bistatic holography using an approach developed for bistatic SAR [24]. We confirm that the availability of forward-scattered data in a planar surface acquisitions similar to those in [19, 20] cannot provide enough information to perform 3D holographic imaging. This is consistent with our previous observations. The images obtained when we exclude the back-scattered data do not have depth resolution. Moreover, the image quality in the cross range is also compromised when attempting 3D reconstruction without back-scattered signals, although a 2D holographic reconstruction in the cross-range plane of the object is successful. Overall, without the back-scattered data, the holographic reconstructed images contain strong artifacts along both range and cross range. The solution to this problem as proposed in this work is a scanning setup comprising one transmitter and five receivers which move together during the 2D scan on two rectangular apertures on opposite sides of the inspected region. We show that 3D image reconstruction is possible with this setup when employing only forward-scattered data. We also derive the range and cross-range resolution limits.
2. Resolution in Two-Antenna Configuration
We consider a two-antenna microwave holography setup where the antennas scan simultaneously two rectangular planar surfaces in a raster pattern. This setup is illustrated in Figure 1 where antenna 1 and antenna 2 perform the scan together on aperture 1 at 
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. At each sampling step, the wideband transmission coefficient of this two-port system is acquired, which represents the forward-scattered wave. We ignore the back-scattered waves since in many applications in lossy media, for example, tissue imaging, these waves are too weak and are likely to be masked by noise and uncertainties in the measurements. Also, the measurement system may be nonreciprocal due to the use of amplifiers (or other nonreciprocal components) at the transmitting and/or receiving sides. This makes the measurement of the reflected signals impossible unless separate Tx and Rx channels are provided.


	
	
	
	
	
	
	
	
	
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
			
		
	
	
		
			
		
	
	
		
			
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
			
		
	
	
		
			
			
			
			
			
			
			
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
			
			
			
			
			
			
			
			
		
	
	
		
			
		
		
			
		
	
	
		
			
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
			
			
			
			
			
		
	
	
		
			
		
		
			
		
	
	
		
			
			
			
			
			
			
			
			
		
	
	
		
			
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
	
	
		
			
		
	
	
		
			
		
		
			
		
		
		
			
		
	
	
		
			
			
			
			
			
			
			
			
			
		
	
	
	

Figure 1: Microwave holography setup. The grey thick arrows show the directions of 2D scan.


In [19, 20], both antennas are assumed to be always in the same 
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 position during the scan. Here, we consider the general case where antenna 2 may have an offset of 
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-axes, respectively.
In the following, we study the spatial resolution limits of the two-antenna imaging setup employing an approach previously proposed for bistatic SAR [24]. Note that the resolution limits derived with this method (which assumes propagating waves) provide good estimates in the case of the two-antenna holographic setup where the object is in the far-field region of the antennas. However, in the near-field imaging it is possible to obtain better resolution due to the availability of evanescent waves. The closer the antennas are to the object, the better the resolution is in a near-field imaging scenario.
With reference to Figure 1, at each sampling position 
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)—the total path traveled by the wave through the object is denoted by 
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The differential change in 
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 represents the transpose operator. Here, 
	
		
			
				̂
				𝐬
			

		
	
 is a unit vector.
On the other hand, the minimum “measureable” 
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					From (3) and (4), the resolution limit in the direction 
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					Please note that the resolution in this paper is defined as the half-power (or half-intensity) width of a point-like object.
To estimate the resolution of the imaging system along the 
	
		
			

				𝑥
			

		
	
, 
	
		
			

				𝑦
			

		
	
, and 
	
		
			

				𝑧
			

		
	
 directions, first the gradient of 
	
		
			

				𝑅
			

		
	
 in a rectangular coordinate system is written as
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				∇
				𝑅
				=
				𝜕
				𝑅
			

			
				
			
			
				𝜕
				𝑥
				𝜕
				𝑅
			

			
				
			
			
				𝜕
				𝑦
				𝜕
				𝑅
			

			
				
			
			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				
				𝜕
				𝑧
				𝑥
				−
				𝑥
			

			

				
			

			

				
			

			
				
			
			

				𝑅
			

			

				1
			

			
				−
				𝑥
				
				
			

			

				
			

			
				+
				𝐷
			

			

				𝑥
			

			
				
				
				−
				𝑥
			

			
				
			
			

				𝑅
			

			

				2
			

			
				
				𝑦
				−
				𝑦
			

			

				
			

			

				
			

			
				
			
			

				𝑅
			

			

				1
			

			
				−
				𝑦
				
				
			

			

				
			

			
				+
				𝐷
			

			

				𝑦
			

			
				
				
				−
				𝑦
			

			
				
			
			

				𝑅
			

			

				2
			

			

				𝑧
			

			
				
			
			

				𝑅
			

			

				1
			

			
				−
				
			

			
				
			
			
				
				𝑧
				−
				𝑧
			

			
				
			
			

				𝑅
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				.
			

		
	

					Then, from (5) and (6), the cross-range resolution 
	
		
			
				
			
			

				𝜌
			

			

				𝑢
			

			
				(
				𝑢
				=
				𝑥
				o
				r
				𝑦
				)
			

		
	
 and the range resolution 
	
		
			
				
			
			

				𝜌
			

			

				𝑧
			

		
	
 are obtained as
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				
			
			

				𝜌
			

			

				𝑢
			

			
				=
				𝑐
			

			
				
			
			
				𝐵
				⋅
				1
			

			
				
			
			
				|
				|
				
				(
				𝑢
				−
				𝑢
			

			

				
			

			
				)
				/
				𝑅
			

			

				1
			

			
				
				−
				𝑢
				
				
				
			

			

				
			

			
				+
				𝐷
			

			

				𝑢
			

			
				
				
				−
				𝑢
				/
				𝑅
			

			

				2
			

			
				
				|
				|
				,
				𝑢
				=
				𝑥
				,
				𝑦
				,
				𝑢
			

			

				
			

			
				=
				𝑥
			

			

				
			

			
				,
				𝑦
			

			

				
			

			

				,
			

			
				
			
			

				𝜌
			

			

				𝑧
			

			
				=
				𝑐
			

			
				
			
			
				𝐵
				⋅
				1
			

			
				
			
			
				|
				|
				
				𝑧
				/
				𝑅
			

			

				1
			

			
				
				−
				
				
			

			
				
			
			
				
				𝑧
				−
				𝑧
				/
				𝑅
			

			

				2
			

			
				
				|
				|
				.
			

		
	

					In the previous equations, 
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We assume that the object is very small and it is positioned on the 
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As observed from the previous equations, the range and cross-range resolution limits depend on the positions of the transceivers and the object.
To derive the resolution limits, we consider a 2D cut in the 3D setup in Figure 1 as shown in Figure 2, where the axis 
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Figure 2: Simplifying the 3D setup in Figure 1 to a 2D setup for deriving resolution limits in terms of 
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, the range resolution is poor in the shaded region. The grey thick arrows show the directions of the scan.


With reference to Figure 2, we first rewrite the resolution limits in (8) in terms of the angles 
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					These are the angles of incidence and scattering, respectively, associated with the imaged point-like object.
From (11), it follows that when the transmitter and the receiver are at the same position 
	
		
			
				(
				𝑥
			

			

				
			

			
				,
				𝑦
			

			

				
			

			

				)
			

		
	
 during the 2D scan (as in [19, 20]), that is, when 
	
		
			

				𝐷
			

			

				𝑢
			

			
				=
				0
			

		
	
, there are two main regions in the inspected volume where the range resolution 
	
		
			
				
			
			

				𝜌
			

			

				𝑧
			

		
	
 is poor. These two regions are 
	
		
			
				(
				1
				)
			

		
	
 the middle of the inspected domain, that is, 
	
		
			
				𝑧
				≈
			

			
				
			
			
				𝑧
				/
				2
			

		
	
 and 
	
		
			
				(
				2
				)
			

		
	
 the direct path connecting the transceivers when it passes right through the scatterer; that is, 
	
		
			

				𝜃
			

			

				1
			

			
				≈
				𝜃
			

			

				2
			

			
				≈
				0
			

		
	
. In Figure 2, the regions of poor range resolution are shaded in gray.
On the other hand, when the receiver has an offset with respect to the transmitter, that is, when 
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				𝜌
			

			

				𝑢
			

			
				=
				𝑐
			

			
				
			
			
				𝐵
				.
			

		
	

					Under these conditions, the range resolution is
						
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				
			
			

				𝜌
			

			
				𝑧
				m
				i
				n
			

			
				|
				|
				|
				|
			

			

				𝜃
			

			

				1
			

			
				=
				0
				,
				𝜃
			

			

				2
			

			
				𝜃
				=
				±
				𝜋
				/
				2
			

			

				1
			

			
				=
				±
				𝜋
				/
				2
				,
				𝜃
			

			

				2
			

			
				=
				0
			

			
				=
				𝑐
			

			
				
			
			
				𝐵
				.
			

		
	

It is worth noting that in reflection holography where 
	
		
			

				𝜃
			

			

				2
			

			
				=
				𝜋
				−
				𝜃
			

			

				1
			

		
	
, the cross-range and range resolution limits are
						
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				
			
			

				𝜌
			

			

				𝑢
			

			
				=
				𝑐
			

			
				
			
			
				𝐵
				⋅
				1
			

			
				
			
			
				|
				|
				2
				s
				i
				n
				𝜃
			

			

				1
			

			
				|
				|
				,
			

			
				
			
			

				𝜌
			

			

				𝑧
			

			
				=
				𝑐
			

			
				
			
			
				𝐵
				⋅
				1
			

			
				
			
			
				|
				|
				2
				c
				o
				s
				𝜃
			

			

				1
			

			
				|
				|
				.
			

		
	

					Assuming 
	
		
			
				𝐵
				≈
				2
				𝑓
			

			

				𝑐
			

		
	
 with 
	
		
			

				𝑓
			

			

				𝑐
			

		
	
 being the center frequency of the band, the cross-range resolution can be written as follows:
						
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				
			
			

				𝜌
			

			

				𝑢
			

			
				=
				𝜆
			

			

				𝑐
			

			
				
			
			
				4
				s
				i
				n
				𝜃
			

			

				1
			

			

				,
			

		
	

					where 
	
		
			

				𝜆
			

			

				𝑐
			

		
	
 is the wavelength at 
	
		
			

				𝑓
			

			

				𝑐
			

		
	
. Thus, in this case, the cross-range resolution improves if the size of the aperture is large (
	
		
			

				𝜃
			

			

				1
			

			
				→
				𝜋
				/
				2
			

		
	
). On the other hand, the best range resolution limit is obtained when 
	
		
			

				𝜃
			

			

				1
			

			
				→
				0
			

		
	
 as
						
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				
			
			

				𝜌
			

			
				𝑧
				m
				i
				n
			

			
				=
				𝑐
			

			
				
			
			
				.
				2
				𝐵
			

		
	

					These results are consistent with the expressions for the resolution limits of reflection holography in [11].
3. Multiple Receiver Setup
In the previous section, we showed that having a nonzero offset distance for the receiver along the 
	
		
			

				𝑥
			

		
	
- or 
	
		
			

				𝑦
			

		
	
-axis (
	
		
			

				𝐷
			

			

				𝑢
			

			
				≠
				0
			

		
	
, 
	
		
			
				𝑢
				=
				𝑥
				,
				𝑦
			

		
	
) leads to improving the range and cross-range resolutions in a scenario where forward-scattered signals are acquired. Thus, here we propose a multiple receiver setup in a star distribution to achieve satisfactory range and cross-range resolutions in 3D microwave imaging with planar raster scanning.
Figure 3 illustrates the setup where one transmitter illuminates the object while five receivers measure the forward-scattered waves. Antenna 2 is aligned with the transmitter (antenna 1) while the other receivers (antennas 3 to 6) have offset distances of 
	
		
			
				±
				𝐷
			

			

				𝑥
			

		
	
 and 
	
		
			
				±
				𝐷
			

			

				𝑦
			

		
	
 along the 
	
		
			
				±
				𝑥
			

		
	
 and 
	
		
			
				±
				𝑦
			

		
	
 directions, respectively. The transmitter and the five receivers move together during the 2D scan on the two planar apertures. From the results in Section 2, it follows that larger offset distances lead to improved resolution. However, at large offset distances the scattered wave travels along longer paths from the object to the receiver. This weakens the signal due to two factors: spatial spread and attenuation if the medium is lossy. Besides, signal strength can also weaken due to the antenna pattern. These factors impose upper limits on the offset distances. In addition, increasing the offset distances increases the size of aperture 2. If the size of aperture 1 is  
	
		
			
				2
				𝐿
			

			

				𝑥
			

			
				×
				2
				𝐿
			

			

				𝑦
			

		
	
, then the size of aperture 2 is 
	
		
			
				2
				(
				𝐿
			

			

				𝑥
			

			
				+
				𝐷
			

			

				𝑥
			

			
				)
				×
				2
				(
				𝐿
			

			

				𝑦
			

			
				+
				𝐷
			

			

				𝑦
			

			

				)
			

		
	
.


	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
	
	
		
	
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
	
		
			
				
			
				
			
			
				
			
		
	
	
		
			
				
			
				
			
			
				
			
		
	
	
	
	
	
		
			
				
			
				
			
		
	
	
	
	
	
	
	
	
	
		
			
				
			
				
			
			
				
			
		
	
	
		
			
				
			
				
			
			
				
			
		
	
	
	
		
	
	
		
	
	
		


	
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
			
			
			
			
			
			
			
		
	
	
		
			
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
			
		
	
	
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
			
			
			
			
			
			
			
		
	
	
		
			
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
	
	
		
			
		
	
	
		
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
		
	
	
	

Figure 3: Proposed 3D microwave holography setup using forward-scattered waves only. Antenna 1 illuminates the object while antennas 2 to 6 receive the scattered waves. The grey thick arrows show the directions of the scan.


4. 3D Holographic Image Reconstruction
In this section, we extend our previously proposed 3D holographic microwave imaging algorithm [19] to process the data obtained with the multiple receiver configuration proposed here.
With reference to Figure 3, the transmitting antenna (antenna 1) and the receiving antenna array (antennas 2 to 6) perform a 2D scan at the planes 
	
		
			
				𝑧
				=
				0
			

		
	
 and 
	
		
			
				𝑧
				=
			

			
				
			
			

				𝑧
			

		
	
, respectively. For simplicity, we assume that the antennas are 
	
		
			

				𝑥
			

		
	
-polarized (e.g., dipoles oriented along the 
	
		
			

				𝑥
			

		
	
-axis). Thus, the field can be reasonably approximated by a 
	
		
			
				T
				M
			

			

				𝑥
			

		
	
 polarization and the theory is scalar in nature (the algorithm for a full-vector 3D holography is available in [20]). The approach here is directly applicable to acquisition of co- and cross-polarized data. In the scalar case, Green’s function 
	
		
			

				𝐺
			

		
	
 can be viewed as the 
	
		
			

				𝐺
			

			
				𝑥
				𝑥
			

		
	
 element of the full dyadic while the 
	
		
			

				𝐸
			

		
	
-field is represented by its 
	
		
			

				𝑥
			

		
	
-component only. From now on we omit the subscript 
	
		
			

				𝑥
			

		
	
 for brevity.
Assume that at any measurement frequency 
	
		
			

				𝜔
			

			

				𝑙
			

			
				(
				𝑙
				=
				1
				,
				2
				,
				…
				,
				𝑁
			

			

				𝜔
			

			

				)
			

		
	
 we know the incident field 
	
		
			

				𝐸
			

			
				i
				n
				c
			

			
				(
				0
				,
				0
				,
				0
				;
				𝑥
				,
				𝑦
				,
				𝑧
				;
				𝜔
			

			

				𝑙
			

			

				)
			

		
	
 at any point 
	
		
			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
			

		
	
 in the inspected volume due to antenna 1 when it is at 
	
		
			
				(
				0
				,
				0
				,
				0
				)
			

		
	
. In addition, Green’s function for antenna 2 
	
		
			

				𝐺
			

			

				2
			

			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				;
				0
				,
				0
				,
			

			
				
			
			
				𝑧
				;
				𝜔
			

			

				𝑙
			

			

				)
			

		
	
 is known for an 
	
		
			

				𝑥
			

		
	
-polarized scattering point source at 
	
		
			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
			

		
	
 and the 
	
		
			

				𝑥
			

		
	
-polarized response at 
	
		
			
				(
				0
				,
				0
				,
			

			
				
			
			
				𝑧
				)
			

		
	
. This information can be obtained via simulations. For brevity, we introduce the notations
						
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝐸
			

			
				i
				n
				c
			

			
				
				𝑥
				,
				𝑦
				,
				𝑧
				,
				𝜔
			

			

				𝑙
			

			
				
				≡
				𝐸
			

			
				i
				n
				c
			

			
				
				0
				,
				0
				,
				0
				;
				𝑥
				,
				𝑦
				,
				𝑧
				;
				𝜔
			

			

				𝑙
			

			
				
				,
				𝐺
			

			

				2
			

			
				
				𝑥
				,
				𝑦
				,
				𝑧
				,
				𝜔
			

			

				𝑙
			

			
				
				≡
				𝐺
			

			

				2
			

			
				
				𝑥
				,
				𝑦
				,
				𝑧
				;
				0
				,
				0
				,
			

			
				
			
			
				𝑧
				;
				𝜔
			

			

				𝑙
			

			
				
				.
			

		
	

					In [20], we show that while 
	
		
			

				𝐸
			

			
				i
				n
				c
			

		
	
 can be obtained from simulations, Green’s function can be obtained from 
	
		
			

				𝐸
			

			
				i
				n
				c
			

		
	
 using the reciprocity principle. Thus, assuming that antennas 1 to 6 are identical, only one simulation suffices to obtain 
	
		
			

				𝐸
			

			
				i
				n
				c
			

			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				,
				𝜔
			

			

				𝑙
			

			

				)
			

		
	
, from which Green’s functions for antennas 2 to 6 are obtained as
						
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				𝐺
			

			

				2
			

			
				
				𝑥
				,
				𝑦
				,
				𝑧
				,
				𝜔
			

			

				𝑙
			

			
				
				=
				𝐸
			

			
				i
				n
				c
			

			
				
				𝑥
				,
				𝑦
				,
			

			
				
			
			
				𝑧
				−
				𝑧
				,
				𝜔
			

			

				𝑙
			

			
				
				,
				𝐺
			

			

				3
			

			
				
				𝑥
				,
				𝑦
				,
				𝑧
				,
				𝜔
			

			

				𝑙
			

			
				
				=
				𝐸
			

			
				i
				n
				c
			

			
				
				𝑥
				,
				𝑦
				−
				𝐷
			

			

				𝑦
			

			

				,
			

			
				
			
			
				𝑧
				−
				𝑧
				,
				𝜔
			

			

				𝑙
			

			
				
				,
				𝐺
			

			

				4
			

			
				
				𝑥
				,
				𝑦
				,
				𝑧
				,
				𝜔
			

			

				𝑙
			

			
				
				=
				𝐸
			

			
				i
				n
				c
			

			
				
				𝑥
				,
				𝑦
				+
				𝐷
			

			

				𝑦
			

			

				,
			

			
				
			
			
				𝑧
				−
				𝑧
				,
				𝜔
			

			

				𝑙
			

			
				
				,
				𝐺
			

			

				5
			

			
				
				𝑥
				,
				𝑦
				,
				𝑧
				,
				𝜔
			

			

				𝑙
			

			
				
				=
				𝐸
			

			
				i
				n
				c
			

			
				
				𝑥
				−
				𝐷
			

			

				𝑥
			

			
				,
				𝑦
				,
			

			
				
			
			
				𝑧
				−
				𝑧
				,
				𝜔
			

			

				𝑙
			

			
				
				,
				𝐺
			

			

				6
			

			
				
				𝑥
				,
				𝑦
				,
				𝑧
				,
				𝜔
			

			

				𝑙
			

			
				
				=
				𝐸
			

			
				i
				n
				c
			

			
				
				𝑥
				+
				𝐷
			

			

				𝑥
			

			
				,
				𝑦
				,
			

			
				
			
			
				𝑧
				−
				𝑧
				,
				𝜔
			

			

				𝑙
			

			
				
				.
			

		
	

					Let 
	
		
			

				𝐸
			

			
				s
				c
			

			

				𝑘
			

			
				(
				𝑥
			

			

				
			

			
				,
				𝑦
			

			

				
			

			

				,
			

			
				
			
			
				𝑧
				,
				𝜔
			

			

				𝑙
			

			

				)
			

		
	
 be the scattered 
	
		
			

				𝐸
			

		
	
-field received by the 
	
		
			

				𝑘
			

		
	
th antenna 
	
		
			
				(
				𝑘
				=
				2
				,
				…
				,
				6
				)
			

		
	
 when the transmitting antenna is at 
	
		
			
				(
				𝑥
			

			

				
			

			
				,
				𝑦
			

			

				
			

			
				,
				0
				)
			

		
	
. Following the approach presented in [19], 
	
		
			

				𝐸
			

			
				s
				c
			

			

				𝑘
			

			
				(
				𝑥
			

			

				
			

			
				,
				𝑦
			

			

				
			

			

				,
			

			
				
			
			
				𝑧
				,
				𝜔
			

			

				𝑙
			

			

				)
			

		
	
 is written as
						
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝐸
			

			
				s
				c
			

			

				𝑘
			

			
				
				𝑥
			

			

				
			

			
				,
				𝑦
			

			

				
			

			

				,
			

			
				
			
			
				𝑧
				,
				𝜔
			

			

				𝑙
			

			
				
				=
				
			

			

				𝑧
			

			

				
			

			

				𝑦
			

			

				
			

			

				𝑥
			

			
				𝑓
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				⋅
				𝑎
			

			

				𝑘
			

			
				
				𝑥
			

			

				
			

			
				−
				𝑥
				,
				𝑦
			

			

				
			

			
				−
				𝑦
				,
				𝑧
				,
				𝜔
			

			

				𝑙
			

			
				
				𝑑
				𝑥
				𝑑
				𝑦
				𝑑
				𝑧
				,
				f
				o
				r
				𝑘
				=
				2
				,
				…
				,
				6
				,
			

		
	

					where 
	
		
			
				𝑓
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				𝑘
			

			
				2
				𝑠
			

			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				−
				𝑘
			

			
				2
				𝑏
			

		
	
 is the contrast function, 
	
		
			

				𝑘
			

			

				𝑠
			

		
	
 and 
	
		
			

				𝑘
			

			

				𝑏
			

		
	
 are the wavenumbers of the object and the background mediums, respectively, and
						
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝑎
			

			

				𝑘
			

			
				
				𝑥
				,
				𝑦
				,
				𝑧
				,
				𝜔
			

			

				𝑙
			

			
				
				=
				𝐸
			

			
				i
				n
				c
			

			
				
				−
				𝑥
				,
				−
				𝑦
				,
				𝑧
				,
				𝜔
			

			

				𝑙
			

			
				
				𝐺
			

			

				𝑘
			

			
				
				−
				𝑥
				,
				−
				𝑦
				,
				𝑧
				,
				𝜔
			

			

				𝑙
			

			
				
				.
			

		
	

					Notice that in (20), the integration over 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 can be interpreted as a 2D convolution integral. Thus, the 2D FT of 
	
		
			

				𝐸
			

			
				s
				c
			

			

				𝑘
			

		
	
 is written as
						
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				∼
			

			

				𝐸
			

			
				s
				c
			

			

				𝑘
			

			
				
				𝑘
			

			

				𝑥
			

			
				,
				𝑘
			

			

				𝑦
			

			

				,
			

			
				
			
			
				𝑧
				,
				𝜔
			

			

				𝑙
			

			
				
				=
				
			

			
				𝑧
				∼
			

			
				𝐹
				
				𝑘
			

			

				𝑥
			

			
				,
				𝑘
			

			

				𝑦
			

			
				
				,
				𝑧
			

			

				∼
			

			

				𝐴
			

			

				𝑘
			

			
				
				𝑘
			

			

				𝑥
			

			
				,
				𝑘
			

			

				𝑦
			

			
				,
				𝑧
				,
				𝜔
			

			

				𝑙
			

			
				
				𝑑
				𝑧
				f
				o
				r
				𝑘
				=
				2
				,
				…
				,
				6
				,
			

		
	

					where 
	
		
			

				∼
			

			

				𝐹
			

		
	
 and 
	
		
			

				∼
			

			

				𝐴
			

			

				𝑘
			

		
	
 are the 2D FTs of 
	
		
			
				𝑓
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
			

		
	
 and 
	
		
			

				𝑎
			

			

				𝑘
			

			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				,
				𝜔
			

			

				𝑙
			

			

				)
			

		
	
, respectively. By approximating the integral in (22) by a discrete sum and employing the data collected at all frequencies and at all receivers, we construct a system of equations at each 
	
		
			
				(
				𝑘
			

			

				𝑥
			

			
				,
				𝑘
			

			

				𝑦
			

			

				)
			

		
	
 as
						
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				∼
			

			

				𝐄
			

			
				
			
			

				=
			

			

				∼
			

			

				𝐀
			

			
				
			
			
				
			
			

				∼
			

			

				𝐅
			

			
				
			
			

				,
			

		
	

					where
						
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			

				∼
			

			

				𝐄
			

			
				
			
			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				
			

			

				∼
			

			

				𝐸
			

			
				
			
			
				s
				c
			

			

				2
			

			
				
				⋮
				
			

			

				∼
			

			

				𝐸
			

			
				
			
			
				s
				c
			

			

				6
			

			
				
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
			

			

				∼
			

			

				𝐀
			

			
				
			
			
				
			
			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				
			

			

				∼
			

			

				𝐴
			

			
				
			
			
				
			
			

				2
			

			
				
				⋮
				
			

			

				∼
			

			

				𝐴
			

			
				
			
			
				
			
			

				6
			

			
				
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
			

			

				∼
			

			

				𝐅
			

			
				
			
			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
			

			

				∼
			

			
				𝐹
				
				𝑧
			

			

				1
			

			
				
				⋮
			

			

				∼
			

			
				𝐹
				
				𝑧
			

			

				𝑁
			

			

				𝑧
			

			
				
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
			

		
	

					and, for each 
	
		
			
				𝑘
				=
				2
				,
				…
				,
				6
			

		
	
,
						
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				
			

			

				∼
			

			

				𝐸
			

			
				
			
			
				s
				c
			

			

				𝑘
			

			
				
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
			

			

				∼
			

			

				𝐸
			

			
				s
				c
			

			

				𝑘
			

			

				
			

			
				
			
			
				𝑧
				,
				𝜔
			

			

				1
			

			
				
				⋮
			

			

				∼
			

			

				𝐸
			

			
				s
				c
			

			

				𝑘
			

			

				
			

			
				
			
			
				𝑧
				,
				𝜔
			

			

				𝑁
			

			

				𝜔
			

			
				
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				
			

			

				∼
			

			

				𝐴
			

			
				
			
			
				
			
			

				𝑘
			

			
				
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
			

			

				∼
			

			

				𝐴
			

			

				𝑘
			

			
				
				𝑧
			

			

				1
			

			
				,
				𝜔
			

			

				1
			

			
				
				Δ
				𝑧
				⋯
			

			

				∼
			

			

				𝐴
			

			

				𝑘
			

			
				
				𝑧
			

			

				𝑁
			

			

				𝑧
			

			
				,
				𝜔
			

			

				1
			

			
				
				Δ
				𝑧
				⋮
				⋮
				⋮
			

			

				∼
			

			

				𝐴
			

			

				𝑘
			

			
				
				𝑧
			

			

				1
			

			
				,
				𝜔
			

			

				𝑁
			

			

				𝜔
			

			
				
				Δ
				𝑧
				⋯
			

			

				∼
			

			

				𝐴
			

			

				𝑘
			

			
				
				𝑧
			

			

				𝑁
			

			

				𝑧
			

			
				,
				𝜔
			

			

				𝑁
			

			

				𝜔
			

			
				
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				.
				Δ
				𝑧
			

		
	

					Here, 
	
		
			
				Δ
				𝑧
			

		
	
 is the discretization step along the 
	
		
			

				𝑧
			

		
	
-axis. In (24) and (25), the arguments 
	
		
			

				𝑘
			

			

				𝑥
			

		
	
 and 
	
		
			

				𝑘
			

			

				𝑦
			

		
	
 have been omitted for brevity.
The system in (23) is solved at each 
	
		
			
				(
				𝑘
			

			

				𝑥
			

			
				,
				𝑘
			

			

				𝑦
			

			

				)
			

		
	
 pair for 
	
		
			

				∼
			

			
				𝐹
				(
				𝑧
			

			

				𝑛
			

			

				)
			

		
	
, 
	
		
			
				𝑛
				=
				1
				,
				…
				,
				𝑁
			

			

				𝑧
			

		
	
, in a least-square sense. To reduce the ill-conditioning of the least-square solution we employ the Tikhonov regularization [25]. Thus, the solution is obtained from
						
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				∼
			

			

				𝐅
			

			
				
			
			
				=
				
			

			

				∼
			

			

				𝐀
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 is the Tikhonov regularization parameter, and 
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 is the identity matrix. The optimal value of the regularization parameter is usually determined by an 
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 method in practical problems. In this study, we use the plot of the Lagrange function to determine 
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. The MATLAB code for this method is available in MATLAB central [26].
Once the systems of equations for all 
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, is plotted versus the spatial coordinates 
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 to obtain 2D images of the object at all 
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 planes. By putting together all 2D slice images, a 3D image of the object is obtained.
5. Image Reconstruction Results
The performance of the proposed multiple receiver planar-scan imaging method is studied through various simulation examples using FEKO [27] and an experimental example. First, we present an example demonstrating the improvement achieved in the multiple receiver configuration compared to the single receiver configuration where 
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. Then, we study the resolution limits of the multiple receiver setup.
As a quick note, the choice of frequency range in microwave imaging of lossy objects is primarily driven by the trade-off between resolution, which improves with increasing frequency and penetration, which usually improves with decreasing frequency. Thus, it has to be chosen properly and in accordance with the properties of the inspected dielectric medium.
5.1. Two-Antenna System versus Six-Antenna System
In the first example, six 
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 directions, respectively, as illustrated in Figure 4. Antenna 1 scans an area of 120 mm × 120 mm. Thus, with reference to Figure 3, aperture 1 has a size of 120 mm × 120 mm while aperture 2 has a size of (
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Figure 4: Simulation example in FEKO. All dimensions are in mm. The background has properties of 
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 S/m. Imaging is performed for two objects along the 
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-parameters 
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 (
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 = 2 to 6) are acquired over the frequency range from 3 GHz to 10 GHz. The sampling rate in frequency is determined based on the Nyquist criterion as suggested in [11, 19]. The maximum phase shift that results from a change in the wavenumber 
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, where 
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 mm. In general, based on our studies, decreasing 
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 further improves the robustness to noise to some extent.
When calibrated (as described in [19]), the 
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-component of the forward-scattered waves at the center of the antennas.
We first show that using the forward-scattered waves acquired in a single receiver configuration when 
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 is not sufficient to implement 3D holography as we discussed in Section 2. Figure 5(a) shows the reconstructed images when only 
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 is processed using the 3D holography technique presented in [19]. The quality of the reconstructed images is not satisfactory. Not only the two objects are not resolved well at 
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 mm (their true range location) but also the images at other range locations show the presence of strong artifacts.


	
		
			
				
			
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
	
	
		
			
				
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
	
	
		
			
				
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
	
	
		
			
				
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
	
	
		
			
				
			
			
				
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


	
		
			
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
		
		
			
		
		
			
		
	
	
		
			
			
		
	
	
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		