Research Article

EIRP Characterization of Electrically Large Wireless Equipment with Integrated Signal Generator in a Compact Environment

Soon-Soo Oh, 1 Woo-Su Kim, 2 and Young-Hwan Lee 3

1Department of Electrical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 501-759, Republic of Korea
2Plan and Budget Team, KEIIT, 305 Teheran-ro, Gangnam-gu, Seoul 135-080, Republic of Korea
3Radio Technology Research Department, ETRI, 218 Gajeong-ro, Yuseong-gu, Daejeon 305-700, Republic of Korea

Correspondence should be addressed to Woo-Su Kim; kws@keit.re.kr

Received 25 August 2014; Revised 26 March 2015; Accepted 31 March 2015

Academic Editor: Ding-Bing Lin

Copyright © 2015 Soon-Soo Oh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We describe a measurement technique to characterize the equivalent isotropically radiated power (EIRP) of electrically large wireless equipment in a compact environment. A modified phase-measurement method was proposed and, thus, the separation of the signal generator and radiating element was not required during the measurement. A Fresnel-to-far-field transformation was used for the fast measurement time in a compact anechoic chamber. An experimental verification of the method was carried out in a compact anechoic chamber, where the source-detector separation was approximately 1/5 of the far-field distance. The measured magnitude and phase pattern exhibited only a small error. The EIRP obtained using a Fresnel-to-far-field transformation was compared with a reference value, and the error was within 0.5 dB.

1. Introduction

As demand for wireless communication services with low radiation power grows, the restrictions of high-power radiation devices and facilities, such as base stations, satellite stations, and digital broadcasting stations, are becoming increasingly important [1]. Currently, equivalent isotropically radiated power (EIRP) [2] is used as a measure to restrict the radiated power from microwave devices and base stations [3, 4].

The EIRP of electrically large wireless equipment is typically characterized using a direct far-field measurement system [5]. The equipment under test (EUT) and probe antenna are separated by a distance R_{far} that should satisfy Rayleigh’s far-field criterion; that is, $R_{\text{far}} \geq 2D^2/\lambda$, where D is the largest dimension of the radiating aperture and λ is the wavelength [2, 5]. Electrically large wireless equipment typically has a far-field distance of more than a few tens of meters. If Rayleigh’s criterion cannot be satisfied due to the small size of the anechoic chamber used to characterize the equipment, then the EIRP measurement will be inaccurate [5].

The near-field [6] and Fresnel field scanning methods [7–9] can be used to overcome this limitation. The Fresnel field scanning method has recently been developed and reported to be faster than near-field scanning method [7–10]. This method requires that both magnitude and phase be recorded; however, it is not straightforward to measure the phase because the signal source is typically contained within the EUT. In some structures, the signal generator cannot be disconnected from the radiating part [11].

The most accurate method is to directly measure the phase information using hardware configuration. The direct method uses the reference signal coupled from the inner circuit of antenna under test (AUT) [5]. The reference antenna method compares the received signals from a reference antenna and the AUT so that the AUT port should be separated [5]. Therefore, two methods cannot be applied to the wireless equipment with integrated signal generator.

Here, we propose an EIRP measurement method that is appropriate for characterizing electrically large EUTs in a compact environment. The EUT can be measured without disconnecting the generator and the radiating element by using the proposed phase-measurement method. The basic theory and the hardware configuration are described, and an experimental verification of the phase pattern and EIRP is provided.
2. Measurement Method

2.1. Fresnel-to-Far-Field Transformation. In this section, the Fresnel-to-far-field transformation is briefly discussed. An antenna with aperture dimensions of $L_x \times L_y$ is assumed to be located at the origin. The electric field in the far-field region E_{far} is related to the electric field in the Fresnel region E_{R} at a distance R, and it can be calculated using the following expression [7–9]:

$$E_{\text{far}}(\alpha, \beta) = \sum_{m=-M}^{+M} \sum_{n=-N}^{+N} k_{mn} E_{\text{R}}(\alpha + m\Delta\alpha, \beta + n\Delta\beta),$$ \hspace{1cm} (1)

where $\Delta\alpha = \lambda/L_x$ and $\Delta\beta = \lambda/L_y$. Here, the angles α and β are in the y-z and x-z planes, respectively. The term $(\alpha + m\Delta\alpha, \beta + n\Delta\beta)$ corresponds to the position to be scanned and is offset from α and β by $m\Delta\alpha$ and $n\Delta\beta$, respectively. The coefficient k_{mn} is given by

$$k_{mn} = \frac{1}{L_x L_y} \int_{-L_y/2}^{+L_y/2} e^{i2\pi^2 u^2} e^{-i(2\pi/L_x)mu} du \int_{-L_x/2}^{+L_x/2} e^{i2\pi^2 v^2} e^{-i(2\pi/L_y)nv} dv,$$

where $c^2 = \pi/(AR)$.

2.2. Proposed Phase-Measurement Method. In (1), the electric field in the Fresnel region E_{R} is complex, so phase information is required. Figure 1 shows the proposed configuration, in this paper, used to measure the phase pattern. The wireless equipment contains a signal source, and we assume that the signal generator and the antenna element cannot be separated. The receiving antenna receives the emitted electromagnetic (EM) radiation, which is coupled to a network analyzer (NA). Here, the NA is used as a two-channel receiver, so the magnitude of the received power can be measured.

Because the wireless equipment is to be evaluated, it is rotated using the azimuth positioner. The reference antenna is attached to the azimuth positioner and is therefore rotated together with the EUT. Since the receiving antenna is fixed, the reference antenna is moved with EUT so the relative phase difference between the receiving antenna and reference can be measured.

The phase comparison technique is already known, and the reference probe was used in [11] but it was not rotated and applied for the printed circuit board (PCB) scanning. So the configuration shown in Figure 1 has not previously been reported to the best of our knowledge.

As shown in Figure 1(b), a spectrum analyzer with a phase comparator may be used instead of network analyzer. Here, the received signal is coupled to the spectrum analyzer by the coupler.

2.3. EIRP Measurement. Because the electrically large EUT is to be evaluated in a small anechoic chamber, a transformation from the Fresnel field to the far field is used. The procedure is as follows.

1. Set up the EUT, receiving antenna, and reference antenna, as shown in Figures 1(a) and 1(b).
2. Set up the instrument to measure the magnitude and phase from the receiving antenna and reference antenna.
3. Acquire the magnitude and phase of the Fresnel field using an appropriate scanning method.
4. Transform the Fresnel field to the far field, resulting in the transformed received power $P_{r,\text{transformed}}$.

Figure 1: Configuration of the simultaneous phase and magnitude measurement system (a) using a network analyzer and (b) using a spectrum analyzer and phase comparator.
Experimental verification was performed in a small anechoic chamber at a range of 1 m, which is approximately 1/5 as described in the previous section. Therefore, the phase fixed on the azimuth positioner, it was rotated with the EUT, which was also fed into the NA. Because the reference antenna was close to the EUT, and the signal from the reference antenna was reduced by increasing the number of field measurements to within 0.5 dB. This error may be further reduced by increasing the number of 1/5.

3.2. Fresnel Field Pattern and EIRP. The scanned Fresnel fields at $\alpha = 0^\circ$ are plotted in Figure 3. These were measured by rotating the azimuth positioner at a resolution of 1.0°. Figure 3(a) shows the magnitude pattern, which was obtained using the two-channel receiver mode of the NA as proposed in this paper. The pattern acquired using the spectrum analyzer is also shown with the legend of "Reference." The two sets of magnitude patterns are in very good agreement. One must be careful that Fresnel-to-far-field transformation is only valid in the angular range of -90 to $+90$ degrees because of the scanning range.

Figure 3(b) shows the phase, which was obtained using the method described in the previous section. In Figure 3(b), the phase pattern acquired using the transmission measurement mode of the NA is also shown with the legend of "Reference." The maximum difference between the two patterns over the range of 180° was 8.5°.

The calculated EIRP was compared with that measured using a direct far-field method; the results are summarized in Table 1. The far-field data were obtained by disconnecting the generator and EUT. The transmitted power P_t from the generator was measured using the spectrum analyzer, and the gain of an antenna G_r was characterized in an anechoic chamber at a range of 7 m. The EIRP was obtained by summing P_t and G_r in dB.

The EIRP was obtained using the power from the Fresnel-to-far-field transformation using $P_t - G_r + 20 \log(4\pi R_2/\lambda)$ in dB, where P_t is the transformed field, G_r is the gain of the receiving antenna, and R_2 is the far-field distance [2]. The used values of M and N in (1) were 7 and 1, respectively. The EIRP was 21.54 dBm, measured using the Fresnel-to-far-field transformation, which was in agreement with the far-field measurement to within 0.5 dB. This error may be further reduced by increasing the number of α-plane to be scanned and more precisely calibrating the receiving probe.

4. Conclusion

We have described an experimental method to characterize the EIRP of electrically large antennas in a compact environment where the generator and radiating element are not required to be separated. A Fresnel-to-far-field transformation was used, and the phase was obtained by comparing the signal at a receiving antenna and a reference antenna. An experimental verification was performed in a small anechoic chamber at a range of 1 m, which is approximately $1/5$.

\[\text{EIRP} = \frac{P_{t,\text{transformed}}}{G_r} \times \left(\frac{4\pi R}{\lambda} \right)^2, \]
Table 1: Comparison of the EIRP calculated using the two different methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>Expression</th>
<th>Power and gain</th>
<th>EIRP [dBm]</th>
<th>Error [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Far field (isolating generator and EUT)</td>
<td>EIRP [dB] = $P_t + G_t$</td>
<td>P_t = −11.53 dBm</td>
<td>+21.04 dBm</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G_t = 32.57 dBi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresnel-to-far-field transformation (proposed)</td>
<td>EIRP [dB] = $P_r - G_r + 20 \log \left(\frac{4\pi R^2}{\lambda} \right)$</td>
<td>P_r = −23.32 dBm</td>
<td>+21.54 dBm</td>
<td>0.5 dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G_r = 11.1 dBi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R^2 = 7.0 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>λ = 0.14 m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Graph](image1.png)

Figure 3: Fresnel fields measured at 2.4 GHz at 1 m: (a) magnitude and (b) phase.

the far-field distance, and the phase pattern was successfully characterized. We determined the EIRP with an error of 0.5 dB compared with a direct far-field measurement. This technique is therefore suitable for characterizing large antennas in small anechoic chambers.

Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments
This research was supported by research fund from Chosun University in Korea, 2013, and this work (Grants no. C0221835) was supported by Business for Academic-Industrial Cooperative Establishments funded Korea Small and Medium Business Administration in 2014.

References

Submit your manuscripts at http://www.hindawi.com