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The problem of focusing a field into inhomogeneous media is a canonic open problem relevant in many engineering areas. Several
approaches have been developed, for example, Time Reversal, Inverse Filter, and Eigenvalues approach, but they suffer from several
drawbacks which are counteracted by Optimal Constrained Power Focusing (OCPF) technique. OCPF was first introduced to deal
with scalar fields and, recently, it has been extended to tackle the problem of focusing vector fields. In particular, the proposed
approach allows reducing the focusing problem, which is NP-hard in case of vector fields, to a series of convex programming (CP)
ones. In this paper, an alternative OCPF formulation is presented, which consists in the research of the most suitable polarization
of the field into the target point and relies on the convexity of the problem when fixing this polarization. Such a result allows the
development of two different solution procedures: an enumerative one that can take advantage of parallel programming in order
to explore all possible polarizations and hybrid one which relies on the exploitation of global search algorithm just to solve the
nonconvex part of the problem at hand.

1. Introduction

Focusing a wave in an inhomogeneous medium is a canonic
and general problem which is relevant in many applica-
tions, including microwave hyperthermia [1], lithotripsy [2],
targeted drug delivery [3], and imaging [4]. Remarkable
efforts have been devoted to the development of radiating
devices able to produce a field well focused in a target point,
stressing the advantages of using array applicators [1] in terms
of focusing performance and apparatus’ customizability. As
a consequence, several focusing procedures based on the
suitable array antennas design have been developed, such
as Time Reversal [5], Inverse Filter [6], and Eigenvalues
approach [7].

These approaches are very efficient but they suffer from
the inability of performing a customizable spatial power/field
shaping by imposing suitable upper bound constraints, as
it is instead achieved by the Optimal Constrained Power
Focusing (OCPF) approach [8, 9]. In particular, Time Rever-
sal completely lacks this capability and, relying on the time
invariance of the wave equation which holds true just in

lossless media, its focusing performances worsen in lossy
media considerably. Obviously some compensation tech-
niques [4, 10] have been developed to counteract the effect
of losses in the wave propagation but they do not provide
any capability of controlling the power/field intensity in the
scenario of interest. Such a capability is instead crucial in
some applications like hyperthermia [1], and,more in general,
it affects the focusing performances in terms of side lobe level
remarkably.

Inverse Filter [6, 11] takes partially into account this aspect
of the focusing problem as it relies on the enforcement of a
specific field pattern, which ideally should be aDirac function
of the space coordinates centered at the target point. In this
respect, the selection of the reference pattern is crucial and
affects the focusing performances so that obtained focused
field (which is unavoidably different from the target one) will
be reference pattern dependent. Also note that enforcing a
perfect match between the actual and reference pattern could
be overrestrictive and the actually optimal field to be pursued
is not a priori known.
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Differently from the above approaches, the Eigenvalue
based focusing technique [7] relies on the formulation of the
focusing problem as the maximization of the ratio of two
quadratic forms, for example, the energy transmitted into the
focus area and the overall transmitted energy.

As in the previously mentioned approaches, the basic
version of this focusing strategy [7] does not perform a
customizable power deposition spatial shaping, but this
capability has been introduced in its adaptive version [12]
which iteratively tries to keep under control the highest
side lobes by minimizing them in the following iteration.
However, by doing so hot spots may simply move from some
points to other ones, potentially leading to an endless iterative
procedure.

It is also worth noting that none of the mentioned
focusing techniques guarantees the optimality of the solution
found, which means that, in case of fixed array geometry,
there could be a set of array’s excitations which provides
better focusing capabilities.

In case of scalar fields, OCPF relies on the formulation
of the focusing problem as a convex programming (CP) one,
which allows the enforcement of upper bound constraints
on the power deposition everywhere but in the focal area,
guaranteeing the optimality of the solution.On the other side,
such a simple result cannot be generalized in a simple fashion
to the case of vector fields. In fact, when dealing with vector
fields, for example, electromagnetic fields, the cost function
to be maximized (or minimized) is not any more a linear
function of the unknowns, so that the problem is NP-hard
[13].

In this paper, a novel insight into the problem is given. It
provides a very simple generalization of the basic approach
applied to scalar fields. In particular, it is shown that the no-
convex part of the synthesis problem consists in the selection
of the field polarization in the target point which provides
the highest intensity of the overall field herein. In fact, once
the optimal polarization is known, the focusing problem
becomes a simple CP one.

This interesting result allows the development of two
possible solution strategies. In fact, the overall problem can be
recast as the solution of several CP problems corresponding
to any possible field polarization into the target point and
by selecting the solution which guarantees the best focusing
performances. This focusing procedure can be performed in
an enumerative fashion by exploiting parallel programming.

The alternative is searching the optimal polarization
by means of global optimization procedures [14]. In this
case, global optimization algorithms would be applied to a
very small number of parameters (i.e., those identifying the
polarization in the target point) so that the issues related to
the number of variables, such as the actual optimality of the
solution found and the computational burden, are avoided.

The paper is organized as follows. In Section 2, a brief
review of OCPF applied to scalar fields is given because it
is preparatory for the development of an innovative easy-
to-understand and easy-to-use OCPF formulation for vector
fields, presented in Section 3. For the sake of simplicity, we
refer throughout to 𝑧-invariant scatterers and to focalization
of the electric field intensity, so that the scalar problem

corresponds to the TM
𝑧
polarization and the vector one to

the case of TE
𝑧
polarization. A numerical assessment is finally

given in Section 4 with reference to biomedical applications
and hyperthermic cancer treatment [1]. Conclusions follow.

2. Optimal Constrained Power Focusing of
Scalar Fields

Let us consider an array, made by𝑁 antennas, surrounding a
domain of interestΩ, wherein the target point is located.The
field one wants to shape is given by

𝐸 (𝑟) =

𝑁

∑

𝑛=1

𝐼
𝑛
𝜑
𝑛
(𝑟) , (1)

where 𝜑
𝑛
represents the scalar total field arising in Ω, in TM

polarization, when only the 𝑛th antenna is fed (by unitary
excitation), 𝐼

𝑛
is the actual complex excitation of the 𝑛th

antenna, and, for the sake of simplicity, monochromatic
excitations are considered for the time being.

The focusing problem can be formulated as the maxi-
mization of |𝐸(𝑟)|2 in the target point 𝑟

𝑇
, while bounding the

power deposition elsewhere. Fixing the applicator geometry,
this focusing problem is similar to the classical synthesis of
pencil beams by means of array antennas [15, 16] and, hence,
can be recast as follows.

Determine the real and imaginary parts of the array
excitation coefficientsR{𝐼

𝑛
} andI{𝐼

𝑛
} (𝑛 = 1 ⋅ ⋅ ⋅ 𝑁) such as

max R {𝐸 (𝑟
𝑇
)} (2a)

subject to: I {𝐸 (𝑟
𝑇
)} = 0 (2b)

󵄨
󵄨
󵄨
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󵄨
󵄨
󵄨
󵄨

2

≤ UB (𝑟) 𝑟 ∈ Ω \ Π (𝑟
𝑇
) . (2c)

In (2c), UB(𝑟) is a (nonnegative and arbitrary) “mask”
function that enforces upper bound constraints on the power
distribution. It is set according to the specific application’s
requirements. The constraints are meant to keep the max-
imum power level bounded everywhere in Ω but for a
neighborhood of the target point, that is, the focal areaΠ(𝑟

𝑇
).

Notably, thanks to a proper choice of the reference phase,
the cost function has turned into a linear function of the real
and imaginary parts of the excitations. As constraints (2b)
and (2c) are convex with respect to the unknowns 𝐼

𝑛
, the

focusing problem is now formulated in terms of a convex
programming (CP) one [8, 9], whose solution is globally
optimal and it can be found by local search algorithm with
little computational effort. Moreover, even if herein it has
been developed with respect to a TMz polarized electric field
in a 𝑧-invariant scenario, the above formulation is general and
can be applied to any kind of field as long as it is scalar.

3. Optimal Constrained Power Focusing of
Vector Fields

Apart from special cases, in electromagnetics the field one
wants to shape has a vector nature, which introduces a further
difficulty to the focusing problem as the optimization of the
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field intensity cannot be reduced anymore (as we have done
in Section 2) to the optimization of a simple linear function.

In this case, considering an array made by 𝑁 antennas
surrounding a domain of interestΩ, the field, whose intensity
has to be shaped, is given by

E (𝑟) =
𝑁

∑

𝑛=1

𝐼
𝑛
Φ
𝑛
(𝑟) , (3)

where 𝐼
𝑛
is the actual complex excitation of the 𝑛th antenna

andΦ
𝑛
represents the vector total field arising inΩwhen only

the 𝑛th antenna is fed (by unitary excitation).
For the sake of simplicity, monochromatic excitations

and TEz polarized fields in a 𝑧-invariant scenario Ω are
considered, so that the intensity of the total field computed
into the target point 𝑟

𝑇
can be expressed as [17]
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𝑇
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(𝑟
𝑇
) q,

(4)

where p and q are two generic orthogonal polarizations of the
field (e.g., the two circular polarizations or two orthogonal
linear ones or whatever).

As in the previous case of scalar fields, the focusing
problem can be formulated as the maximization of |E(𝑟)|2
in the target point 𝑟

𝑇
, while bounding the power deposition

elsewhere. This optimization problem is nonlinear [13], as
the objective function |E(𝑟

𝑇
)|
2 is a nonnegative quadratic

polynomial with respect to the unknown coefficients I
𝑛
.

Hence, the overall optimization problem belongs to the class
of NP-hard problems [18] and a specific strategy is required
to cope with it.

If the polarization (let us say p̂) which guarantees the
highest |E(𝑟

𝑇
)|
2 value was a priori known, the corresponding

field into the target point would be

E (𝑟
𝑇
) =

𝑁

∑
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𝐼
𝑛
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𝑇
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𝐼
𝑛
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𝑝𝑛
(𝑟
𝑇
) p̂ (5)

as only the first term at the right hand side of (4) has to survive
if the field into the target point is optimally p̂polarized.Under
such a circumstance, by using the same kind of reasoning as
in Section 2, the overall problem could be finally turned into

max R{
𝑁
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As constraint (6c) is a quadratic semidefinite function of
𝐼
𝑛
and since (6b) and the cost function (6a) are linear with

respect to the unknowns, the knowledge of p̂ would allow
reducing the overall focusing problem to a CP one.

Unfortunately, it is impossible to a priori know the
optimal polarization p̂. On the other side, the polarization
of a field is determined by few parameters, so that the very
simple idea, suggested here, is to introduce an optimization
procedure looking for the best polarization p̂.

Then the so-defined optimization problem can be solved
by changing in an enumerative fashion the target polarization
and solving the corresponding CP problem. By doing so,
one gets several sets of optimal candidate excitations among
which one can select those providing the maximum |E(𝑟)|2
into the target point 𝑟

𝑇
, that is, the globally best solution.

Such a formulation allows exploiting parallel programming
toolboxes to speed up the overall focusing procedure as the
solution of each CP problem corresponding to a fixed field
polarization p is independent from the others and when
considering a huge number of candidate polarizations the
overall optimization procedure could be time consuming
even if the solution of each CP problem is very efficient.

An alternative strategy, inspired by [19] and aimed at
avoiding the previous enumerative procedure, consists in
performing an optimization in the space of polarizations. In
this respect, let us consider the problem

max R{
𝑁
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(7d)

where p is a generic polarization. The solution of the CP
problem (7a), (7b), (7c), and (7d) (i.e., the optimal excitations
for the polarization at hand) can be easily achieved by off-
the-shelf numerical libraries (such as the FMINCON by
MATLAB).

Let us define 𝐹(p) as the maximum value which is
achieved by the cost function (7a) (i.e., the value which is
achieved at the end of the CP procedure or when the array
is fed by the optimal excitations I = [𝐼

1
, . . . , 𝐼

𝑛
]).

Then, the second proposed strategy simply amounts to
optimize (by means of global or even local optimization
procedures) the function 𝐹(p). Anyway, even if 𝐹(p) is
optimized by means of global search algorithm, such a
strategy allows the reduction of the number of unknowns
dealt with in the global optimization process with respect to
the simpler solution of performing the global optimization
simultaneously on all variables. This is due to the fact
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Figure 1: Focusing in a fatty breast phantom (slice 155, ID: 071904) [20, 21]: (a) permittivity profile, (b) intensity of the field |E(𝑟)| focused into
the tumor, and (c) polar plot of the optimal field intensity (i.e.,𝐹(p)), as a function of all possible polarizationsp of the field into the target point
performed by the corresponding optimal excitations set I = [𝐼

1
, 𝐼
2
, . . . 𝐼
𝑛
].The red dot represents the polarization (p = [0.4148, 0.9099𝑒−𝑗0.53𝜋])

which provides the highest field intensity into the target point |E(𝑟
𝑇
)| for a fixedUB(𝑟) value.

that this approach allows exploiting the convexity of the
problemwith respect to the excitations while tackling the no-
convexity of the optimization in the space of polarization by
means of global search algorithms. As a consequence, global
optimization tools will have to deal with a reduced number
of unknowns, thus saving computational times and avoiding
being trapped in local optimal solutions.

A similar strategy is obviously possible for generic 3D
vector problems, wherein the optimal plane of polarization
has however to be found.

4. Numerical Results

The first proposed technique to focus vector fields has been
assessed in biological scenarios representing two kinds of
anatomically realistic breasts [20, 21] affected by an early stage
tumor of 4mm radius; see Figures 1(a) and 2(a).

The breast is immersed in a matching and/or cooling
liquid aimed at reducing reflection at the breast surface
and the temperature of the skin or of the surrounding
healthy tissues, as the field focusing procedure is meant to
be part of hyperthermic treatment [1]. Such a medium is
chosen according to the criteria discussed in [22]. By trading
off the different requirements, the relative permittivity and
the conductivity of the background medium have been
set to 18 and 0.1 S/m, respectively [22]. A matching liquid
having these electromagnetic properties can be obtained by
mixing a proper concentration of water and Triton X-100
[23].

The applicator is supposed to be a circular array of
magnetic currents surrounding the breast, whose radius is
14 cm. The number of the array’s elements is set to 𝑁 = 22,
according to the well-known results on spatial bandwidth of
fields [24].
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Figure 2: Focusing in a fatty breast phantom (slice 155, ID: 012304) [20, 21]: (a) permittivity profile, (b) intensity of the field |E(𝑟)| focused
into the tumor, and (c) polar plot of the optimal field intensity (i.e., 𝐹(p)), as a function of all possible polarizations p of the field into
the target point performed by the corresponding optimal excitations set I = [𝐼

1
, 𝐼
2
, . . . , 𝐼

𝑛
]. The red dot represents the polarization (p =

[0.7886, 0.6149𝑒
−𝑗0.49𝜋

]) which provides the highest field intensity into the target point |E(𝑟
𝑇
)| for a fixedUB(𝑟) value.

Figures 1 and 2 report the outcomes of the proposed
strategy. In particular, Figures 1(a) and 2(a) report the
permittivity profile of the considered realistic breasts and
Figures 1(b) and 2(b) report the best result one is able to
achieve in terms of field intensity. As it can be seen, the
field shaped by the proposed procedure is well focused into
the tumor location, and the maximum amplitude of the
side lobes is around 50% and 58% of the field intensity
into the tumor location, in case of fatty and very dense
breast, respectively. The second slightly poorer result can
be due to the higher anatomical complexity and content of
lossy tissues in the considered very dense breast. Notably,
these are the globally best field distributions which can
be achieved for an a priori fixed UB(𝑟) function, which
can be eventually customized in order to perform a patient
specific treatment. For the sake of simplicity, in both the
considered cases UB(𝑟) has been chosen as a constant
function.

Moreover, in order to better understand the rationale of
the proposed strategy, we also report the partial outcomes
of the optimization procedure in the 3D space defined by
R{E
𝑥
(𝑟
𝑇
)} R{E

𝑦
(𝑟
𝑇
)},I{E

𝑦
(𝑟
𝑇
)} (see Figures 1(c) and 2(c)).

In such a space, points of the unitary sphere define all possible
polarizations, which alsomeans that each direction departing
from the origin defines one of the possible polarizations
(since polarization only depends on the relative phases,
E
𝑥
(𝑟
𝑇
) can be assumed to be real without any loss of

generality). Then, function 𝐹(p) as defined in Section 3 can
be conveniently represented as a polar plot in such a space,
and the optimal polarization will be simply identified by the
(red) point which is farthest from the origin (and from its
direction).

As it can be seen from Figures 1(c) and 2(c) (showing the
polar plots of 𝐹(p)), in both cases the globally best solution
corresponds to fields which are elliptically polarized in the
tumor point in such a way that cannot be foreseen.
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Also note that these polar diagrams exhibit a smooth
behavior as a function of the different polarizations, so that
we expect that the second proposed strategy will be able to
correctly identify the best possible solutions even in case a
local search algorithm is used in the space of polarizations.

5. Conclusions

In this paper the problem of focusing a vector field into a
nonhomogeneousmediumhas been tackled by giving a novel
insight intoOptimal Constrained Power Focusing techniques
[8, 9, 25]. In particular, it has been showed that when dialing
with vector fields the focusing problem can be recast as an
optimization with respect to two sets of unknowns, that is,
the polarization of the field into the target point and the
arrays’ excitations (when considering a fixed array geometry).
Moreover, it has been demonstrated that the problem at hand
is no-convex/convex with respect to the former/latter set
of unknowns. This circumstance leads to the development
of two solution strategies. One is based on the solution
of all convex programming problems, with respect to the
array’s excitations, associated with each polarization, in an
enumerative fashion. The other one relies on performing the
global optimization in the polarization’s space.

Both approaches are more computational efficient than
applying global optimization algorithms to solve the overall
focusing problem, as they exploit the partial convexity of
the problem. Moreover the enumerative strategy can take
advantage of parallel programming toolboxes to speed up
the computation. On the other hand the alternative proposed
approach implies the use of global search algorithms just in
the space of polarizations unless the cost functional has a
smooth behavior, when local search algorithm may be used.

Even though 2D scenarios are considered, the reported
results are relevant because they suggest possible ways of
improving the OCPF efficiency since the computational bur-
den increases considerably when dealing with 3D scenarios.
Finally it is worth noting that the presented theoretical
reasoning can be easily extended to 3D vector focusing that
is the ultimate goal of ongoing research activities.
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