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The aim of this paper is to introduce the grey wolf optimization (GWO) algorithm to the electromagnetics and antenna community.
GWO is a new nature-inspired metaheuristic algorithm inspired by the social hierarchy and hunting behavior of grey wolves. It has
potential to exhibit high performance in solving not only unconstrained but also constrained optimization problems. In this work,
GWO has been applied to linear antenna arrays for optimal pattern synthesis in the following ways: by optimizing the antenna
positions while assuming uniform excitation and by optimizing the antenna current amplitudes while assuming spacing and phase
as that of uniform array. GWO is used to achieve an array pattern with minimum side lobe level (SLL) along with null placement
in the specified directions. GWO is also applied for the minimization of the first side lobe nearest to the main beam (near side
lobe). Various examples are presented that illustrate the application of GWO for linear array optimization and, subsequently, the
results are validated by benchmarking with results obtained using other state-of-the-art nature-inspired evolutionary algorithms.
The results suggest that optimization of linear antenna arrays using GWO provides considerable enhancements compared to the
uniform array and the synthesis obtained from other optimization techniques.

1. Introduction

Antenna arrays play a significant role in modern wireless
communication systems because of their advantages over
single antenna element such as high directivity, high gain, and
beam steering capabilities. These characteristics of antenna
arrays make them suitable for applications like beam forming
andnull positioning [1].Null positioning in order to eliminate
the unwanted signals which cause interference is probably
one of the most important goals of array synthesis [2,
3]. Moreover, producing a directive beam at a particular
direction while keeping the side lobe level (SLL) small to
avoid interference with other radiating sources is another
important aim of array synthesis.

Extensive study of linear antenna array synthesis has been
reported in the literature [4–6]. For linear array, SLL mini-
mization and null placement can be achieved either by opti-
mizing the excitation amplitude and phase while maintaining
uniform spacing as that of conventional array or by optimiz-
ing the element spacing while assuming uniform amplitude

and phase excitation. Various evolutionary algorithms such
as genetic algorithm (GA) [7, 8], simulated annealing (SA)
[9], particle swarm optimization (PSO) [10–13], ant colony
optimization (ACO) [14], cat swarm optimization (CSO)
[15], invasive weed optimization (IWO) [16, 17], Taguchi’s
method [18], biogeography based optimization [19], artificial
bees colony algorithm [20], firefly algorithm [21], cuckoo
search algorithm [22], differential search algorithm [23], and
backtracking search optimization algorithm [24] have been
successfully applied for optimization of linear arrays.

The main aim of this paper is to introduce the grey wolf
optimization (GWO) algorithm [25] to the electromagnetics
and antenna community. GWO is a metaheuristic algorithm
inspired by the leadership hierarchy and hunting mechanism
of grey wolves. It was proposed by Mirjalili et al. in 2014 [25].
GWO has been applied to solve practical optimization prob-
lems in engineering [25] such as tension/compression spring
design, welded beam design, pressure vessel design, and
optical buffer design. GWO has also been used in areas like
allocation of static synchronous compensator (STATCOM)
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Figure 1: Antenna array geometry.

devices on power system grid [26] and to solve economic
dispatch problems [27, 28] and so forth. In [29], an improved
grey wolf optimizer for training q-Gaussian Radial Basis
Functional-link nets was proposed.

However, this is the first time that GWO is being applied
to antenna array optimization to the best of the authors’
knowledge. In this paper, GWO has been applied to linear
antenna arrays for optimal pattern synthesis in the following
two ways: by optimizing the antenna positions while assum-
ing uniform excitation and by optimizing the antenna current
amplitudes while assuming spacing and phase as that of
uniform array. GWO is used to achieve an array pattern with
minimum side lobe level (SLL) along with placement of deep
nulls in the specified directions. In addition, GWO is applied
for the minimization of the first side lobe nearest to the main
beam (near side lobe minimization) while simultaneously
controlling the other side lobes.

This section has presented a brief introduction to linear
antenna array, the GWO and its applications in optimization
problems, and the main objective of this paper. The rest
of the paper is organized as follows: the linear antenna
array geometry, configuration, and array factor equations
are discussed in Section 2. Section 3 presents an elaborate
description of the grey wolf optimization algorithm along
with a flowchart outlining the steps of GWO implementation.
Various examples for linear array synthesis along with the
GWOoptimized antenna positions and currents as well as the
corresponding array patterns are presented in Section 4. The
validation of the obtained results by comparison with other
nature-inspired evolutionary algorithms is also presented in
this section. Section 5 presents the conclusion.

2. Linear Antenna Array

A linear antenna array of 2𝑁 isotropic elements placed
symmetrically along the 𝑥-axis is considered in this work, as
illustrated in Figure 1.

Due to symmetry, the array factor (AF) [1, 10] in the
azimuth plane is given by

AF (𝜃) = 2
𝑁

∑

𝑛=1

𝐼
𝑛
cos (𝑘𝑥

𝑛
cos (𝜃) + 𝜓𝑛) , (1)

where 𝐼
𝑛
, 𝜓
𝑛
, and 𝑥

𝑛
are the excitation amplitude, phase, and

position of 𝑛th element in the array. 𝑘 is the wave number and
is given by 2𝜋/𝜆 and 𝜃 is the azimuth angle.

For antenna element position optimization, it is assumed
that the antenna array is subjected to uniform amplitude and
phase excitation; that is, 𝐼

𝑛
= 1 and 𝜓

𝑛
= 0. Thus, the AF in

(1) gets modified to

AF (𝜃) = 2
𝑁

∑

𝑛=1

cos (𝑘𝑥
𝑛
cos (𝜃)) . (2)

The proper placement of antennas in the linear array
is very important because if antennas are placed too close
to each other, this leads to mutual coupling effects and if
antennas are placed too far away, this leads to grating lobes.
Thus, conditions (3) must be satisfied for antenna position
optimization:

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑖
− 𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨
> 0.25𝜆,

min {𝑥
𝑖
} > 0.125𝜆; 𝑖 = 1, 2, . . . , 𝑁, 𝑖 ̸= 𝑗,

(3)

where 𝑥
𝑗
is the antenna position adjacent to the antenna

position 𝑥
𝑖
and {𝑥

𝑖
} is the set of all antenna positions.

The array factor for antenna current amplitude optimiza-
tion is given by (4). Uniform phase, that is, 𝜓

𝑛
= 0, and the

interelement spacing (𝑥
𝑛
) of 𝜆/2 as that of uniform array are

assumed:

AF (𝜃) = 2
𝑁

∑

𝑛=1

𝐼
𝑛
cos (𝑘𝑥

𝑛
cos (𝜃)) . (4)

3. Grey Wolf Optimization (GWO) Algorithm

GWO is a metaheuristic algorithm which mimics the social
hierarchy and hunting mechanism of grey wolves. The hier-
archy of grey wolves is as follows: the leaders are male and
female, called alphas (𝛼). The second level in the hierarchy
comprises the beta (𝛽) wolves followed by delta (𝛿) wolves
and the lowest ranking grey wolves are the omegas (𝜔).
The hierarchy of grey wolves is mathematically modelled by
considering 𝛼 as the fittest solution followed by the second
and third best solutions, 𝛽 and 𝛿, respectively. The rest of the
candidate solutions are assumed to be 𝜔.

The main phases of grey wolf hunting are as follows [30]:

(1) Tracking, chasing, and approaching the prey.
(2) Pursuing, encircling, and harassing the prey until it

stops moving.
(3) Attack towards the prey.

The encircling behavior is mathematically modelled by
(5) as in [25]:

𝐷⃗ =
󵄨󵄨󵄨󵄨󵄨󵄨
𝐶⃗ ⋅
󳨀󳨀󳨀󳨀→
𝑋
𝑝 (𝑡) −

󳨀󳨀󳨀→
𝑋(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨
,

𝑋⃗ (𝑡 + 1) =
󳨀󳨀→
𝑋
𝑝 (𝑡) − 𝐴⃗ ⋅ (𝐷⃗) ,

(5)

where 𝑡 indicates the current iteration, 𝐴⃗ and 𝐶⃗ are coefficient
vectors, 󳨀󳨀→𝑋

𝑝
is the position vector of the prey, and 𝑋⃗ indicates
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the position vector of a grey wolf. The vectors 𝐴⃗ and 𝐶⃗ are
calculated using

𝐴⃗ = 2𝑎⃗ ⋅
󳨀→
𝑟
1
− 𝑎⃗,

𝐶⃗ = 2 ⋅
󳨀→
𝑟
2
,

(6)

where components of 𝑎⃗ are linearly decreased from 2 to 0 over
the course of iterations and󳨀→𝑟

1
,󳨀→𝑟
2
are random vectors in [0, 1].

In the GWO algorithm, the hunting (optimization) is
guided by 𝛼, 𝛽, and 𝛿.The𝜔wolves follow these three wolves.
The 𝛼, 𝛽, and 𝛿wolves are supposed to have better knowledge
about the potential location of prey. Therefore, the first three
best solutions are saved and the other search agents update
their positions according to the position of the best search
agent.The following equations are used for this purpose [25]:
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(7)

By using (7), a search agent updates its position according
to 𝛼, 𝛽, and 𝛿 in the 𝑛-dimensional search space as depicted
in Figure 2(a) [25]. Furthermore, the final position would be
in a random place in the search space within a circle which
is defined by the positions of 𝛼, 𝛽, and 𝛿. Hence, 𝛼, 𝛽, and
𝛿 estimate the position of the prey, and other wolves update
their positions randomly around the prey.

The following steps summarize the GWO algorithm:

(1) Create a randompopulation of greywolves (candidate
solutions).

(2) 𝛼, 𝛽, and 𝛿 wolves estimate the probable position of
the prey over the course of iterations. Each candidate
solution updates its distance from the prey.

(3) The parameter “𝑎⃗” is decreased linearly from 2 to 0 in
order to emphasize exploration (searching for prey)
and exploitation (attacking the prey), respectively.
Candidate solutions tend to diverge from the prey
when |𝐴⃗| > 1 and converge towards the prey when
|𝐴⃗| < 1 so as to avoid stagnation in local solutions.

(4) Finally, the GWO algorithm is terminated by the
satisfaction of an end criterion.

The flowchart of GWO is depicted in Figure 2(b).

Table 1: Optimized positions of the positive half of the 10-element
array of Example 1.

Method Optimized element positions
CSO [15] 0.1516𝜆 0.4115𝜆 0.7899𝜆 1.1048𝜆 1.6843𝜆
Proposed 0.1250𝜆 0.3680𝜆 0.7522𝜆 0.9851𝜆 1.5546𝜆

4. Results and Discussion

In this section, the GWO algorithm is applied to linear
antenna array for optimal pattern synthesis. The GWO is
implemented on MATLAB� and executed 15 times. The
number of iterations for each run is set equal to 1000. All
results were obtained using grey wolf population (𝑛) equal to
30.

4.1. Antenna Position Optimization. This section presents
Examples 1–3 for optimization of the antenna positions (𝑥

𝑛
)

in order to achieve a desired array pattern with minimum
SLL and null positioning. Uniform amplitude and phase
excitations are assumed; that is, 𝐼

𝑛
= 1 and 𝜓

𝑛
= 0.

4.1.1. Peak SLL Minimization. The fitness function used for
the minimization of peak SLL is formulated using (8) [13, 19,
22]. Consider

Fitness = min (max (20 log |AF (𝜃)|)) , (8)

where 𝜃 ∈ spatial region in which SLL is to suppressed and
AF(𝜃) is the array factor given by (2).

Example 1 illustrates the design of 2𝑁 = 10 element
linear array for achieving minimum SLL in the regions, 𝜃 =
[0
∘
, 74
∘
] and 𝜃 = [106

∘
, 180
∘
]. The grey wolf optimization

algorithm with fitness function given by (8) is used for the
determination of optimized element locations, 𝑥

𝑛
. Uniform

amplitude and phase excitations are assumed; that is, 𝐼
𝑛
= 1

and 𝜓
𝑛
= 0. The optimized element positions are shown in

Table 1 and the array pattern is illustrated in Figure 3. For
benchmarking, the peak SLL obtained for this example using
the proposed method (GWO) and other nature-inspired
optimization techniques is summarized in Table 2. There is
an improvement in the reduction of SLL using the proposed
approach (GWO) as compared to conventional array as well
as arrays optimized using other optimization algorithms such
as ACO [14], PSO [15], and CSO [15]. The proposed method
(GWO) gives peak SLL of −23.42 dB which is 10.19 dB lower
as compared to conventional array. The peak SLL has been
lowered from−20.72 dB to−23.42 dB (by 2.7 dB) as compared
to PSO optimized array, from −22.66 dB to −23.42 dB as
compared to ACO optimized array, and from −22.89 dB to
−23.42 dB as compared to CSO optimized array.

4.1.2. SLL Minimization along with Null Placement. The
fitness function as stated in (9) is used for SLL minimization
as well as for placement of nulls in desired directions [10, 19]:

Fitness = ∑
𝑖

1

Δ𝜃
𝑖

∫

𝜃
𝑢𝑖

𝜃
𝑙𝑖

|AF (𝜃)|2 𝑑𝜃 +∑
𝑘

󵄨󵄨󵄨󵄨AF (𝜃𝑘)
󵄨󵄨󵄨󵄨

2
, (9)
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Figure 2: (a) Position update in GWO [25]. (b) Flowchart of the grey wolf optimization algorithm.

where 𝜃
𝑙𝑖
and 𝜃

𝑢𝑖
are the spatial regions in which SLL is

suppressed and Δ𝜃
𝑖
= 𝜃
𝑢𝑖
− 𝜃
𝑙𝑖
. The null direction is given

by 𝜃
𝑘
. In (9), the first term of the fitness function is for SLL

suppression and the second term accounts for the placement
of nulls in the desired directions. AF(𝜃) is the array factor
given by (2).

Example 2 illustrates the synthesis of 28-element linear
antenna array for achieving SLL minimization in the regions
𝜃 = [0

∘
, 84
∘
] and 𝜃 = [96∘, 180∘] along with null placement

at 𝜃 = 55
∘, 57.5∘, 60∘, 120∘, 122.5∘, and 125∘. The fitness

function used by the GWO for this example is given by (9).
The array pattern is shown in Figure 4 and the optimized
positions of the antenna elements are given in Table 3. From
Table 3, it is seen that the array optimized using the proposed
method (GWO) and CSO [15] optimized array have almost
the same length. It is deduced fromFigure 4 that the proposed
method using GWO enables the placement of nulls, as deep
as −84.42 dB at the desired directions.

Table 2: Optimized peak SLL for 10-element linear array of Example
1.

Serial number Approach Peak SLL (in dB)

1 Conventional (without
optimization) [15] −13.23

2 PSO [15] −20.72
3 ACO [14] −22.66
4 CSO [15] −22.89
5 Proposed −23.42

The null depths obtained by the proposed method using
GWO at each of the specified directions are summarized in
Table 4.The comparative analysis of null depth obtained with
the proposed method using GWO and various other state-
of-the-art optimization algorithms is shown in Table 5. It is
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Table 3: Optimized positions of the positive half of the 28-element array of Example 2.

Method Optimized element positions

CSO [15] 0.2720𝜆 0.7547𝜆 1.1399𝜆 1.7065𝜆 2.3287𝜆 2.8675𝜆 3.3536𝜆
3.7693𝜆 4.2222𝜆 4.8991𝜆 5.4061𝜆 5.7389𝜆 6.1564𝜆 6.7173𝜆

Proposed 0.2298𝜆 0.7266𝜆 1.1376𝜆 1.7300𝜆 2.1831𝜆 2.6710𝜆 3.0255𝜆
3.4867𝜆 3.7652𝜆 4.3933𝜆 4.9039𝜆 5.3422𝜆 5.7610𝜆 6.3378𝜆

Table 4: Null depths after optimization by GWO algorithm for
Example 2.

Linear array
type

Null depth (in dB)
55∘ 57.5∘ 60∘ 120∘ 122.5∘ 125∘

28-element
array −83.22 −84.42 −78.41 −78.41 −84.42 −83.22
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Figure 3: Array pattern for Example 1.

seen that, for this example, the proposedmethod using GWO
places the deepest null of−84.42 dB.There is an improvement
of around 34 dB over the null depth obtained by using PSO
[15] and ACO [14]. As compared to CSO [15], the proposed
approach of using GWO gives improvement of around 19 dB
in null depth. However, the SLL obtained is similar for all the
above algorithms.

Example 3 illustrates the application of GWO to optimize
the antenna element positions for SLLminimization and null
placement of 32-element linear antenna array. The fitness
function used by the GWO for this example is given by (9).
SLL reduction is desired in the spatial regions 𝜃 = [0∘, 85∘]
and 𝜃 = [95∘, 180∘] whereas nulls are desired at 𝜃 = 81∘ and
𝜃 = 99

∘ (very close to the first side lobe). The array pattern is
shown in Figure 5 and the optimized positions of the antenna

Table 5: Comparative analysis of null depth (in dB) obtained by
various optimization algorithms for Example 2.

Method
PSO [15] ACO [14] CSO [15] Proposed

Null depth
(in dB) −50 ∼−50 −65 −84.42

Table 6: Optimized positions of the positive half of the 32-element
array of Example 3.

Method Optimized element positions

CSO [15]

0.2883𝜆 0.6830𝜆 1.1929𝜆 1.5199𝜆
1.9768𝜆 2.3247𝜆 2.6886𝜆 3.1362𝜆
3.4848𝜆 3.9538𝜆 4.3822𝜆 4.9252𝜆
5.4817𝜆 6.2091𝜆 7.0412𝜆 7.7500𝜆

Proposed

0.194307𝜆 0.74071𝜆 1.249193𝜆 1.747565𝜆
2.241275𝜆 2.714261𝜆 2.999822𝜆 3.451514𝜆
3.753935𝜆 4.275930𝜆 4.75𝜆 5.255635𝜆
5.751775𝜆 6.455911𝜆 7.25𝜆 8.0𝜆
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Figure 4: Array pattern for Example 2.

elements are given in Table 6. The array optimized by the
proposed approach of usingGWOhas almost the same length
as that obtained by CSO [15]. It is seen from Figure 5 that the
proposed approach of using GWO enables the placement of
nulls as deep as −106 dB at the desired directions (𝜃 = 81∘ and
𝜃 = 99

∘), very close to the first side lobe.
For this example, PSO [15] offers null depth of−60 dB and

ACO [14] gives −50 dB nulls whereas CSO [15] places deep



6 International Journal of Antennas and Propagation

Table 7: Comparative analysis of null depth (in dB) obtained by
various optimization algorithms for Example 3.

Method
PSO [15] ACO [14] CSO [15] Proposed

Null depth (in dB) −60 −50 −80 −106
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Figure 5: Array pattern for Example 3.

nulls of −80 dB as seen from Table 7. However, the proposed
approach (GWO) places the deepest null of −106 dB.The first
side lobe obtained by GWO is about 3 dB higher than that
obtained using CSO [15], but the remaining side lobes are
almost similar (some are even lower) to those obtained by
using CSO [15].

4.1.3. Near SLL Minimization. Minimization of the first
side lobe nearest to the main lobe (near side lobe) by the
optimization of antenna positions is illustrated in Example 4.
Thefitness functionmentioned in (10) is used for this purpose
[13]. Consider

Fitness = min (𝛼
1
max {20 log 󵄨󵄨󵄨󵄨AF (𝜃AS)

󵄨󵄨󵄨󵄨}

+ 𝛼
2
max {20 log 󵄨󵄨󵄨󵄨AF (𝜃NS)

󵄨󵄨󵄨󵄨}) ,

(10)

where 𝜃AS = [0
∘
, 76
∘
] and [104∘, 180∘] and 𝜃NS = [69

∘
, 76
∘
]

and [104∘, 111∘]. 𝜃NS specifies the near side lobe region and
its weight is 𝛼

2
. The near side lobe region can be controlled

by using the fitness function given by (10) and the amount
of its reduction is controlled by the weights 𝛼

1
and 𝛼

2
. For

illustration of near SLL suppression, design of Example 4 is
presented in which a 10-element linear array is optimized
using (10) and weights 𝛼

1
= 1 and 𝛼

2
= 2. The optimized

antenna positions are given inTable 8. It is seen that the length
of array optimized by the proposed approach is the same as
that of PSO [13] optimized array. The array pattern is shown
in Figure 6.

The near SLL obtained by GWO is −31.3 dB which is
18.33 dB lower as compared to uniform array.The peak SLL is
found to be −18.34 dB. The benchmarking results are shown
in Table 9.

Table 8: Optimized positions of the positive half of the 10-element
array of Example 4.

Method Optimized element positions
PSO [13] 0.1685𝜆 0.5461𝜆 0.9364𝜆 1.5107𝜆 2.2500𝜆
Proposed 0.1792𝜆 0.5410𝜆 0.9354𝜆 1.5096𝜆 2.2500𝜆

Table 9: Near SLL and peak SLL for Example 4.

Near SLL (dB) Peak SLL (dB)
Uniform array −12.97 −12.97
PSO [13] −31 −18.3
Proposed −31.3 −18.34
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Figure 6: Array pattern for Example 4.

4.2. AntennaCurrent Optimization. In this section, Examples
5–8 are presented for optimization of the antenna current
amplitudes (𝐼

𝑛
) for optimal pattern synthesis. Handling phase

involves a huge complexity as it is not always convenient
to implement fractional phase in practice. Hence, uniform
phase excitation is assumed; that is, 𝜓

𝑛
= 0. The element

spacing of 𝜆/2 is considered which is the same as that for
uniform array.

4.2.1. Peak SLL Minimization. This section presents Exam-
ples 5 and 6 which illustrate the application of GWO for
optimization of antenna current amplitudes in order to
minimize the peak SLL in the regions, 𝜃 = [0∘, 76∘] and 𝜃 =
[104
∘
, 180
∘
]. The fitness function given by (8) is used for both

the examples. The optimized current amplitudes obtained by
using the proposed method are shown in Table 10. The array
patterns for Examples 5 and 6 are illustrated in Figures 7 and
8, respectively. The current amplitude distribution along the
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Table 10: Optimized current amplitudes for peak SLL minimization.

Linear array type Method Optimized current amplitudes

10 elements (Example 5) PSO [13] 1.0000, 0.9010, 0.7255, 0.5120, 0.4088
Proposed 1.0000, 0.8962, 0.6963, 0.4935, 0.2964

16 elements (Example 6) PSO [13] 1.0000, 0.9521, 0.8605, 0.7372, 0.5940, 0.4465, 0.3079, 0.2724
Proposed 1.0000, 0.9339, 0.8127, 0.6533, 0.4855, 0.3195, 0.1928, 0.1002

Uniform array
PSO [13]
Proposed (GWO)
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Figure 7: Array pattern for Example 5.

array elements is shown in Figures 9(a) and 9(b) for Examples
5 and 6, respectively. The current amplitude is maximum at
the centre of the array and decreases from the centre towards
the edge elements. Such an amplitude distribution makes it
feasible to use power dividers.

For Example 5, the proposed method (GWO) gives peak
SLL of −26.05 dB which is 13.08 dB lower as compared
to uniform array. The peak SLL has been lowered from
−24.62 dB to −26.05 dB (by 1.43 dB) as compared to PSO [13]
optimized array as depicted in Figure 7 and summarized in
Table 11.

The peak SLL obtained by the proposed method for
Example 6 is −40.5 dB which is 27.35 dB lower as compared to
uniform array.The peak SLL has been lowered from −30.7 dB
to −40.5 dB as compared to PSO [13] optimized array. These
results are depicted in Figure 8 and summarized in Table 11.

4.2.2. SLL Minimization along with Null Placement. To illus-
trate this case, Example 7 presents the synthesis of 20-element
linear array for achieving SLL minimization in the regions
𝜃 = [0

∘
, 82
∘
] and 𝜃 = [98∘, 180∘] along with null placement at

𝜃 = 64
∘, 76∘, 104∘, and 116∘. The fitness function used for this

Table 11: Benchmarking results for peak SLL minimization.

Peak SLL (dB)
Example 5 Example 6

Uniform array (without optimization) −12.97 −13.15
PSO [13] −24.62 −30.7
Proposed −26.05 −40.5

Uniform array
PSO [13]
Proposed (GWO)
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Figure 8: Array pattern for Example 6.

example is given by (9). The optimized current amplitudes
are given in Table 12 and the array pattern is shown in
Figure 10(a).The current amplitude is maximum at the centre
of the array and decreases from the centre towards the edge
elements as shown in Figure 10(b).

The proposed method enables the placement of nulls (as
deep as −92.02 dB) in the desired directions.The comparative
analysis of peak SLL and null depths obtained by using the
proposed method (GWO) and those obtained by uniform
array and by using BBO [19] is shown in Table 13.

It is seen that the peak SLL obtained by using the
proposed approach is −28.44 dB which is 15.25 dB lower than
uniform array and 1.73 dB lower than BBO [19] array. Also,
the null depths obtained by using the proposed method are
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Table 12: Optimized current amplitudes of the positive half of the 20-element array of Example 7.

Method Optimized current amplitudes
BBO [19] 1.0000 0.9747 0.9264 0.8575 0.7022 0.6242 0.4799 0.3607 0.2369 0.1234
Proposed 1.0000 0.9794 0.9254 0.8126 0.7008 0.6000 0.4594 0.3326 0.2133 0.1167
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Figure 9: Current distribution for (a) Example 5 and (b) Example 6.
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Figure 10: Example 7: (a) array pattern and (b) current distribution.
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Table 13: Peak SLL and null depths for Example 7.

Peak SLL (dB) Null depth (dB)
64∘ 76∘ 104∘ 116∘

Uniform array −13.19 −22.7 −17.7 −17.7 −22.7
BBO [19] −26.71 −79.66 −74.2 −74.2 −79.66
Proposed −28.44 −92.02 −79.12 −79.12 −92.02

Table 14: Optimized current amplitudes of the positive half of the
10-element array of Example 8.

Method Optimized current amplitudes
BBO [19] 1.0000 0.8526 0.6586 0.4601 0.5101
Proposed 1.000 0.8169 0.6383 0.4505 0.4505
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Figure 11: Array pattern for Example 8.

much higher than that obtained by using BBO array. The
benchmarking results are summarized in Table 13.

4.2.3. Near SLL Minimization. Minimization of the near side
lobe of a 10-element array by the optimization of antenna
current amplitudes is illustrated in Example 8. The fitness
function given by (10) is used for this purpose with 𝜃AS =
[0
∘
, 76
∘
] and [104∘, 180∘], 𝜃NS = [69

∘
, 76
∘
] and [104∘, 111∘],

and weights 𝛼
1
= 1 and 𝛼

2
= 2. The optimized antenna

current amplitudes are given in Table 14 and the array pattern
is shown in Figure 11.

The near SLL obtained by GWO is −31.1 dB which is
18.13 dB lower as compared to uniform array and 2.51 dB
lower than BBO [19] optimized array. The peak SLL is
−20.2 dB which shows that GWO enables reduction of the

Table 15: Near SLL and peak SLL for Example 8.

Method Near SLL (dB) Peak SLL (dB)
Uniform array −12.97 −12.97
BBO [19] −28.59 −20.1
Proposed −31.1 −20.2

Table 16: Computational time for GWO as compared to other
optimization algorithms.

Linear antenna
array

Computational time for each run (in seconds)
PSO [15] CSO [15] GWO

10 elements 17 101 26
28 elements 35 246 44

near side lobe while simultaneously controlling the other side
lobes. The benchmarking results are shown in Table 15.

4.3. Computational Time. The computational time required
for GWO to converge to the optimum solution as compared
to other state-of-the-art algorithms is shown in Table 16. All
the computations are performed using MATLAB on a PC
operating at 3GHz with 2GB of RAM.

It is seen that GWO converges to the optimum solution
much faster than CSO. This is because CSO carries out two
processes independently for global (seeking mode) and local
(tracing mode) search in each generation which makes it
computationally time consuming. However, although GWO
has very few parameters to tune and yields improved perfor-
mance, it takes more time to converge on to the optimum
solution as compared to PSO. In PSO, all the particles move
through global search and end with local search in the last
generation. The momentum effects on particle movement in
PSO generally allow faster convergence. On the other hand,
in GWO, the adaptive values of parameters 𝑎⃗ and 𝐴⃗ allow a
smooth transition between exploration and exploitation.Half
of the iterations are devoted to exploration (global search)
and the other half are dedicated to exploitation (local search).
Furthermore, parameter 𝐶⃗ is used to avoid local optima
stagnation, especially in the final iterations. Thus, GWO is
more likely to escape locally optimal points and yield a global
optimum solution, thusmaking itmore computationally time
consuming than PSO as depicted in Table 16.

5. Conclusion

This paper has introduced the GWO as an optimization
algorithm to the electromagnetics and antenna community.
The application of GWO for optimal pattern synthesis of
linear antenna arrays was demonstrated for the first time.
GWO was applied to obtain the optimized antenna positions
and current amplitudes in order to achieve the desired array
pattern with minimum SLL along with null placement in
specified directions. Suppression of the first side lobe next
to the main lobe (near side lobe) while simultaneously
controlling the other side lobes was also demonstrated.
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The obtained results have been compared with conventional
array (nonoptimized) and with arrays optimized using other
nature-inspired evolutionary algorithms such as PSO, ACO,
CSO, and BBO. The results suggest that optimization of
linear antenna arrays using GWO provides considerable
enhancements compared to the uniform array and the syn-
thesis obtained from other optimization techniques. This
demonstrates the suitability of GWO to be used by the
antenna and electromagnetics community for antenna array
optimization.
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