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In this paper, a new variant of flower pollination algorithm (FPA), namely, enhanced flower pollination algorithm (EFPA), has been
proposed for the pattern synthesis of nonuniform linear antenna arrays (LAA). The proposed algorithm uses the concept of Cauchy
mutation in global pollination and enhanced local search to improve the exploration and exploitation tendencies of FPA. It also uses
dynamic switching to control the rate of exploration and exploitation. The algorithm is tested on standard benchmark problems
and has been compared statistically with state of the art to prove its worthiness. LAA design is a tricky and difficult electromagnetic
problem. Hence to check the efficacy of the proposed algorithm it has been used for synthesis of four different LAA with different
sizes. Experimental results show that EFPA algorithm provides enhanced performance in terms of side lobe suppression and null

control compared to FPA and other popular algorithms.

1. Introduction

Antenna arrays find their application in number of wireless
applications such as radar, sonar, mobile, TV, and satellite.
Antenna arrays are favored as these have high directivity,
reduce power consumption, increase spectral efficiency and
also have beam steering capability [1]. The design of antenna
arrays with desired radiation pattern has found great interest
in the literature. Antenna arrays design is intricate and non-
linear problem. Hence number of optimization techniques
such as genetic algorithm (GA), differential algorithm (DE),
particle swarm optimization (PSO), biogeography based opti-
mization (BBO) and many others [2-21] have been used to
synthesize these. It is required that antenna arrays radiate in
desired directions so that these do no add to electromagnetic
pollution. This can be achieved if the energy is maximum in
the main lobe and minimum in side lobes. Moreover, to avoid
interference from undesired directions and to circumvent
jamming, null placement in radiation pattern has also gained
importance. So, overall the main issues in designing the
antenna arrays are reducing the side lobe level (SLL) and
placing nulls in the desired directions of radiation pattern.
Linear antenna arrays (LAA) consist of number of
antenna elements arranged in a straight line. LAA have

become very popular because of their simple geometry and
applications. LAA design has been investigated by numerous
researchers using several optimization algorithms in the past.
Recioui has used PSO for SLL reduction of LAA [2]. Khodier
and Christodoulou have synthesized LAA for maximum
SLL reduction and null placement. They have designed
three arrays for different sizes and showed that PSO gives
better results than uniform and quadrature programming
method (QPM) [3]. Rattan et al. have applied GA [7] for
the optimization of LAA. Their results were better than
those obtained using PSO [3]. DE has been employed by
Lin et al. to design unequally spaced LAA [8]. They have
discussed about the impact of angular resolution on the final
results. Dib et al. have compared the performance of self-
adaptive DE (SADE) and Tagachi’s method for optimization
of LAA [9]. Cengiz and Tokat have used GA, memetic
algorithm (MA) and tabu search (TS) to optimize three
different LAA [10]. Singh et al. [11] have applied BBO to
synthesize uniform and nonuniform LAA and found that
BBO is better than PSO and other methods for the design
of arrays. BBO has also been used by Sharaqa and Dib to
design LAA [12]. Ant colony optimization has been used by
Rajo-Iglesias and Quevedo-Teruel for the synthesis of LAA
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for SLL reduction and null placement [13]. A multiobjective
approach using multiobjective DE (MOEA/D-DE) has been
employed by Pal et al. to optimize LAA [14]. The authors
have noted that MOEA/D-DE gives better trade-off curves
between null placement and SLL. LAA synthesis using fitness
adaptive differential evolution algorithm (iADE) has been
done by Chowdhury et al. [15]. Guney and Onay have utilized
harmony search algorithm (HSA) for SLL minimization and
null placement in different directions of radiation pattern of
LAA [16]. A new algorithm based on the breeding strategy of
cuckoos known as cuckoo optimization algorithm (COA) has
been employed to optimize three different nonuniform LAA
[17]. The authors have compared the results with the popular
algorithms like DE, PSO, firefly algorithm (FA) and found
that the results provided by COA in terms of SLL reduction
and null placement are better than competitive algorithms.
Moreover, convergence curves of different algorithms are
compared and it is concluded that COA provides faster con-
vergence than the other methods. Guney and Durmus have
used back scattering algorithm (BSA) for the pattern nulling
of LAA [18]. Khodier has used cuckoo search (CS) to optimize
antenna arrays [19]. An enhanced version of PSO named
as comprehensive learning PSO (CLPSO) has been used to
design three different LAA [20]. Recently, a novel algorithm
which mimics the behaviour of flowers known as flower
pollination algorithm (FPA) has been used to synthesize LAA
[21]. Though number of algorithms have been proposed for
synthesis of LAA, these suffer from certain shortcomings like
getting stuck in local minima, slow convergence speeds and
require precise parameter tuning. So, in this work, the authors
propose an enhanced version of FPA known as enhanced FPA
(EFPA). The newly proposed algorithm uses the concept of
Cauchy distribution to follow large steps in global pollination,
enhanced local search and dynamic switch probability to
control the rate of local and global pollination. It has better
exploration and exploitation capability and is also less likely
to stuck in local minima.

The rest of the paper is organized as follows: Section 2
gives details about the basic FPA algorithm, Section 3 pro-
poses a new EFPA algorithm, Section 4 gives result and
discussion, and Section 5 provides an extensive conclusion.

2. Flower Pollination Algorithm

Flowers are the most fascinating plant species and have been
dominating earth from the cretaceous period, partly from
about 125 million years. Almost 80% of plant species are
flowering and it has been made possible by the process of
pollination [22]. Pollination in flowers, refer to transfer of
pollen grains from one flower to another via pollinators such
as wind, diffusion, bees, birds, bats and other animals [23]. If
the pollination process is through insects, it is called biotic
pollination and if it takes place via wind or diffusion, it is
called abiotic pollination. Overall, 200,000 varieties of flower
pollinators exist in nature. Pollinators such as honey bee has
been found to show some specific phenomenon known as
flower constancy. This phenomenon helps them to visit only
specific flower species and by pass others, hence maximizing
the transfer of pollens from a particular plant species. This
helps pollinators in finding better food sources and minimize
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the exploration or learning cost [24]. Pollination can further
be classified based upon the pollens of same or different
flowers. If a pollinator transfers pollens from one flower to
another, it is called cross-pollination while if it does for the
same species, it is self-pollination.

Based upon the phenomenon of pollination, flower
constancy and behaviour of pollinators, flower pollination
algorithm (FPA) was proposed by Yang [25]. He proposed
four sets of rules for governing this algorithm as follows:

(1) For long distances, the pollination used is biotic cross-
pollination; the process is called global pollination
and is performed via Levy flights.

(2) Abiotic self-pollination process forms the basis of
local pollination.

(3) The reproduction probability of different flowers in-
volved in pollination is considered as flower constancy.

(4) A switch probability p € [0,1] is defined for
controlling local and global pollination.

For simplicity, a single flower producing only one pollen
gamete is considered. This means a single solution for
problem under test is equivalent to a pollen gamete or a
flower. From the rules above, two key features of global and
local pollination have been used to formulate FPA.

The first step in FPA is global pollination, where polli-
nators such as insects carry pollen to long distances. This
process helps in pollination of the best fit flower or solution
so far and is represented as R, . Rule 1 with a combination of
flower constancy is represented as

xf“ = xf +L(A) (R* - xf) , 1)
where x! is the ith solution of the problem in the tth iteration,
L is the step size, and Levy flight is generally used to mimic
this phenomenon [25]. Levy flight is drawn from a Levy
distribution as

L~ { AL (A)sin (mA/2) 1

bl
T sl+/\

(s>s0>0), (2

where I'(A) is the standard gamma function with a step size
of s > 0.

In the second step, Rule 2 is used along with flower
constancy to represent local pollination as

t+l _ t t t 3
X; —xi+e(xj—xk), ®3)

where x; and x, are pollen gametes of same plants but
different flowers and € is uniformly distributed in [0, 1]. This
phase mimics glower constancy at a local scale or in a limited
search space.

So, we can say that global and local pollination carry out
pollination activities at large and small scale, respectively.
In practice, we use a switching probability based on Rule 4
to define the extent of local and global pollination. In the
next section, a new enhanced version of flower pollination
algorithm is proposed.

3. Enhanced Flower Pollination Algorithm

In the recent past, a large number of researchers have focused
on enhancing the basic capabilities of FPA. The algorithm
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Start:
Initialize n random flowers
Define switch probability, p € [0, 1]
Define d-dimensional objective function fro problem under test
Find current best solution R, from the initial population
while iterations < maximum number of iterations
fori=1:n
if rand < p
Draw a d-dimensional Cauchy step vector obeying Cauchy distribution
Global Pollination: x{™' = x! + C(8)(R, - x!)
else
Local Pollination: x{*' = x! + a(R, — x}) + b(x; - x})
end if
evaluate x!*'
if x;“ is better than xf, update
end if
maxiter — £
Updatep by p=p- W X (Ol)
end for
Update the final best solution.
end while
end

PSEUDOCODE 1: Pseudocode of EFPA.

due to its linear nature, make it suitable for deeper analysis.
But it has been proved qualitatively and quantitatively in
[26] that the FPA algorithm has a very limited scope for
optimization problems at hand. Also, the performance of FPA
has not been analyzed to a deeper level and the algorithm is
still to prove its worthiness for becoming a state-of-the-art
algorithm. Keeping in view the above analysis, a new version
of FPA namely EFPA has been proposed. The newly proposed
EFPA aims at providing three different modifications to the
basic FPA. These include Cauchy based global pollination,
enhanced local pollination based upon experience of current
best flower pollinator as well as local flowers in proximity,
and, thirdly, using dynamic switching probabilities.

(I) Cauchy Based Global Pollination. In the global pollination
phase, instead of using a standard Levy distribution, a Cauchy
based operator C(5) is used. This operator is basically a
Cauchy random variable with distribution given by

d= 1 + larctan(f) (4)
2 m g

The Cauchy density function is given by

1 g
Scauchy(o,9) (%) = e (5)
The general equation of global pollination becomes
xf“ = xf + C(6) (R* - xf) , (6)

where g is a scale parameter and its value is generally set
to 1. The use of Cauchy operator allows for larger mutation
by searching the search space at a faster pace and further
accounts for avoiding premature convergence.

(II) Enhanced Local Pollination. The second modification is
added in the local pollination phase. Here based upon the
experience of local and current best pollinators, the position
of new pollinators is updated. Further, if the fitness of new
position is greater than the old one, each pollinator updates
its position with respect to the previous one. The general
equation is given by

Xt :xf+a(R* —xf)+b(x; —x;), )
where a and b are uniformly distributed random numbers in
the range of [0, 1]. Also, the solutions x; and xj, corresponds
to jth and kth flower pollinator in the group with j # k. This
phase enhances the local search capabilities of FPA algorithm.

(I1I) Dynamic Switch Probability. In FPA, local and global pol-
linations are controlled by switching probability p € [0, 1].
For a standard state-of-the-art algorithm, it is imperative to
follow more global search at the start and as the algorithm
progresses more intensive local search is followed. Using this
basic concept, the value of switching probability is selected
dynamically. The switch probability is updated by following a
general formula as

maxiter

The above general equation decreases the value of p linearly
with iterations and hence adds to intensive global search at
the beginning and local search towards the end. Here maxiter
corresponds to the maximum number of iterations and ¢ is
the current iteration. The pseudocode for the EFPA is given
in Pseudocode 1.
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TABLE 1: Description of test functions.
Test problems Objective function Search range Oi’gﬁ;sm D
Sph S
phere x) =Y - 10
function i) ; i [-100, 100] 0
D k max
fr(x) = Z Z [a" cos (27" (x; + 0.5))]
}/Velefstrass . i=1 k=0 [=0.5, 0.5] 0 30
unction P P
-D Z [a cos(2ntb -0.5)] ; where a = 0.5, b =3, kmax =20
k=0
Schaffer [ 1 . 1/5 ]2 _ (a2
o en fi) = | V% (sin (50.05/°) +1)| s = \x? + 52, [-100, 100] 0 30
N, N .
: =— VY- Zi) 4 _
Griewank fa(x) 2000 ;xx [1[ cos < \ﬁ) [-600, 600] 0 30
U . = 2 . 2
729 = 2 105t () + 3 0= 17 1+ 108 )] + 05 1)
i=1
+ 3 1 (x;,10,100,4)
Penalized 1 =
function k(x; - a)'" x;>a [-50, 50] 0 30
X
yi=1+ :1; u(x;,a,k,m) =10 —a<x;<a
k(-x;—a)" x;<-a
T3 1
?ckley £ (x) = —20exp <_0'2\]sz"2> - exp <Dz cos (Zﬂxi)> +20+e [~100, 100] 0 30
unction i1 i=1
Rosenbrock N
osenbroc _ 2
function fr= (100 (x”l X ) 2+ (x,- 1) 2) [-100, 100] 0 30

i=1

4. Results and Discussion

4.1. Results of Benchmark Functions. The performance of
EFPA is evaluated by applying it to two set of optimization
problems. One set includes test functions and other is the
real-world application of antenna array design. The algorithm
is also compared with other states of the art to prove its com-
petitiveness. The simulations are performed on Intel Core i3
personal computer with Windows 10 operating system using
MATLAB version 7.10.0 (R2010a). EFPA is tested on seven
well-known benchmark problems [27] as shown in Table 1
with search range and optimal solution. For comparison pur-
poses, artificial bee colony (ABC) [28], DE [29], bat algorithm
(BA) [30] and FPA [25] are used. The maximum number of
function evaluations for each algorithm is set to 30 x 1000,
with 30 as the population size and 1000 as the maximum
number of iterations. The parameter settings of all algorithms
are given in Table 2. All the algorithms are run 50 times and
results in terms of best, worst, mean and standard deviation
are reported. Since because of the stochastic nature of algo-
rithm, Wilcoxon rank-sum test has also been performed to
significantly prove the better performance of EFPA. The per-
formance in terms of time-complexity has also been shown
in Table 5 to prove its competitiveness. Time-complexity is
basically taken for each of the algorithms in the benchmark

problems and it has been calculated for one run for each
algorithm.

The comparison of comparison for various test functions
is given in Table 3. The best and worst values give the most
optimal and least optimal solution among the 50 solutions
from the maximum number of runs. Mean gives the average
values of results and is used when the best and worst values
do not give comparable results. But mean may give same
results for widely different results. So, standard deviation
is also used to calculate results. For functions f;, f,, fs
fe> and f; it can be seen that EFPA performs much better
than other algorithms except for f, where ABC gives better
results. For function f; ABC and EFPA gives same results.
Further statistical analysis from the Table 4 verify the results.
In Table 5, time-complexity for each algorithm is shown.
Here time-complexity show that EFPA takes comparatively
less time for solving the benchmark problem for most of
the benchmark functions in comparison to FPA, BA and
ABC. For DE, only four functions give better time-complexity
while, for the rest three, again EFPA is better. Overall, we can
say that EFPA is superior to ABC, DE, FPA, and BA. In the
next subsection, EFPA is applied for synthesis of LAA.

4.2. Results of LAA. A symmetrical LAA consists of 2N
elements with N elements on both sides of the origin and
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TABLE 2: Parameter settings of various algorithms.

Algorithm Parameters Values
F 1.5
CR 0.8
DE Population size 30
Maximum iterations 1000
Stopping criteria Max iteration
Colony size 30
Number of food sources Colony size/2
ABC Limit 100
Maximum cycles 1000
Stopping criteria Max iteration
Population size 30
Probability switch 0.6
FPA Maximum iterations 1000
Stopping criteria Max iteration
Population size 50
Loudness 0.5
BA Pulse rate 0.5
Maximum number of iterations 200
Stopping criteria Max iteration
Population size 30
Dynamic and
Probability switch linearly
EFPA decreasing
Maximum iterations 1000

Stopping criteria

Max iteration

n N-1 N

FIGURE 1: Geometry of a linear antenna array.

arranged in a straight line as shown in Figure 1. The nth
element is excited with a current of amplitude I, and phase
¢,,- The position of nth element is represented by x,,. The array
factor (AF) of such an antenna is given by [1]

N
AF (0) = ZZIn cos [kx,, cos (0) + ¢,,] - 9)

n=1

Here k is the wave number and is given by 2m/A. The
symmetric nature of the array reduces the computational cost
as only N elements are needed to be optimized. Moreover,
these symmetric arrays give symmetric radiation pattern
which is desired for number of applications.

The AF for LAA in (9) is a function of excitation currents
(both I, and ¢,,) and positions x,,. If current excitations are
held uniform (ie., I, = 1 and ¢, = 0°), then the LAA is

function of x, only and array is called nonuniform LAA.
Hence for nonuniform LAA, AF reduces to

AF(¢) = ZZ cos [kx,, cos (¢)] . (10)

The design of nonuniform LAA has gained importance in
the past and several researchers have synthesized it using
different optimization techniques [3, 7, 9, 11-21]. The array
factor of a nonuniform array is aperiodic by virtue of nonuni-
form spacing between the elements. This aperiodic nature of
arrays helps in obtaining lower SLL with lesser number of
elements for a given antenna size. Furthermore, the uniform
element excitations help in reducing the feed network cost
and complexity. However, the relationship between the array
factor and element spacing is nonconvex and nonlinear. So,
this makes the design of nonuniform arrays difficult.

For directing antenna arrays energy in a specific direc-
tion, it is desired that its radiation pattern should have low
side lobes. Moreover, nulls are also required in the direction
of interference. The desired radiation pattern can be achieved
by suitably adjusting the positions of antenna elements for
nonuniform LAA. The adjustment of positions is a tricky
and nonlinear problem. So, optimization algorithms are well
suited for this type of problems. For applying optimization to
antenna problem, it is imperative to define a fitness function
which is given as

fit = SLL + & * max {0, [BW - BW,| - 1} + «

© (11)
* {Zmax {0, AF g (¢0) - NudB}]’ :

k=1

In the above fitness function, SLL is the side lobe level,
AFgp is the array factor in decibels, BW and BW, are the
calculated and desired beamwidth of the main lobe, ¢, gives
the direction of the kth null, Nuyj is the required null depth
in dB, K is the number of the required nulls, and « is a very
large number. The fitness function given in (11) uses a penalty
method which penalizes any antenna design which does not
meet the required constraints of beamwidth and nulls (if
desired). This is achieved by taking value « to be very large.
The BW here is obtained computationally from the radiation
pattern data.

4.2.1. Linear Antenna Optimization. This subsection presents
the application of EFPA to optimization of nonuniform
LAA. In the first example, a 12-element nonuniform antenna
is taken for optimization. The goal of optimization is to
minimize the SLL in the region ¢ € [98°,180°]. Because of
symmetry there are only six element positions which are to
be optimized. The number of generations for EFPA are taken
as 1000. The population size taken as 20 in order to make
fair comparison between the results of FPA [21] and EFPA.
The total number of function evaluations are 20 * 1000 =
2000 for both the FPA [21] and EFPA. As the aim of the
optimization is to suppress the SLL only, so the value of « is
taken as 0 in the fitness equation of (11). The EFPA algorithm
is run for 30 times and best results are listed in this work.
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TaBLE 3: Comparison of results for various test functions.

Objective function Algorithm Best Worst Mean Standard deviation
DE 4.43E + 03 2.97E + 04 1.54E + 04 6.22E + 03
ABC 2.74E + 03 3.67E + 04 2.74E + 04 5.93E + 05
fi (%) BA 8.08E + 03 3.54E + 04 1.96E + 04 7.01E + 03
FPA 1.00E + 02 1.00E + 03 3.61E + 02 1.66E + 02
EFPA 3.35E-15 4.72E - 07 1.82E - 08 6.85E — 08
DE 1.64E + 01 3.82E + 01 2.54E + 01 451E + 00
ABC 2.53E + 00 5.90E + 00 3.90E + 00 8.40E — 01
£ ) BA 2.51E + 01 430E + 01 3.36E + 01 4.24E + 00
FPA 3.83E + 01 5.72E + 01 5.12E + 01 4.64E + 00
EFPA 1.34E + 01 2.66E + 01 2.00E + 01 3.10E + 00
DE 7.95E — 05 2.29E - 01 4.64E — 02 5.37E — 02
ABC 0.00E — 00 0.00E — 00 0.00E — 00 0.00E — 00
) BA 3.06E — 14 3.47E - 01 8.95E — 02 9.22E - 02
FPA 0.00E — 00 1.98E — 12 1.03E - 13 3.39E - 13
EFPA 0.00E — 00 0.00E — 00 0.00E — 00 0.00E — 00
DE 4.89E + 01 3.68E + 02 1.54E + 02 7.19E + 01
ABC 1.06E + 00 1.76E + 00 1.25E + 00 1.73E - 01
fa(x) BA 2.94E + 00 1.18E + 01 5.77E + 00 1.63E + 00
FPA 5.71E - 01 1.04E + 00 9.25E — 01 9.76E — 02
EFPA 0.00E — 00 1.45E - 01 2.90E - 03 2.06E — 02
DE 1.78E + 06 6.92E + 08 2.24E + 08 2.27E + 08
ABC 3.49E - 02 2.77E + 07 1.07E + 08 8.91E + 07
f5 (%) BA 3.40F + 05 5.55E + 07 1.58E + 07 1.53E + 07
FPA 2.81E + 00 1.11E + 01 6.81E + 00 1.87E + 00
EFPA 1.25E + 00 3.1E+01 8.93E + 00 6.40E + 00
DE 2.00E + 01 2.00E + 01 2.00E + 01 0.00E + 00
ABC 2.00E + 01 2.02E + 01 2.00E + 01 5.30E - 03
fe (x) BA 1.97E + 01 2.00E + 01 1.99E + 01 2.92E — 02
FPA 2.05E + 01 2.11E + 01 2.10E + 01 8.37E — 02
EFPA 7.29E + 00 1.33E + 01 9.95E + 00 1.29E + 00
DE 421E + 08 3.78E + 10 8.63E + 09 1.00E + 10
ABC 2.18E + 04 3.61E + 05 2.96E + 04 5.39E + 04
f7 (%) BA 8.62E + 08 1.29E + 10 3.07E + 09 2.10E + 09
FPA 1.48E + 05 6.49E + 06 2.30E + 06 1.72E + 06
EFPA 0.00E — 00 0.00E — 00 0.00E — 00 0.00E — 00

TABLE 4: p-test values of various algorithms.

Objective function BA FPA ABC DE EFPA
fi (x) 7.06E — 18 7.06E - 18 7.06E — 18 7.06E — 18 NA

f, (x) 7.06E — 18 7.06E - 18 NA 3.25E - 09 7.06E — 18
f5 (x) 331E-20 6.89E - 17 NA 3.31E-20 NA

i (x) 4.73E - 20 4.73E - 20 4.73E - 20 4.73E - 20 NA
fs(x) 7.06E - 18 7.70E - 02 4.21E - 04 7.06E — 18 NA

fe (x) 7.06E — 18 7.06E - 18 7.06E - 18 3.31E-20 NA

fr(x) 3.31E-20 1.06E - 17 3.31E-20 3.31E-20 NA
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TABLE 5: Time-complexity comparison for various algorithms (time taken by each algorithm for single run in seconds).

Function DE ABC

BA FPA EFPA

£, (%) 1.284464
£, (%) 15.98023
£, () 1185347
fi (%) 3.022755
fo (%) 2.848487
fo (%) 1.667705
£, (x) 1.693011

2.527247
15.62962
2.470673
5.167423
5.988428
3.186360
3.265792

1.190053 2.328157
19.02841 15.22211

1.047533 2.183295
4.165333 2.183153

2.974728 3.755994
2.261759 2.346810
2.087382 3.384049

1.965927
14.80168
1.900515
2.030502
3.498411
2.383599
2.999886

TABLE 6: Geometry of 12-element LAA (with respect to A/2)
obtained using EFPA.

Element 1 2 3 4 5 6
Position 0.3765 0.9734 1.7376  2.5051 3.4827 4.6744

The optimum positions obtained using EFPA are shown in
Table 6. The performance of EFPA is contrasted against other
popular algorithms in terms of SLL in Table 7. The minimum
SLL obtained by EFPA is —21.07 dB and is better than GA [10],
FiADE [15], TS [10], MA [10], FPA [21] and PSO [15]. The
comparison of convergence curve between EFPA and FPA
is shown in Figure 2 which clearly shows faster convergence
of EFPA than the FPA [21]. The FPA converged in about 700
iterations whereas EFPA took only 225 iterations to converge
to the final solution. This is due to enhanced exploration
due to Cauchy operator and better exploitation in EFPA. The
radiation pattern of EFPA antenna array is shown in Figure 3.
For comparison, the radiation patterns of GA [10], FIADE
[15], and PSO [15] are also shown in Figure 3.

In the next example, a 22-element nonuniform LAA is
optimized for reducing SLL in the region ¢ € [98°,180°] and
also imposing a null in the direction of 99°. For achieving
the required pattern, the value of Nugy is set to —60dB. It
is established fact that as SLL is decreased the width of the
main lobe in radiation pattern increases. So, for this design,
the desired beamwidth BW/, is taken as 18°. The value of «
is taken as 10° in fitness function. The optimum positions
are shown in Table 8. The results are compared in Table 9
which clearly indicate better performance of EFPA as against
BSA [18], MOEA/DE [14], HSA [16], PSO [15], GA [10], MA
[10], TS [10], and FPA [21]. The SLL of EFPA antenna array
is —26.31dB which is much lower than that obtained using
other algorithms. Furthermore, the null in the direction of
99° is —75.58 dB which is less than the desired value of —-60 dB
and deeper than MOEA/DE [14], GA [7], PSO [3] and MA
[10]. In order to compare the performance of EFPA and FPA
in terms of convergence speed, FPA is also run for the same
objective with same population size. The convergence graphs
of EFPA and FPA are plotted in the Figure 4. The convergence
characteristics clearly substantiates the superior performance
of EPFA in terms of faster convergence speed. The radiation
plots of EFPA, HSA [16], BSA [18], and MOEA/DE [14]
optimized arrays are shown in Figure 5.

In order to show the capability of EFPA in synthesiz-
ing the radiation pattern with multiple nulls, a 28-element

.....

0 200 400 600 800 1000

Iterations

——— FPA
— EFPA

FIGURE 2: Convergence plots of 12-element LAA.

Normalised AF (dB)
3

—45 |+ l :
_50 Il ?
920 100 110 120 130 140 150 160 170 180
¢ (deg)
GA PSO
--- FiADE —— EFPA

FIGURE 3: Radiation plot of 12-element EFPA optimized LAA.

nonuniform LAA is optimized for SLL reduction in the
region ¢ € [100°, 180°] and having nulls in the directions
of 120°, 122.5°, and 125°. The desired beamwidth is set to the
value of 8.35° with tolerance of +1°. The optimum geometry
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TABLE 7: Performance of different algorithms for 12-element LAA.

Algorithm FiADE [15] MA [10] GA [10] PSO [15] FPA [21] TS [10] EFPA
SLL (dB) -18.96 -19.10 -18.77 -17.90 —-20.764 -18.40 —-21.07
TABLE 8: Geometry of 22-element (with respect to A/2) LAA obtained using EFPA.

Element 1 2 3 4 5 6 7 8 9 10 11
Position 0.4937 0.7965 1.2153 2.1313 2.5003 3.1327 3.9654 4.5877 5.5435 6.6391 8.0603
TABLE 9: Performance of different algorithms for 22-element LAA.

Algorithm BSA[18] TS[10] MOEA/D-DE[14] HSA[16] PSO[I5] GA[10] MAT[0] FPA[21]  EFPA

SLL (dB) —23.54 -1717 -20.93 —-23.28 -20.68 -15.73 -18.11 —-23.81 —-26.31

Null (dB) (99°) -104.61 -67.94 —69.64 -103.3 —49.94 —54.29 -73.92 -101.71 -75.58
TABLE 10: Geometry of 28-element (with respect to 1/2) LAA obtained using EFPA.

Element 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Position 0.5880 1.2142 2.5291 2.8291 4.1205 4.9374 6.1006 6.9646 8.1374 9.5186 10.7399 12.4399 14.1399 15.8399
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FIGURE 4: Convergence plots of 22-element LAA.

obtained using EFPA is shown in Table 10. The comparison of
convergence curves between EFPA and BBO [17], CS [17], DE
[17], FA [17], and COA [17] is given in Figure 6 which shows
that EFPA reaches the optimum solution in less number of
iterations. The comparison of results in terms of SLL and
null values achieved is given in Table 11 which again clearly
indicates the superior performance of EFPA as against other
methods. The SLL of EFPA is —22.90 dB which is lower by
1dB, 9.24dB, 9.3dB, 1.04dB, 8.26 dB, 9.24 dB, 1.27dB, and
0.30dB than BSA [18], QPM [3], COA [17], ACO [13], GA
[7], CLPSO [20], and FPA [21], respectively. The null values
are also equal to or less than —60 dB. Figure 7 shows the

FIGURE 5: Radiation plot of 22-element EFPA optimized LAA.

comparison of QPM ([3], HSA [16], BSA [18], and EFPA
optimized array radiation plots.

The last design example illustrates the use of EFPA to
optimize the element positions for minimization of SLL
and null placement for 32-element LAA. The SLL is to be
minimized in the region ¢ € [93°,180°] and null is to be placed
in the direction of 99°. The required beamwidth BW,; is 7.1°.
The plot of convergence for EFPA is shown in Figure 8. Also
for the sake of comparison, the convergence plots of BBO
[17], CS [17], DE [17], FA [17], and COA [17] are shown in the
same figure. The element positions for EFPA optimized array
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TaBLE 11: Performance of different algorithms for 28-element LAA.

Algorithm BSA [18] QPM [3] PSO [3] COA [17] ACO [13] GA [7] CLPSO [20] FPA [21] EFPA

SLL (dB) -21.90 -13.24 -13.6 —-21.86 —-14.64 -13.60 —-21.63 —22.60 —-22.90

i\lhzl(l)l§dB) -82.49 —48.49 -52.74 —-60.08 —52.74 =59.25 -60.04 —-78.45 =60

Null (dB) ~93.59 4835 ~51.66 ~60.05 ~59.20 _75.53 ~60.01 ~96.51 ~60

(122.5%)

i\lhzlél)(dB) -80.49 -89.3 —61.46 -60.10 —43.58 —62.52 -60.00 —82.58 —67.66
TABLE 12: Geometry of 32-element (with respect to A/2) LAA obtained using EFPA.

Element 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16
Position 0.5268 1.1101 2.2759 2.9840 3.8883 4.5802 5.7817 6.6474 77093 8.8370 9.7490 11.0885 12.6565 14.3043 16.0043 17.7043
TaBLE 13: Performance of different algorithms for 32-element LAA.

Algorithm BSA [18] PSO [3] HSA [16] QPM [3] CS [19] GA [7] CLPSO [20] FPA [21] EFPA
SLL (dB) -20.50 -18.80 -19.51 -17.73 -22.83 -16.24 -22.75 -23.10 —-23.73
g‘;{l)(dB) -107.50 -62.20 —-88.08 —34.74 —62.63 —62.94 -60 -130.60 —-60.00
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FIGURE 6: Convergence plots of 28-element LAA.

are shown in Table 12. Table 13 compares the performance
of different optimization methods for design of 32-element
LAA. The SLL of proposed EFPA antenna array is —23.73 dB
which is least in Table 13. The reduction is considerable as
compared to BSA [18], QPM [3], PSO [3], HSA [16], and GA
[7] methods. (Figure 9).

5. Conclusions

FPA is a novel nature inspired algorithm which mimics the
pollination of flowers. But it has some weaknesses like poor

exploitation capability and slow convergence speed. So, to
overcome these problems an improved version of FPA called
EFPA has been proposed in this paper. Three modifications in
the basic FPA have been proposed in the enhanced version.
The modifications in EFPA help in providing better search
capability and help it to escape local minima. The proposed
algorithm has been tested on seven benchmark functions.
The results show that EFPA is able to find global optima
of most of the benchmark functions. Moreover, the EFPA
is utilized for pattern synthesis of nonuniform LAA. Four
different antenna arrays of different sizes and different design
constraints have been taken. When EFPA is used for SLL
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FIGURE 9: Radiation plot of 32-element EFPA optimized LAA.

minimization only, it reaches the optimum result in less
number of iterations than FPA. For multiobjective design
with SLL suppression, null, and beamwidth control, EFPA
obtains better performance than the results of well-known
algorithms reported in literature. The results indicate the
potential ability of EFPA to be used for optimization for other
antenna designs.
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