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This document presents a technique for the generation of Sparse Inverse Preconditioners based on the near field coupling matrices
of Method of Moments simulations where the geometry has been partitioned in terms of regions. A distance parameter is used to
determine the sparsity pattern of the preconditioner. The rows of the preconditioner are computed in groups at a time, according
to the number of unknowns contained in each region of the geometry. Two filtering thresholds allow considering only the coupling
terms with a significant weight for a faster generation of the preconditioner and storing only the most significant preconditioner
coefficients in order to decrease the memory required. The generation of the preconditioner involves the computation of as many
independent linear least square problems as the number of regions in which the geometry is partitioned, resulting in very good
scalability properties regarding its parallelization.

1. Introduction

Many of the modern approaches for electromagnetic analysis
based on the Method of Moments (MoM) [1] rely on
the idea of only storing the near field coupling terms of
the impedance matrix, which typically extends about one-
quarter of the wavelength under analysis. The coupling
effects between distant parts of the geometry are taken into
account in the matrix-vector product computation as a part
of the iterative solution process, and the specific manner in
which this is carried out depends on each approach. Some
popular schemes are based on the use of the Multilevel
Fast Multipole Algorithm (MLFMA) [2], which includes the
processes of aggregation, translation, and disaggregation of
multipole expansions in the computation of such products.
Other schemes use matrix compression techniques [3, 4] to
compute these multiplications efficiently. All these methods
circumvent the burden of storing the full MoM matrix,
which would easily surpass the memory capacity and cripple
the efficiency for the analysis of even moderately sized
problems.

Since the full couplingmatrix is no longer to be calculated
and due to the size of the system to be computed, iterative
solvers play a major role in modern simulation methods,
although it is worthwhile to mention that some approaches
extend the range in which direct solvers can be applied,
such as those based on the use of Macro Basis functions
[5], which reduce the number of unknowns of the original
problem. The necessity of iteration, however, is unavoidable
for electrically large or very large problems and with the use
of iterative solvers arises the problem of slow convergence
for some cases, due to reasons of different nature, such as
geometrical features of the model, multiscale problems, or to
the intrinsic electromagnetic behavior, such as the presence of
resonant regions within the geometry. In any case the use of
preconditioners is very important in order to ease the iterative
process, which, in many cases, accounts for most of the total
simulation time.

It is noteworthy to mention a family of preconditioners
that are based on the physical properties of the prob-
lem and more specifically on the idea that inverse matrix
that is approximately represented by the preconditioner is
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essentially an approximate solution of the electromagnetic
problem. Previous works have been published for the efficient
generation of physical-based preconditioners considering
quasiplanar structures [6] or exploiting the quasiplanar elec-
tromagnetic behavior of conducting rough surfaces [7]. A
method for the generation of a preconditioner for problems
involving multiple scatterers, based on splitting the system
matrix according to the types of material of the subdomains
as well as currents on different parts, is shown in [8].

Another group of preconditioners that are also com-
monly used in the context mentioned above rely on the
numerical manipulation of the system matrix rather than
on physical properties of the problem under analysis. The
Incomplete LU (ILU) decomposition [9–11] and the Sparse
Approximate Inverse (SAI) [12–14] show a good behavior
and are extensively used at the present time. The ILU
preconditioner is considered slightly more efficient for the
same amount of data [15], although the SAI approach is
much more scalable, since it can be computed by solving
independent linear least square (LLS) systems that generate
the rows of the preconditioner. This property renders the
SAI preconditioner very well suited to be used in very large
problems that require a fair number of processing nodes. It
should be noted, however, that modern ILU preconditioners
based on multifrontal/multilevel schemes allow better per-
formance than the conventional ILU approach while offer-
ing a good compromise between robustness and efficiency
[16–18]. The application of multilevel ILU preconditioning
techniques applied to electromagnetic problems involving
the Electric Field Integral Equation has been documented in
[19].

The preconditioners based on the ILU and SAI ap-
proaches are often generated considering only the near field
part of the coupling matrix, which includes the strongest
interactions between basis and testing functions. This allows
a fast generation and reasonably reduced size, although the
performance of such preconditioners may be lacking in the
analysis of problems in which there are strong interactions
between parts of the geometry that are physically distant, like
the interaction between the feed of a reflector antenna and
the main reflector or between parts of certain cavities.

The most common approach in the application of the
SAI preconditioner involves the definition of a sparsity
pattern, understood as the pattern of the elements of the
preconditioner that are not null, which is the same as that of
the near field couplingmatrix [12]. In this workwe propose an
improved strategy based on the clustering of the least squares
systems that fall under each near field region as well as a
distance threshold parameter that allows a finer control of the
sparsity pattern of the SAI preconditioner. We have obtained
noticeable improvements on the convergence properties of
the conventional use of the SAI preconditioner compared to
the approach described here. Illustrative examples are given
in the Numerical Results.

2. Description of the Approach

Theapplication of theMoM is based on the solution of a linear
system of equations as follows:

[𝑍] [𝐽] = [𝑉] , (1)

where [𝐽] and [𝑉] are the current coefficient and the
excitation vectors, respectively, and matrix [𝑍] contains the
coupling terms between each basis function and each testing
function of the problem. The expression of term (𝑖, 𝑗) of [𝑍]
can be written as

𝑍𝑖,𝑗 = ⟨𝐿 (𝐵𝑗) , 𝑇𝑖⟩ , (2)

where it is computed as the inner product of the 𝑖th testing
function 𝑇𝑖 and the field radiated by the 𝑗th active basis
function 𝐵𝑗 over the 𝑖th subdomain. This field is given by
the operator 𝐿(𝐵𝑗). Consequently, each row of matrix [𝑍]
represents the coupling terms between all the active basis
functions of the geometry and one passive testing function
and, in turn, a column of [𝑍] contains the coupling terms
between one active basis function and all the passive testing
functions. Since [𝑍] is dense and unmanageable for many
realistic problems it is very common to compartmentalize
the original geometry into regions and only calculate and
store the coupling terms of the basis and testing functions
contained within the same region, as well as those contained
within adjacent regions. The typical region size is about 𝜆/4,
which makes the matrix containing such terms, denoted
as [𝑍NF] in this work, sparse and with a much more
manageable size even for large problems. The rest of the
coupling terms, noticeably weaker, are contained in the far
field couplingmatrix [𝑍FF].Manymodern efficient numerical
methods do not require calculating the far field coupling
matrix [2–4] and consider those interactions using alternative
approaches.

In order to incorporate the near field preconditioning
scheme proposed in the present work, it is useful to write the
MoM equation separating the coupling matrix into the near
field term ([𝑍NF]) and the far field term ([𝑍FF]) as shown as
follows:

[𝑀] ([𝑍NF] + [𝑍FF]) [𝐽] = [𝑀] [𝑉] , (3)

where [𝑀] is the preconditioner. This matrix should ideally
be as close as possible to the inverse of [𝑍] = [𝑍NF] +[𝑍FF]. However, it is very important to keep the generation
procedure scalable and efficient both in terms of size andCPU
time.

Under the assumption that the near field part of the
coupling matrix is stronger than the far field term, it is
possible to rewrite (3) in the following fashion:

[𝑀] [𝑍NF] [𝐽] ≈ [𝑀] [𝑉] . (4)

2.1. Region Clustering in the Generation of the Preconditioner.
A commonly used SAI preconditioner relies on the gener-
ation of [𝑀] by minimizing the Frobenius norm of {[𝐼] −[𝑀][𝑍NF]}, where [𝐼] is the identity matrix. The scalability
properties of this preconditioner arise from the possibility
of decomposing such expression into the minimization of
the norm of the difference between each row of the identity
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matrix and the preconditioner multiplied by the near field
coupling matrix as follows:

min 󵄩󵄩󵄩󵄩[𝐼] − [𝑀] [𝑍NF]󵄩󵄩󵄩󵄩2𝐹 =
𝑛∑
𝑘=1

min 󵄩󵄩󵄩󵄩e𝑘 −m𝑘 [𝑍NF]󵄩󵄩󵄩󵄩22 , (5)

where 𝑛 indicates the total number of basis functions of
the problem, e𝑘 stands for the 𝑘th row of the identity
matrix, and m𝑘 denotes the 𝑘th row of the preconditioner[𝑀].

It should be remarked that the technique described in
this work relies on the compartmentalization of the compu-
tational space in terms of regions, so that only the coupling
terms between subdomain functions located in the same or in
adjacent regions are to be computed.This is a widely adopted
scheme by many modern methods. Under this context, it is
possible to take advantage of the reutilization of the same
LLS matrix to obtain as many rows of the preconditioner
as the number of the unknowns contained in each region.
This can be illustrated by rewriting (5) in the following
manner:

𝑛∑
𝑘=1

min 󵄩󵄩󵄩󵄩e𝑘 −m𝑘 [𝑍NF]󵄩󵄩󵄩󵄩22

= 𝑅∑
𝑟=1

min 󵄩󵄩󵄩󵄩[𝐼𝑟] − [𝑀𝑟] [𝑍NF]󵄩󵄩󵄩󵄩2𝐹 ,
(6)

where𝑅 indicates the total number of regions of the problem.
Considering at this point that𝑁𝑖 is the number of subdomain
functions contained in region 𝑖 and that 𝑆𝑟𝑖 represents the
absolute index of the 𝑖th subdomain contained in region𝑟, the [𝐼𝑟] matrix in (6) consists of 𝑁𝑟 rows of the unit
matrix

[𝐼𝑟] =
[[[[
[

e𝑆𝑟
1...

e𝑆𝑟
𝑁𝑟

]]]]
]

(7)

and, analogously, [𝑀𝑟] contains 𝑁𝑟 rows of the precondi-
tioner:

[𝑀𝑟] =
[[[[
[

m𝑆𝑟
1...

m𝑆𝑟
𝑁𝑟

]]]]
]
. (8)

2.2. Parametric Sparsity Pattern. Noting that [𝑀𝑟] will be
generally a full matrix it is necessary to define a sparsity
pattern that enforces null values for some of its coefficients.

It is common to see approaches in the literature that con-
sider such a sparsity pattern to be identical as that of the
original near field coupling matrix [12]. We introduce an
alternative approach by defining in this context the sparsity
distance parameter 𝜉 as the distance threshold that determines
whether the subdomains contained in a region are to be
included in the sparsity pattern. Let us denote for this purpose𝑅𝑖 as the region in which subdomain 𝑖 is contained and𝐷(𝑅𝑖, 𝑅𝑗) as the distance between the centres of regions𝑅𝑖 and𝑅𝑗, where 𝑖 an 𝑗 are two arbitrary subdomains. The sparsity
mask matrix for region 𝑟 is defined as

[Ω]𝜉𝑟 =
[[[[
[

Ω1,1 ⋅ ⋅ ⋅ Ω1,𝑛
... d

...
Ω𝑛,1 ⋅ ⋅ ⋅ Ω𝑛,𝑛

]]]]
]
,

where Ω𝑖,𝑗 = {{{
1, if 𝐷(𝑅𝑖, 𝑅𝑟) ≤ 𝜉
0, if 𝐷(𝑅𝑖, 𝑅𝑟) > 𝜉.

(9)

The [Ω]𝜉𝑟 matrix, applied for all the regions, defines the
sparsity pattern used to generate the preconditioner. With
this consideration, the right hand side of expression (6) can
be approximated as

𝑅∑
𝑟=1

min 󵄩󵄩󵄩󵄩[𝐼]𝑟 − [𝑀𝑟] [𝑍NF]󵄩󵄩󵄩󵄩2𝐹

≅ 𝑅∑
𝑟=1

min 󵄩󵄩󵄩󵄩󵄩[𝐼𝑟] − [𝑀𝑟] [𝑍NF]󵄩󵄩󵄩󵄩󵄩2𝐹 ,
(10)

where [𝑀𝑟] is an approximation of [𝑀𝑟] obtained as the
solution of the LLS where the matrices marked with the tilde
overscore denote the application of the sparsity pattern by
computing theHadamard product with the sparsity mask and
eliminating the null rows and columns of the result:

[𝐼𝑟] = ℵ ([Ω]𝜉𝑟 ⊙ [𝐼𝑟]) ,
[𝑍NF] = ℵ ([Ω]𝜉𝑟 ⊙ ℶ𝜏𝑟 ([𝑍NF])) .

(11)

In this expression ⊙ denotes the element-wise matrix mul-
tiplication operator and ℵ([𝐴]) represents the matrix that
results from the elimination of the null rows and columns
of [𝐴]. The term ℶ𝜏𝑟 ([𝑍NF]), in turn, is an operator that
returns a filtered version of [𝑍NF] discarding the coefficients
with a module lower than 𝜏 times the largest self-impedance
in the region where they belong. The 𝜏 parameter, named
preprocessing threshold parameter through the rest of this
document, allows a reduction of the size of the LLS problems
to be solved for the generation of the preconditioner by
eliminating low-magnitude rows and columns, resulting in
faster computation. Considering these comments ℶ𝜏𝑟 ([𝑍NF])
can be written as follows:
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ℶ𝜏𝑟 ([𝑍NF]) =
[[[[
[

ℶ1,1 ⋅ ⋅ ⋅ ℶ1,𝑛
... d

...
ℶ𝑛,1 ⋅ ⋅ ⋅ ℶ𝑛,𝑛

]]]]
]
,

with 0 ≤ 𝜏 ≤ 1, where ℶ𝑖,𝑗 = {{{
0, if

󵄨󵄨󵄨󵄨󵄨󵄨[𝑍NF]𝑖,𝑗󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝜏 ⋅max (󵄨󵄨󵄨󵄨󵄨[𝑍NF]𝑘,𝑘󵄨󵄨󵄨󵄨󵄨) with 𝑘 ∈ Region 𝑟
[𝑍NF]𝑖,𝑗 , if

󵄨󵄨󵄨󵄨󵄨󵄨[𝑍NF]𝑖,𝑗󵄨󵄨󵄨󵄨󵄨󵄨 > 𝜏 ⋅max (󵄨󵄨󵄨󵄨󵄨[𝑍NF]𝑘,𝑘󵄨󵄨󵄨󵄨󵄨) with 𝑘 ∈ Region 𝑟.

(12)

The preconditioner, therefore, can be computed by calculat-
ing the result of 𝑅 independent LLS problems, which can be
distributed among an arbitrary number of processing nodes,
and assembling the preconditioner using the partial [𝑀𝑟]
matrices. It is convenient, however, to filter these results to
retain only the elements that pose a significantweight for each
row of the preconditioner. Experimental results have shown
that for typical applications the size of the preconditioner
can be reduced at least by an order of magnitude without
a compromise in the convergence performance. Expression

(12) illustrates the row filtering of [𝑀𝑟] introducing the
postprocessing threshold parameter 𝜍:

[̃̃𝑀𝑟] = Ψ𝜍 ([𝑀𝑟]) , with 0 ≤ 𝜍 ≤ 1, (13)

where Ψ𝜍([𝑀𝑟]) retains the elements with an absolute value
over 𝜍 times the largest element in each row of the precondi-
tioner:

Ψ𝜍 ([𝑀𝑟]) =
[[[[
[

Ψ1,1 ⋅ ⋅ ⋅ Ψ1,𝑛
... d

...
Ψ𝑛,1 ⋅ ⋅ ⋅ Ψ𝑛,𝑛

]]]]
]
, where Ψ𝑖,𝑗 = {{{

0, if
󵄨󵄨󵄨󵄨󵄨󵄨[𝑀𝑟]𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝜍 ⋅max (󵄨󵄨󵄨󵄨󵄨󵄨[𝑀𝑟]𝑖,𝑗
󵄨󵄨󵄨󵄨󵄨󵄨) within row 𝑖

[𝑀𝑟]𝑖,𝑗 , if
󵄨󵄨󵄨󵄨󵄨󵄨[𝑀𝑟]𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨󵄨 > 𝜍 ⋅max (󵄨󵄨󵄨󵄨󵄨󵄨[𝑀𝑟]𝑖,𝑗
󵄨󵄨󵄨󵄨󵄨󵄨) within row 𝑖. (14)

The sparsity distance parameter 𝜉 introduced in this section
allows a fine control of the size of the preconditioning
matrix. Large values (similar to the size of the geometry)
imply no restrictions in the sparsity pattern of the resulting
preconditioner, which can lead to the computation of the
exact inverse of [𝑍NF] with a prohibitive computational
cost. Low values, around the size of the regions in which
the geometry has been previously partitioned, render an
approximate inverse with the same size as [𝑍NF] that can
be computed fast. These sizes can then be modified by the
filtering threshold 𝜍 that discards the least significant terms.
Our experience, as shown in the next section, shows that
sparsity distance parameter values ranging from 0.5𝜆 to 𝜆
present a good tradeoff between size and performance.

3. Numerical Results

Some test cases have been selected in this section in order
to illustrate the performance of the approach described in
the present document. All the simulations have been run
on an HP Z820 workstation using 16 Intel Xeon E5-2660
2.2GHz processing cores and 128GB of RAM. In all the
cases we have applied the Method of Moments combined
with the Multilevel Fast Multipole Algorithm using 0.25𝜆 as
the region size unless otherwise indicated. The SAI precon-
ditioners have been obtained distributing the computation
of [̃̃𝑀𝑟] shown in expression (13) for all the regions of the

problem between the computing nodes using the OpenMP
paradigm [20].The GeneralizedMinimal Residual (GMRES)
iterative solver [21] with a restart parameter of 300 has been
used for all the simulations presented in this section. The
parallelization scheme of the SAI preconditioner followed
in the simulations shown in this section consists of a loop
that iterates over the regions in which the geometry has been
previously partitioned. For each iteration the corresponding
LLS matrix is assembled and the LAPACK numerical library
[22] is used to obtain the solution. Since we use OpenMP
to merely distribute the iterations of this loop over all the
processing nodes, it is extremely important that the iterations
are independent of each other, as is the case for the proposed
preconditioner.

In the results presented in this section 𝜃 represents the
polar angle measured from the 𝑧-axis and 𝜙 denotes the
azimuthal angle measured from the 𝑥-axis, with 0∘ ≤ 𝜃 ≤
180∘, 0∘ ≤ 𝜑 < 360∘. These angular coordinates have been
illustrated in Figure 1 for the sake of clarification.

Figure 2 depicts the geometry of the PLACYL case,
originally proposed for the JINA EM 2006 workshop [23],
consisting of a cylinder with a radius of 0.2m and a length
of 1m connected to a semispherical surface on one side and
located on top of a plane plate that extends 1.8m along the𝑋
direction and 1.2m along the 𝑌 direction. The gap between
the cylinder and the plate is 0.02m. The monostatic RCS of
this setup has been computed at a frequency of 10GHz for
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Figure 2: Geometrical model of the PLACYL case.

a set of 181 theta polarized incident waves corresponding to
the directions given by 𝜃 = 45∘ and 𝜙 ranging from 0∘ to 180∘.
The electrical length of the cylinder at this frequency is 40𝜆
and the radius is 6.67 𝜆, while the plate is 60 𝜆 long and 40 𝜆
wide.TheElectric Field Integral Equation (EFIE) formulation
has been considered for all the surfaces of this case instead
of the Combined Field Integral Equation (CFIE) in order to
obtain amoderately ill-conditioned problem useful to test the
performance of the preconditioners. The geometry has been
meshed using a sampling rate of 10 divisions per wavelength,
resulting 831,734 unknowns, and the compartmentalization
of the geometry has generated 73,590 regions. The iteration
error threshold of the GMRES solver has been 10−3. Figure 3
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Figure 3: Monostatic RCS results for the PLACYL case, 𝑓 =10GHz.

shows the results obtained for this case. Table 1 shows the
CPU time required for the generation of the preconditioner
as well as the memory for its storage considering different
configurations and the average number of iterations per
monostatic direction necessary to compute the solution. The
values of the SAI parameters (sparsity distance 𝜉, preprocess-
ing threshold 𝜏, and postprocessing threshold 𝜍) defined in
the approach presented in this work are also included in the
table.

The results plotted in Figure 3 show that there is a certain
amount of specular reflection on the hemisphere and between
the hemisphere and the plate at 𝜙 = 0∘ that provides a RCS
level that fades in a very narrow angular margin. The con-
vergence for this direction is not especially slow because of
the predominant specular effect over the high-order coupling
reflections between plat and hemisphere. From 𝜙 = 0∘ to 𝜙 =
90∘ the backscattering RCS contributions are due to diffuse
reflections on the plate, cylinder, and high-order effects
between both bodies, leading to slow convergence due to the
low RCS levels and strong coupling. The RCS increases very
noticeably for angular values around 𝜙= 90∘, due to the larger
cross section of the cylinder that provides specular reflection,
as well as the high-order specular reflections between the
side of the cylinder and the plate and creeping effects on the
cylinder. From 𝜙 = 90∘ to 𝜙 = 180∘ the contribution of the
interaction between the flat part of the cylinder and the plate
becomes increasingly stronger and for the angular margin
around 𝜙 = 180∘ the double reflection between the plate and
the flat cap of the cylinder is overwhelmingly predominant,
yielding high RCS values and easing the convergence rate.

It can be seen in Table 1 that thememory requirements for
the storage of the preconditioner have a weak dependency on
the sparsity distance parameter 𝜉. This is due to the use of the
postprocessing threshold 𝜍 that eliminates the least significant
terms of the preconditioner. In general, it is normal to see a
mild increase of the size of the preconditioner as 𝜉 increases
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Table 1: Convergence performance for several SAI parameters.

Precond.
generation
time (s)

Precond. size
(MB)

Avg. number
of iterations
per direction

(𝜃 pol.)

Avg. number
of iterations
per direction

(𝜙 pol.)
No preconditioner — — 394.15 332.42
Conventional SAI 189 378.43 192.00 172.05
Proposed SAI 43 284.57 181.94 158.73
Sparsity distance (𝜉) = 0.25 𝜆
Preprocessing threshold (𝜏) = 0.03
Postprocessing threshold (𝜍) = 0.03
Proposed SAI 192 281.78 129.81 115.98
Sparsity distance (𝜉) = 0.5 𝜆
Preprocessing threshold (𝜏) = 0.03
Postprocessing threshold (𝜍) = 0.03
Proposed SAI 1208 304.33 111.78 103.21
Sparsity distance (𝜉) = 𝜆
Preprocessing threshold (𝜏) = 0.03
Postprocessing threshold (𝜍) = 0.03

because, as more coefficients are included in the sparsity
pattern of the preconditioner, a number of them are probably
going to have a magnitude that exceeds the threshold, adding
information to the computed preconditioner.

In addition to the monostatic results shown above, it is
interesting to test the behavior of the convergence of the
proposed approach for a different number of configurations.
For the next example we have considered the PLACYL
geometry increasing the frequency to 20GHz, resulting in
an electrical length of 80 𝜆 for the cylinder with a radius
of 13.35 𝜆 and a plate size of 120 𝜆 × 80 𝜆. Now the CFIE
formulation with parameter 𝛼 = 0.5 has been applied for
the closed body (cylinder and semisphere), and the EFIE
formulation has been applied for the plane plate. In this case,
meshing with the standard rate of 10 samples per wavelength,
we obtain 3,358,631 unknowns and 297,132 regions. A bistatic
RCS analysis has been performed for the excitation incidence
given by 𝜃 = 45∘ and 𝜙 = 0∘ with observation directions
separated by 0.1∘ steps between 𝜃=0∘ and 𝜃=90∘.The sparsity
distance parameter considered in this case has been 𝜉 =0.5 𝜆, and the preprocessing and postprocessing thresholds
have been, respectively, 𝜏 = 0.05 and 𝜍 = 0.03. Figure 4
shows the results obtained for the 𝜃-polarized incident field
considering an iteration error threshold of 10−3. Figure 5
shows the convergence analysis of this case considering the
use of the conventional SAI approach (with the same sparsity
pattern as the near field coupling matrix), the SAI approach
proposed in this document and without any preconditioner.

For the next example, the RCS of a realistic model of
an Opel Astra car has been simulated at a frequency of
5.9GHz. The geometry is shown in Figure 6 and has been
modeled using 282 NURBS surfaces. This case consists of
2,255,500 unknowns and 200,936 regions using a sampling
rate of 10 samples per wavelength. In order to analyze a
more realistic problem, several surfaces have been treated as
dielectric layers, defining their relative permeability 𝜀𝑟. The
windows and lights have been modeled using a thin layer
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Figure 4: Bistatic RCS results of the PLACYL case, 𝑓 = 20GHz.

approximation with 𝜀𝑟 = 4. The wheels have been modeled
by means of a thin layer approximation using 𝜀𝑟 = 7, and
dielectric losses have been introduced by assigning the loss
tangent tan(𝛿) = 0.04, considering these values as a realistic
approach for the rubber compound of the tires [24]. The
size of the car is approximately 4.14 meters long, 1.64 meters
wide, and 1.35 meters tall, which at the working frequency
corresponds to 81.5 𝜆 tall, 32.25 𝜆 wide, and 26.55 𝜆 high.
The bistatic RCS has been computed for a 𝜃-polarized plane
wave impinging from 𝜃 = 80∘ and 𝜙 = 45∘. The observation
directions are contained in the 𝜙 = 45∘ angular cut 𝜃 ranging
from 0∘ to 90∘ in 0.1∘ steps. The EFIE formulation has been
applied, due to the geometrical and material features of this
problem. Figure 7 shows the computed results. Convergence
has been obtained for an error of 10−3 in 281 iterations.
Realistic cases often offer a slow convergence due to the more
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Figure 6: Geometrical model of an Opel Astra car.

complex geometrical models. The inclusion of very small
patches, degenerate surfaces, and other sublambda details
produces an irregular mesh that favors slower convergence
rates. In addition, the use of dielectric materials assigned
to some of the surfaces of the model combined with PEC
surfaces in the rest of the body also poses a burden to
the convergence properties of the problem. In this case the
conventional SAI approach did not reach convergence and
stalled with an error value of 2.2 ⋅ 10−2. The conventional
SAI preconditioner uses the same sparsity pattern as the
near field coupling matrix, which is in essence equivalent
to generating the preconditioner using a sparsity distance
of 𝜉 = 0.25 𝜆 in this case. However, due to the features of
this geometrical model the resulting preconditioner does not
adequately resemble the inverse of [𝑍NF].The extended value
of the sparsity distance used with the proposed approach (𝜉 =0.75 𝜆) allows the computation of a denser preconditioner
that provides better convergence. The total simulation time
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Figure 7: Bistatic RCS results for the Opel Astra car, 𝑓 = 5.9GHz.

has been 18,976 seconds. The preconditioner in this case has
been generated with a sparsity distance parameter 𝜉 = 0.75 𝜆,
a preprocessing threshold 𝜏 = 5⋅10−3, and the postprocessing
threshold 𝜍 = 2 ⋅ 10−2 in 2,220 s and has required 5.9GB of
RAM.

4. Conclusion

A new sparsity pattern and filtering approach that can be
used to generate Sparse Approximate Inverse precondition-
ers considering the near field part for computations based
on the Method of Moments have been presented in this
document. The rows of the preconditioner are generated
as groups that result from the solution of similar least
squares problems. In addition, a parametric distance sparsity
parameter allows a fine control of the amount of data to
be used. The scalability properties of this preconditioner
are excellent and make it well suited to solve large and
realistic problems with a moderate computing time and
RAM footprint. Some illustrative examples have been pro-
vided in order to test the performance of the proposed
approach.

From the experience gathered by the authors, some rec-
ommended typical values of the parameters of the proposed
preconditioner can be a sparsity distance ranging between
0.5 𝜆 and 𝜆, as well as preprocessing and postprocessing
thresholds between 0.01 and 0.03. For those cases with an
especially difficult convergence the sparsity distance can be
raised up to 2 𝜆 at the expense of higher CPU time andmem-
ory consumption. In cases where thememory consumption is
a critical issue the postprocessing threshold can be increased
to values around 0.05 in order to reduce the size of the precon-
ditioner, with the possible consequence of a slightly slower
convergence.
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