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In this paper, the whale optimization algorithm (WOA) is applied to the inverse scattering of an imperfect conductor with corners.
-e WOA is a new metaheuristic optimization algorithm. It mimics the hunting behavior of humpback whales. -e inspiration
results from the fact that a whale recognizes the location of a prey (i.e., optimal solution) by swimming around the prey within a
shrinking circle and along a spiral-shaped path simultaneously. Initially, the inverse scattering is first transformed into a nonlinear
optimization problem. -e transformation is based on the moment method solution for scattering integral equations. To treat a
target with corners and implement the WOA inverse scattering, the cubic spline interpolation is utilized for modelling the target
shape function. Numerical simulation shows that the inverse scattering by WOA not only is accurate but also converges fast.

1. Introduction

Inverse scattering means to reconstruct the shape or the
electrical parameter distribution of an unknown scatterer by
using the scattering data or the wave propagation model [1].
Basically, the reconstruction of a target’s information is as-
sociated with the solution of an inverse problem, which is
nonlinear and typically ill-posed [2]. -e inverse scattering
plays a very important role in different branches of science
such as medical tomography, nondestructive testing, object
detection, geophysics, ground penetrating radars, remote
sensing, atmospheric science, and optics. According to
electromagnetic theories [3], the relation between a target and
its scattered electromagnetic fields involves complicated in-
tegral equations together with Green’s functions. -erefore,
the solution of an inverse scattering problem is very difficult
and time-consuming. Conventionally, the inverse scattering
techniques are basically divided into two categories. -e first
category is based on the physical approximation for reducing
the mathematical complexity, such as [4–8]. Although the
computation of this category is efficient, it has some re-
strictions (e.g., convex and smoothness) on the target. A

target’s information may be lost by using techniques of this
category. -e second category is based on direct numerical
solutions of scattering integral equations, such as [9–13].
Although the target’s information is completely retained, the
computation of this category is time-consuming and even
difficult due to the complicated mathematics and ill-posed
problems. As a whole, to improve the numerical computation
and to retain the target information are the important con-
siderations of inverse scattering, e.g., [14].

Recently, the metaheuristic optimization algorithms are
becomingmore andmore important inmany research fields.
A metaheuristic algorithm is inherently a stochastic opti-
mization so that the solution is dependent on the set of
random variables generated. -ere are at least three ad-
vantages of applying metaheuristic optimization algorithms
to engineering problems. First, it relies on rather simple
concepts and is easy to implement. Second, it does not
require gradient information. -ird, it can bypass local
optima. -e above advantages make metaheuristic optimi-
zation algorithms suitable for a wide range of problems
covering different disciplines. Since the solution of an in-
tegral equation can be transformed into an optimization
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problem, it is a reasonable thinking direction to apply
metaheuristic optimization algorithms to inverse scattering
[15–18].

-is study introduces a new metaheuristic optimization
algorithm, which is the whale optimization algorithm
(WOA) [19], to solve the inverse scattering problem. -e
WOA mimics the hunting behavior of humpback whales.
-e inspiration results from the fact that a whale recognizes
the location of a prey (i.e., optimal solution) by swimming
around the prey within a shrinking circle and along a spiral-
shaped path simultaneously, as shown in Figure 1. -e most
interesting thing about the whale is its special hunting
method, which is the bubble-net feeding. A whale prefers to
hunt krill and small fishes close to the surface. It has been
observed that this foraging is done by creating distinctive
bubbles along a circle as shown in Figure 1. To perform
optimization, the spiral bubble-net feeding maneuver is
mathematically modeled and transformed into formulas.
-e details are given in Section 2. To our knowledge, so far,
there is still no study of applying the WOA to electro-
magnetic problems.

In this paper, the WOA is applied to the inverse scat-
tering of an imperfect conductor with corners. Similar to
[15–18], the inverse scattering is first transformed into a
nonlinear optimization problem. -e transformation is
based on the scattering integral equation [3] and moment
methods [20]. To treat a target with corners, the target shape
function is characterized by the cubic spline interpolation
[21, 22], but not the Fourier series [15, 16, 18]. -e fitness
(i.e., objective) function is defined by comparing the scat-
tered electric fields from the guessed and true targets, re-
spectively. Numerical results show that the target’s
information reconstructed by the WOA is very accurate and
the convergence is fast.

In the following, Section 2 introduces the whale opti-
mization algorithm. Section 3 describes its application to
inverse scattering. Numerical results are given in Section 4.
Finally, the conclusion is given in Section 5.-emeanings of
notations are summarized as Table 1.

2. Whale Optimization Algorithm

In this section, the WOA [19] is briefly introduced. -e
WOA is basically an iterative method and will be applied to
the inverse scattering in the next section.

-e original goal of the WOA is to find an optimal
solution that maximizes or minimizes a fitness function.
Assume X

→
denotes the location vector (i.e., controlled

variables) of a whale (i.e., the fitness function) and X
→∗

is the
best location (i.e., optimal solution) obtained so far. By using
the WOA, X

→
is efficiently updated so that X

→∗
becomes

finally optimal. -eWOA contains three main mechanisms,
which are shrinking and encircling (exploitation phase),
spiral updating (exploitation phase), and searching for prey
(exploration phase). -ey are introduced in the following.

2.1. Shrinking and Encircling. -is step belongs to the ex-
ploitation phase. -e mathematical formulas are

D
→

� C
→
∘X
→∗

− X
→􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌, (1)

and

X
→

new � X
→∗

− A
→
∘D
→

, (2)

where X
→

new is the updated location vector of a whale in the
next step. In equations (1)–(2), A

→
and C

→
are randomness

coefficient vectors, as now briefly explained. We define

A
→

� 2 a→∘ r→ − a→, (3)

and

C
→

� 2 r→, (4)

where a→ is a vector with each component (denoted as a)
linearly decreased from 2 to 0 over the whole iterations and r→

is a vector with random components in the range [0, 1]. From
equation (3), it is shown that A

→
is actually composed of

random values in the interval [−a, a] where a is decreased from
2 to 0 over the whole iterations. As a result, the fluctuation
range of A

→
is affected by a→ and is then decreased gradually.

2.2. Spiral Updating. -is step belongs to the exploitation
phase. A spiral equation,

X
→

new � X
→∗

− X
→􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 · e
bl

· cos(2πl) + X
→∗

, (5)

is created for updating the location of a whale. -e inspi-
ration is to mimic the helix-shaped movement of a whale. In
equation (5), b is a constant for defining the shape of the
logarithmic spiral and l is a random number within the range
[−1, 1].

2.3. Search for Prey. -is step belongs to the exploration
phase. We utilize the variation of a vector A

→
, which is

Prey
(optimal solution)

Figure 1: Illustration of a whale swimming around the prey within
a shrinking circle and along a spiral-shaped path simultaneously.
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composed of random values, to search for the prey (i.e.,
optimal location). As A

→
satisfies |A

→
|≥ 1, the search agent

will move far away from a reference whale. Note that |A
→

|≥ 1
means all elements of A

→
(having the same value) are greater

than or equal to 1. In such a situation, we update the location
of a search agent in the exploration phase according to a
randomly chosen search agent, but not toward the currently
best location. -is mechanism emphasizes exploration and
allows the WOA to perform a global search. -e mathe-
matical formulas are

D
→

� C
→
∘X
→

rand − X
→􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (6)

and

X
→

new � X
→

rand − A
→
∘D
→

, (7)

where X
→

rand is a random location vector chosen from the
current population.

Assume the problem is to search for a set of optimal
variables X

→
that minimizes a fitness function g(X

→
) by using

the WOA. As shown in Figure 1, a whale swims around the
prey (i.e., optimal location and solution) within a shrinking
circle and along a spiral-shaped path simultaneously. -e
flowchart of the WOA is given in Figure 2. Its iteration
procedures are explained in the following.

Step 1: initialize the whale population.
To start the WOA, we first initialize the whale pop-
ulation. Assume there are NW whales with location
vectors denoted as X

→
i, i� 1, 2, . . ., NW. Components of

a location vector represent the controlled variables of
the fitness function.
Step 2: generate p and A

→
.

For each whale, we generate a random number pwithin
the range 0≤ p≤ 1 for deciding the next step. We also
generate a random A

→
based on equation (3).

Step 3: check p and |A
→

|.
For each whale, we check p and |A

→
|, and then update

the location vector according to the following rules:
p≥ 0.5, update by equation(5),

p< 0.5,
|A
→

|≥ 1, update by equation(7),

|A
→

|< 1, update by equation(2).

⎧⎪⎨

⎪⎩

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

Step 4: calculate the fitness of each whale.
In this step, we calculate the fitness of each whale, i.e.,
g(X

→
i), i� 1, 2, . . ., NW.

Step 5: pick out the best whale.
Since the problem is to minimize the fitness function,
this step becomes to pick out the minimum among
g(X

→
i), i� 1, 2, . . ., NW. Record the corresponding

location vector as X
→∗

. Note that the current X
→∗

is the
best solution so far.
Step 6: reach maximum iteration loops?
As the iteration has reached the specified maximum
number of loops, the WOA stops and X

→∗
is regarded

as the final optimal location (i.e., final solution).
Otherwise the WOA iteration will continue and go to
Step 2.

Table 1: Meanings of notations.

Notations Meanings
a Scalar
|a| Absolute value of scalar a
A
→

Vector (bold)
|A
→

| Taking absolute value for each element of vector A
→
, the result is still a vector

A
→
∘B
→

Element-by-element multiplication of vectors A
→

and B
→

􏽢z Unit vector (bold)

Initialize the whale population

Calculate the fitness of each whale

Pick out the best whale

Reach maximum 
iteration loops?

Yes

No

Update
by equation (2)

Update
by equation (7)

Update
by equation (5)

End

p ≥ 0.5

Generate p and A→

Check p & |A|→

p < 0.5 &
|A| < 1→

p < 0.5 &
|A| ≥ 1→

Figure 2: -e flowchart of the whale optimization algorithm.
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After the above six steps of WOA iteration procedures,
one can obtain the optimal solution (i.e., X

→∗
) that

minimizes the fitness function g(·).

3. Application to Inverse Scattering

In this study, the above WOA will be applied to inverse
scattering. To utilize the WOA, the inverse scattering
problem should be first transformed into a minimization
problem. Prior to inverse scattering, one should derive the
direct scattering formulas. For simplicity without loss of
generality, this study considers only the two-dimensional
inverse scattering. -e target is an imperfectly conducting
cylinder with corners. Consider a time-harmonic plane wave
with electric field

E
→

i(x, y) � Ei(x, y)􏽢z � exp −jk0(x · cos α􏼈

+ y · sin α)􏼉􏽢z,
(9)

in free space (permittivity ε0 and permeability μ0) incident
on a homogeneous cylinder, as shown in Figure 3. In
equation (9), (x, y) represents the Cartesian coordinates, k0 is
the wavenumber and α is the incident angle with respect to
X-axis. -e polar coordinates are denoted as (ρ, ϕ), as il-
lustrated in Figure 3.

Assume the polar coordinates of the target shape
boundary satisfy ρ � f(ϕ) where f(·) represents the target
shape function. -e scattered electric field outside the cyl-
inder is 􏽢z-polarized as [3, 15, 17]

ES(x, y) � −
k0η0
4

􏽚
2π

0
H

(2)
0 k0

��������������������������������

x − f ϕ′( 􏼁cos ϕ′􏼂 􏼃
2

+ y − f ϕ′( 􏼁sinϕ′􏼂 􏼃
2

􏽱

􏼒 􏼓 ·

�����������������

f ϕ′( 􏼁􏼂 􏼃
2

+ f′ ϕ′( 􏼁􏼂 􏼃
2

􏽱

· JS ϕ′( 􏼁dϕ′. (10)

In equation (10), η0 is the intrinsic impedance, H
(2)
0 (·) is

the zero-order Hankel function of the second kind and JS(·)

is the 􏽢z-directed surface current density. Note that the
notation “prime” indicates the source. Let E

→
t(f(ϕ), ϕ)

denote the total electrical field. As the target is perfectly
conducting, the boundary should obey the condition
E
→

t(f(ϕ), ϕ) � 0. -is study considers the imperfectly con-
ducting target. Assume the target conductivity is σ. -e
boundary should obey the equivalent condition as [23, 24]

􏽢n × E
→

t(f(ϕ), ϕ) � 􏽢n × ZS J
→

S(f(ϕ), ϕ)􏼔 􏼕, (11)

and

ZS �

����
jωμ0
σ

􏽲

, (12)

where 􏽢n is the outward unit normal vector and ZS represents
the surface impedance. From equations (10)–(12), we have

Ei(f(ϕ), ϕ) �
k0η0
4

􏽚
2π

0
H

(2)
0 k0

�������������������������������������

[f(ϕ)]2 + f ϕ′( 􏼁􏼂 􏼃
2

− 2f(ϕ)f ϕ′( 􏼁cos ϕ − ϕ′( 􏼁

􏽱

􏼒 􏼓 ·

�����������������

f ϕ′( 􏼁􏼂 􏼃
2

+ f′ ϕ′( 􏼁􏼂 􏼃
2

􏽱

· JS f ϕ′( 􏼁,ϕ′( 􏼁dϕ′ + JS(f(ϕ), ϕ)

����
jωμ0
σ

􏽲

,

(13)

on the target boundary. JS(·) in equation (13) can be solved
by the moment method [20]. After JS(·) is solved, the
scattered electric field of equation (10) will be obtained
accordingly.

-e goal of inverse scattering is to obtain the target shape
function f(ϕ), which is unknown in practical applications.
To help reconstruction, the target shape function f(ϕ)

should be approximated and controlled by some variables.
As the target shape is smooth, it can be well approximated by

a Fourier series and controlled by Fourier coefficients, as
given in [15, 16, 18]. -is study considers the target with a
complex shape, e.g., containing corners. In such a situation,
the Fourier bases are too smooth and are then inadequate to
model the target shape. Instead, this study utilizes the cubic
spline interpolation [21, 22] to model the target with a
complex shape. Initially, we expand the polar coordinate
angle (ϕ) into a horizontal axis with the range [0, 2π]. Next,
the horizontal range [0, 2π] is equally divided into M

σ ρ
ϕ

α

Ei

Y

X

Figure 3: Geometry of a cylinder in free space illuminated by an
incident plane wave E

→
i(x, y) � Ei(x, y)􏽢z.
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segments with division points at ϕi � i · 2π/M, i� 0, 1, 2, . . .,
M. -e target shape function is then sampled at these di-
vision points and the results are f(ϕi), i� 1, 2, . . ., M. Note
that f(ϕ0) is unnecessary due to f(ϕ0) � f(ϕM). Figure 4
illustrates four of the whole sampling points in the cubic
spline interpolation. As shown in Figure 4, f(ϕ) in
ϕi−2 < ϕ< ϕi−1, ϕi−1 <ϕ<ϕi and ϕi < ϕ< ϕi+1 are approxi-
mated by cubic polynomials Si−1(ϕ), Si(ϕ), and Si+1(ϕ),
respectively. According to the cubic spline interpolation
[21, 22], the cubic polynomial functions S1(ϕ), S2(ϕ), . . .,
and SM(ϕ) within adjacent points can be determined from
the (M+ 1) sampling points (ϕ0, f(ϕ0)), (ϕ1, f(ϕ1)), (ϕ2,
f(ϕ2)), . . ., and (ϕM, f(ϕM)). -e details are given in
[21, 22]. Note that f(ϕ0), f(ϕ1), f(ϕ2),. . ., and f(ϕM) are
known because one should guess their values consecutively
in the WOA iteration of Section 2. As all cubic polynomial
functions are determined, the target shape function f(ϕ) is
then approximated as

f(ϕ) �

S1(ϕ), 0≤ϕ≤ϕ1,

S2(ϕ), ϕ1 ≤ϕ≤ϕ2,

⋮ ⋮

SM(ϕ), ϕM−1 ≤ ϕ≤ ϕM � 2π.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

As mentioned above, the inverse scattering should be
first transformed into a minimization problem. -e fitness
(objective) function is based on the difference of scattered
electric fields between the guessed and true targets. To
make the inversion reliable, we illuminate the target from
different directions including α� 0°, 90°, 180°, and 270°,
respectively. For each incidence, the scattered electric fields
are collected in eight directions, which are ϕ� 0°, 45°, 90°,
. . ., and 315°, respectively. -us we totally collect 32
(�4 × 8) data sets of scattered electric fields. As these
scattered electric fields are collected from the true target,
they are recorded as Ans(1), Ans(2), . . ., and Ans(32). -e
goal is to obtain f(ϕi), i � 1, 2, . . .,M, and conductivity σ by
comparing the 32 collected data sets of scattered electric
fields. -us the total number of controlled variables in the
minimization problem is (M + 1). During the WOA iter-
ation in Section 2, one should guess values for these (M+ 1)
variables and approximate the shape function from the
cubic spline interpolation as equation (14). -us one can
solve JS(·) in equation (13) by the moment method and
then calculate the corresponding scattered electric field
from equation (10). -e scattered electric fields from the
guessed target are calculated under the same situations of
incidence and collection as mentioned above. -e results
are recorded as Guess(1), Guess(2), . . ., and Guess(32). -e
fitness (objective) function is defined as

fitness �
1
32

􏽘

32

i�1

Guess(i) − Ans(i)

Ans(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2⎧⎨

⎩

⎫⎬

⎭

1/2

. (15)

-e inverse scattering becomes to find optimum values
of f(ϕi), ϕi � i · 2π/M (i� 1, 2, . . ., M) and conductivity σ
that minimizes equation (15). In this study, the above
minimization procedures are implemented by the whale

optimization algorithm in Section 2. As the optimum values
of the (M+ 1) controlled variables are obtained, the true
target shape can be reconstructed from equation (14) and its
conductivity is also known simultaneously. -erefore, the
inverse scattering is achieved.

4. Numerical Results

In this section, numerical examples are given to illustrate the
application of whale optimization algorithm in inverse
scattering. Consider an imperfectly conducting cylinder in
free space illuminated by a plane wave of equation (9), as
shown in Figure 3. -e frequency of the incident wave is
300MHz. -e transmitting and receiving details have been
mentioned in Section 3. -e distance between each receiver
and the coordinate origin is chosen as 12m. Note that the
scattered electric field is calculated by equation (10), which is
suitable for both near and far fields. -erefore, the choice of
distance between a receiver and the coordinate origin is not
important. -e conductivity of the target is σ � 5.8 × 107 S/
m, which implies that the target is made of copper. In the
cubic spline interpolation of Section 3, the angle range [0,
2π] is equally divide into 16 segments, i.e., M� 16. In the
whale optimization algorithm, the dimension of each lo-
cation vector is 17. -e 17 components of a location vector
represent 16 sampling values of the target shape function
and one value for conductivity.-e population size is chosen
as NW � 15. -e b value for defining the shape of the log-
arithmic spiral in equation (5) is chosen as b� 1. All length
units are meters. In the following, there are two examples to
illustrate the above inverse scattering scheme. -e whale
optimization algorithm is inherently a randomness iteration
algorithm so that the simulation should be donemany times.
In the following, each example is simulated 30 times and all
illustrated figures are the average results.

In the first example, the shape of the target is similar to a
star, as the black line marked “True shape” in Figure 5. -e
values of sampling points for the true target shape function,
i.e., (ϕi, f(ϕi)) for ϕi � i · 2π/16, i� 1, 2, . . ., 16, are listed in
the first and second columns of Table 2. Following the WOA
and inverse scattering procedures in Section 2 and Section 3,
the reconstructed target shape for different iteration loops of

f (ϕi–2) f (ϕi–1) f (ϕi) f (ϕi+1)

ϕi–2 ϕi–1 ϕi ϕi+1
ϕ

Si+1(ϕ)

Si–1(ϕ)

Si (ϕ)

ρ 
= 

f (
ϕ)

Figure 4: Illustration of the cubic spline interpolation.
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the whale optimization algorithm is shown in Figure 5. It
reports that the target shape is well reconstructed as the
number of iteration loops is larger than 100.-e fitness value
with respect to iteration loops of the whale optimization
algorithm is shown in Figure 6. As defined in (15), the fitness
value is always positive and the goal is to reach 0. Figure 6
shows that the fitness becomes very small after only dozens
of iteration loops. -is means that our inverse scattering
based on the whale optimization algorithm converges very
fast. To investigate the reconstruction accuracy, we define
the relative shape error as

SE �
1
360

􏽘

360

i�1

fR(i · 2π/360) − fT(i · 2π/360)

fT(i · 2π/360)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2⎧⎨

⎩

⎫⎬

⎭

1/2

,

(16)

where fR(·) and fT(·) denote the shape function values for
the reconstructed and true targets, respectively. In addition,
we define the relative conductivity error as

CE �
σR − σT

σT

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (17)

where σR and σT denote values of the reconstructed and true
conductivity, respectively. Obviously, the values for both
equations (16) and (17) are always positive and the goal is to
reach 0. Figure 7 shows the relative shape and conductivity
errors with respect to iteration loops of the whale optimi-
zation algorithm. It shows that the reconstruction is very
consistent, i.e., the relative error approaches 0, after only
dozens of iteration loops.

In the second example, the shape of the target is similar
to a maple leaf, as the black line marked “True shape” in
Figure 8. -e values of sampling points for the true target
shape function, i.e., (ϕi, f(ϕi)) for ϕi � i · 2π/16, i� 1, 2, . . .,
16, are listed in the first and third columns of Table 2. -e
other conditions are the same as those of the first examples.
Figure 8 reports the reconstructed target shape for different
iteration loops of the whale optimization algorithm. Like the
first example, the target shape is well reconstructed as the
number of iteration loops is larger than 100. Figure 9 reports
the fitness value with respect to iteration loops of the whale
optimization algorithm. It shows that the fitness becomes
very small as the number of iteration loops is greater than
100. Like the first example, the convergence is also very fast

0

45

90

135

180

225

270

315

00.40.81.21.6

Reconstruction, loos = 10
Reconstruction, loos = 100
Reconstruction, loos = 600
True shape

Figure 5: Reconstructed target shape for different iteration loops of
the whale optimization algorithm in the first example.

Table 2: Values of sampling points (M� 16) for the true target
shape function in the first (Ex1) and second (Ex2) examples.

ϕi � i · 2π/16 f(ϕi) for Ex1 f(ϕi) for Ex2

1 · 2π/16 0.4999 0.5673
2 · 2π/16 0.4382 0.2362
3 · 2π/16 0.5332 0.8326
4 · 2π/16 0.7808 0.6749
5 · 2π/16 0.5332 0.2361
6 · 2π/16 0.4382 0.1422
7 · 2π/16 0.4999 0.1212
8 · 2π/16 1.1712 0.5431
9 · 2π/16 0.9111 0.4615
10 · 2π/16 0.8055 0.8801
11 · 2π/16 1.3408 0.3692
12 · 2π/16 1.0591 0.9388
13 · 2π/16 1.3408 0.4878
14 · 2π/16 0.8055 0.4285
15 · 2π/16 0.9110 0.8993
16 · 2π/16 1.1712 0.4351

Fitness

100 200 300 400 500 6000
Number of iterations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Fi
tn

es
s v

al
ue

Figure 6: -e fitness value with respect to iteration loops of the
whale optimization algorithm for the first example.
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in this example. Figure 10 reports the relative shape and
conductivity errors with respect to iteration loops of the
whale optimization algorithm. It shows that the recon-
struction is very consistent, i.e., the relative error approaches

0, as the number of iterations is greater than 100. Note that
the WOA iteration is to minimize the fitness in equation
(15), but not the relative reconstruction error in equations
(16) and (17). -erefore, the curves in Figure 10 may have
some ripples although the overall trend is decreasing.
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Figure 7: -e relative shape and conductivity errors with respect to
iteration loops of the whale optimization algorithm for the first example.
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Figure 8: Reconstructed target shape for different iteration loops of
the whale optimization algorithm in the second example.
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Figure 9: -e fitness value with respect to iteration loops of the
whale optimization algorithm for the second example.
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Figure 10: -e relative shape and conductivity errors with respect
to iteration loops of the whale optimization algorithm for the
second example.
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-e above results show that the overall convergence of
the second example is a little slower than that of the first
example. -is may be because the target shape and then
scattering mechanisms of the second example (a maple leaf)
are more complex than those of the first example (a star).
Although the scale for each target of the above simulation is
small, our research flowchart has no limitation on the target
scale. As the target become larger, one only needs to increase
the number of segments in moment method solution for
equation (13) and the number of segments in shape function
division (i.e.,M in cubic spline interpolation or Table 2). -e
above inverse scattering is limited to homogeneous scat-
terers. As the target is inhomogeneous, the above homo-
geneous scattering formulas in equations (10)–(13) should
be replaced by inhomogeneous scattering theories [25].
Under such a situation, the induced surface current density
JS(·) in equations (10)–(13) will be extended to the whole
target volume so that the number of variables in moment
method analysis is greatly increased. -e other recon-
struction procedures of the target are almost the same except
that the computation is more time-consuming. -e above
simulation is implemented on a personal computer with
Intel Core i7-4720HQ CPU and 16GB RAM. -e software
includes Windows 10 operation systems, Microsoft Visual
C++ 2010 programming language and IMSL Math Library.

5. Conclusion

In [19], the WOA was conducted on 29 mathematical
benchmark functions. It has been found to be enough
competitive with other state-of-the-art metaheuristic
methods and superior over many conventional techniques
[19]. -is study further applies the WOA to the inverse
scattering of an imperfectly conducting target with corners.
-e results are successful and satisfactory. -e forward
problem of this study involves scattering integral equations
with Green’s functions, which are complicated and difficult.
To obtain the target information, i.e., inverse scattering, the
problem is successfully transformed into a nonlinear opti-
mization problem, which can be well treated by the WOA.
-e WOA iteration guesses the target’s shape and con-
ductivity until the scattered electric fields of the guessed
target are consistent with (or at least close to) those of the
true target. Numerical results show that our WOA based
inverse scattering is not only accurate but also converges
fast. -e WOA can also be extended to solve many other
nonlinear and complicated problems in electromagnetic
waves.

Data Availability

-e important and key computer programs of this study are
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