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3e range resolution and azimuth resolution are restricted by the limited transmitting bandwidth and observation angle in a
monostatic radar system. To improve the two-dimensional resolution of inverse synthetic aperture radar (ISAR) imaging, a fast
linearized Bregman iteration for unconstrained block sparsity (FLBIUB) algorithm is proposed to achieve multiradar ISAR fusion
imaging of block structure targets. First, the ISAR imaging echo data of block structure targets is established based on the
geometrical theory of the diffraction model. 3e multiradar ISAR fusion imaging is transformed into a signal sparse repre-
sentation problem by vectorization operation. 3en, considering the block sparsity of the echo data of block structure targets, the
FLBIUB algorithm is utilized to achieve the block sparse signal reconstruction and obtain the fusion image.3e algorithm further
accelerates the iterative convergence speed and improves the imaging efficiency by combining the weighted back-adding residual
and condition number optimization of the basis matrix. Finally, simulation experiments show that the proposed method can
effectively achieve block sparse signal reconstruction and two-dimensional multiradar ISAR fusion imaging of block
structure targets.

1. Introduction

High-resolution inverse synthetic aperture radar (ISAR)
images can provide information such as the size and geo-
metric structure of targets, which is conducive to target
recognition and classification [1–4]. In a monostatic ISAR
imaging system, the range resolution and azimuth resolution
are restricted by the limited transmitting bandwidth and
observation angle, respectively [5, 6]. 3e multiradar fusion
imaging technology is utilized to fuse multiangle and
multiband echo data measured by multiple radars with
different frequency bands at different observation angles to
improve the two-dimensional resolution of images [7].

Compressive sensing (CS) theory [8] can accurately
reconstruct sparse signals by using a small number of
measurements, which breaks the Nyquist sampling theorem
and greatly reduces the sampling number. Since the echo
data in ISAR imaging has a sparse property, the CS theory
can be applied to ISAR fusion imaging [9]. 3e multiradar

observation echo data can be regarded as the sampling data,
and sparse reconstruction algorithms can be utilized to
achieve two-dimensional ISAR fusion imaging based on
sparse representation.

3e targets usually have some block structure charac-
teristics in practice scenes, such as satellites and aircraft with
complex structures [10]. 3e nonzero scattering coefficients
of block structure targets are considered continuously lo-
cated in the imaging scene. It is necessary to consider the
block structure characteristics and the correlation of the
block sparse echo signal in ISAR imaging of block structure
targets. Block sparse reconstruction algorithms are utilized
to achieve high-resolution two-dimensional ISAR fusion
imaging of block structure targets. Block sparse recon-
struction algorithms mainly include greedy iterative algo-
rithms, convex optimization algorithms, and Bayesian
framework-based algorithms. Greedy iterative algorithms
represented by the block orthogonal matching pursuit
(BOMP) algorithm [11] are easy to implement and have low
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computational complexity. However, these algorithms
cannot guarantee convergence to the global optimum,
which affects the reconstruction accuracy. Convex opti-
mization algorithms utilize the l2,1 norm instead of the l2,0
norm in block sparse signal reconstruction. 3e l2/l1-op-
timization program (L-OPT) can be regarded as a second-
order cone optimization program (SOCP), which can be
solved by standard software packages [12]. 3e recon-
struction accuracy of convex optimization algorithms is
better than that of greedy iterative algorithms; however, the
computational time is long and not suitable for large-scale
signal reconstruction. Block sparse Bayesian learning
(BSBL) algorithm [13] and pattern coupled-sparse Bayesian
learning (PC-SBL) algorithm [14] are typical Bayesian
framework-based algorithms, which automatically estimate
parameters by Bayesian inference. 3e Bayesian frame-
work-based algorithms can accurately reconstruct the
sparse signals. However, a large number of matrix inver-
sion operations are involved in the Bayesian inference and
parameter estimation, which is also not suitable for large-
scale sparse signal reconstruction.

Due to the two-dimensional coupling of the fusion
imaging signal, the linear system model of the two-di-
mensional multiradar ISAR fusion imaging based on
sparse representation is established by signal vectoriza-
tion. Large-scale signal reconstruction problems are in-
volved. A simple, fast, and effective block sparse
reconstruction algorithm should be utilized to achieve
ISAR fusion imaging of block structure targets. Yin et al.
[15] proposed that the Bregman iterative algorithms can
quickly and effectively solve convex optimization prob-
lems and are applied to solve CS problems successfully.
Linearized Bregman iteration (LBI) algorithm and fast
linearized Bregman iteration (FLBI) algorithm are pro-
posed in [16, 17], which can further improve the iterative
convergence speed. Li et al. [18, 19] applied the LBI-based
algorithms into ISAR imaging, which have fast imaging
capability and antinoise performance. However, the al-
gorithms are only utilized to achieve ISAR imaging for
point scattering targets, which are not suitable for the
imaging of block structure targets.

A fast linearized Bregman iteration for unconstrained
block sparsity (FLBIUB) algorithm is proposed to achieve
two-dimensional multiradar ISAR fusion imaging of block
structure targets. 3e multiradar fusion imaging model is
established based on sparse representation. Considering
the block sparsity characteristics of the echo data of block
structure targets, the sparse representation problem is
transformed into an unconstrained block sparsity opti-
mization problem, which can be solved by an LBI-based
algorithm. Moreover, the weighted back-adding residual
and condition number optimization of the basis matrix are
utilized to further accelerate the iterative convergence
speed and improve the imaging efficiency. Simulation
experiments verify the effectiveness and superiority of the
proposed algorithm.

3e rest of the paper is organized as follows. Section 2
gives the two-dimensional multiradar ISAR fusion imaging
model based on sparse representation. Section 3 proposes

the FLBIUB algorithm and summarizes the implementation
process. Section 4 presents and discusses the performance of
the proposed algorithm via both simulation and real data
experiments. Conclusions are drawn in Section 5.

2. Two-Dimensional Multiradar ISAR Fusion
Imaging Model

Multiradar ISAR fusion imaging technology exploits echo
data obtained by multiple radars working in different fre-
quency bands and different observation angles to fuse into a
larger bandwidth and larger observation angle. It is a new
approach to improve the two-dimensional resolution re-
markably. Since the scattering coefficients of the scatterers
are varying with frequency under wide bandwidth and
small-angle observation conditions, the traditional ideal
scatterer model is not suitable to characterize the scattering
characteristics. Considering the variation of scattering co-
efficients with frequency, the ISAR imaging echo data is
established based on the geometrical theory of diffraction
(GTD) model [20].

2.1. ISAR ImagingModel. 3e echo data of the target can be
described as the sum of the electromagnetic scattering of
multiple independent scatterers in the high-frequency area.
Suppose that ISAR transmits a chirp signal, the target has P

independent scatterers. After motion compensation, the
echo data in the range frequency-azimuth slow time domain
based on the GTD model can be expressed as

Sf f, tn(  � 
P

p�1
σp j

f

f0
 

αp

· exp −j
4π
c

fΔRp tn(  , (1)

where f is the frequency, tn � nTr is the slow time,
n � 0, 1, . . . , N − 1, N is the pulse number, Tr is the pulse
repetition time, f0 is the start frequency, and c is the speed
of electromagnetic waves. ΔRp(tn) � yp cos(Δθ(tn)) + xp

sin(Δθ(tn)) is the instantaneous distance between the p − th
scatterer and the reference point, where (xp, yp) is the
coordinate of the p − th scatterer and 1Δθ(tn) is the cu-
mulative observation angle within tn. σp and αp are the
constant scattering coefficient and the frequency-dependent
factor (FDF) of the p − th scatterer, respectively. 3e typical
scatterer types and corresponding FDF values are shown in
Table 1.

3e imaging model can be approximated as a turntable
model after motion compensation. Under the small-angle
observation condition, we have the approximation as
cos(Δθ(tn)) ≈ 1 and sin(Δθ(tn)) ≈ Δθ(tn). Equation (1) can
be approximated as

Sf f, tn(  ≈ 
P

p�1
σp j

f

f0
 

αp

· exp −j
4π
c

f yp + xpΔθ tn(   .

(2)

Assuming that the angular rotation velocity of the
uniform rotation of the turntable model is ω, the cumulative
observation angle can be expressed as Δθ(tn) �
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ωtn � nωTr(n � 0, 1, . . . , N − 1). Let f � f0 + mΔf
(m � 0, 1, . . . , M − 1), where Δf is the frequency sampling
interval. M and N are the frequency sampling number and
the angle sampling number, respectively. After themigration
through resolution cells correction, the echo data in equa-
tion (2) can be discretized as

S(m, n) � 
P

p�1
σp j

f0 + mΔf
f0

 

αp

· exp −j
4π
c
Δfypm 

· exp −j
4π
c

f0xpωTrn . (3)

Let 2Δfyp/c � k/K(k � 0, 1, . . . , K − 1) and
2f0xpωTr/c � l/L(l � 0, 1, . . . , L − 1), where K≥M and
L≥N. Referring to [21, 22], the imaging scene can be dis-
cretized into a two-dimensional grid with the size of L × K.
Since the scattering coefficients vary with frequency, the
amplitude and phase of the echo data are coupled. 3e
coupled two-dimensional echo data need to be vectorized to
establish the imaging model based on sparse representation.
Equation (3) can be vectorized as

s � Ψa, (4)

where s is the echo data vector with the size of MN × 1,
which can be expressed as

s � [S(0, 0), . . . , S(M − 1, 0), S(0, 1), . . . , S(M − 1, 1), . . . ,

S(0, N − 1), . . . , S(M − 1, N − 1)]
T
, (5)

Ψ is the basis matrix with the size of MN × 5KL, which can
be expressed as

Ψ � Ω−1
Ω−0.5

Ω0 Ω0.5
Ω1 MN×5KL, (6)

where Ωi � ΓiW (i � −1, −0.5, 0, 0.5, 1), and i corresponds
to the FDF value. Γi is the block diagonal matrix with the size
of MN × MN, which can be expressed as

Γi � IN×N ⊗Τi �
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⋮ ⋱ ⋮
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

MN×MN

, (7)

where I is the identity matrix, ⊗ represents the Kronecker
product, Τi is denoted as
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andW is a two-dimensional coupled dictionary matrix with
the size of MN × KL, which can be expressed as

W � W0 W1 · · · Wn · · · WN−1 
T
, (9)

where
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M×1

. (11)

a � [a− 1
T, a− 0.5

T, a0
T, a0.5

T, a1
T]T is the scattering co-

efficient vector with the size of 5KL × 1, where
ai(i � −1, −0, 5, 0, 0.5, 1) is the vector of the ISAR image
which is corresponding to the FDF values.

2.2. Multiradar ISAR Fusion Imaging Model. We take two
radars with different frequency bands and different obser-
vation angles as an example to achieve the multiradar ISAR
fusion imaging. 3e echo data of the independent radars
have been preprocessed by motion compensation and
mutual-coherence compensation. 3e scattering informa-
tion received by the two radars cannot be too different to
ensure achieving fusion imaging.

3e frequency of radar 1 is denoted as f0 . . . fM1−1 with
M1 frequency sampling points. 3e frequency of radar 2 is
denoted as fM−M2

. . . fM−1 with M2 frequency sampling
points. Radar 1 has N1 observation angles as θ0 . . . θN1−1.
Radar 2 has N2 observation angles as θN−N2

. . . θN−1. Δf and
Δθ are denoted as the frequency sampling interval and the
angle sampling interval, respectively. M and N are denoted
as the frequency sampling number and the angle sampling
number of the full-band and full-angle echo data, respec-
tively. 3e frequency band and the observation angle of the
full-band and full-angle echo data can be expressed as fm �

f0 + mΔf(m � 0, 1, . . . , M − 1) and θn � θ0 + nΔθ
(n � 0, 1, . . . , N − 1), respectively. 3e observation model of

Table 1: 3e typical types of scatterers and corresponding FDF
values.

Scatterer type FDF value
Flat surface reflection 1
Single curved surface reflection 0.5
Point scattering 0
Edge diffraction −0.5
Corner diffraction −1
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the two radars for ISAR fusion imaging is shown in Figure 1,
where the red grids and the blue grids represent the ob-
servation data of radar 1 and radar 2, respectively. 3e blank
grids are the echo data corresponding to the missing fre-
quency band and observation angle.

Denote the vector s as the observation echo data of radar
1 and radar 2. s can be regarded as intercepted from the full-
band and full-angle radar echo data s. 3e vectorized two-
dimensional multiradar ISAR fusion imaging model based
on sparse representation can be expressed as

s � Ds � DΨa � Fa, (12)

where F � DΨ is the basis matrix corresponding to the
observation echo data, and D is the measurement matrix
which is denoted as

D �
IN1×N1
⊗Ψ1 0M1N1× N−N1( )M

0M2N2× N−N2( )M IN2×N2
⊗Ψ2

⎡⎢⎣ ⎤⎥⎦

M1N1+M2N2( )×MN

,

(13)

Ψ1 � IM1×M1
0M1× M−M1( ) 

M1×M
,

Ψ2 � 0M2× M−M2( ) IM2×M2 
M2×M

,
(14)

where I and 0 are the identity matrix and the zero matrix,
respectively.

Since the echo data satisfies the spatial sparsity in ISAR
imaging of block structure targets, block sparse recon-
struction algorithms can be utilized to solve equation (12).
3e transmitting bandwidth and the observation angle are
equivalently improved via ISAR fusion imaging technology,
thereby simultaneously improving the two-dimensional
resolution of ISAR imaging.

3e schematic diagram of two-dimensional multiradar
fusion imaging based on vectorization processing is shown
in Figure 2. 3e red rectangles and blue rectangles represent
the basis matrix corresponding to radar 1 and radar 2,
respectively.

3. FLBIUB Algorithm

Large-scale data reconstruction is involved in solving
equation (12). It is necessary to find an effective and efficient
block sparse reconstruction algorithm to achieve multiradar
ISAR fusion imaging of block structure targets. Considering
the block sparsity in the echo data of block structure targets,
the sparse representation problem in equation (12) can be
transformed into an unconstrained block sparsity optimi-
zation problem. Based on the LBI algorithm [16], the
FLBIUB algorithm is proposed to solve the block sparse
signal reconstruction problem in equation (12). 3e
weighted back-adding residual and the condition number
optimization of the basis matrix are combined to further
accelerate the iteration convergence speed.

3.1. Solution Process with Back-Adding Residual. As for the
block structure targets, the target image vector a can be

regarded as a block sparse signal. Assuming that a can be
divided into B blocks, which can be expressed as

a � a1, . . . , ad1√√√√√√√√
d1

, ad1+1, . . . , ad1+d2√√√√√√√√√√√√
d2

, . . . , a5KL− dB+1, . . . , a5KL√√√√√√√√√√√√√√√√
dB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

,

(15)

where 5KL � 
B
i�1 di, a[i] is denoted as the i − th block with

the length of di. Considering the noise, the block sparse
signal reconstruction problem in equation (12) can be
transformed into the optimization problem as follows [11].

min ‖a‖2,0,

s.t. ‖�s
�
− Fa‖2 ≤ ζ,

(16)

where ‖a‖2,0 is denoted as the number of nonzero data blocks
in a, ζ represents the noise level, and ζ > 0.

3e optimization problem in equation (16) is an NP-
hard problem which is hard to be solved directly. When F

satisfies the block-restricted isometric property [11], the
solution of equation (16) can be approximated by solving the
following convex optimization problem:

min ‖a‖2,1,

s.t. ‖s − Fa‖2 ≤ ζ,
(17)

or equation (16) can be equivalent to an unconstrained
optimization problem as

min ‖a‖2,1 +
υ
2
‖s − Fa‖

2
2 , (18)

where ‖a‖2,1 � 
B
i�1 ‖a[i]‖2, and υ> 0.

An auxiliary variable z � a is introduced to solve the
unconstrained optimization problem in equation (18),
which can be equivalent to

...

Radar 1

Radar 2

...
...

. . . . . . . . .θ0 θ1 θN1–1

fM–1

θN–N2

fM–M2+1

fM–M2

fM1–1

θN–1

f0
f1

Figure 1: 3e observation model of the two radars for ISAR fusion
imaging.
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min ‖z‖2,1 +
υ
2
‖s − Fa‖

2
2 ,

s.t. z � a.

(19)

3e constrained optimization problem in equation (19)
can be further transformed into the following unconstrained
optimization problem as

min
a,z

‖z‖2,1 +
υ
2
‖s − Fa‖

2
2 +

λ
2
‖z − a‖

2
2 , (20)

where λ> 0.
Bregman iteration algorithm can be utilized to solve

equation (20). 3e iteration steps are as follows:

...
...

...

...

=

1
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N
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.
.

.
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Radar 2

.
.

.
.

.
.

. . . . . . . . .

1

2

1

=

Removing the 
missing echo data

...

...
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M

KL

... . . .

. . .
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... ...
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1

...
...

N

...

KL

...

. . .

...
...

...

...
...

s– = F~a~

s = ψ~a~

5KL × 1
a~

5KL × 1
a~

N

...
...

...

a~1

a~1

a~–1

a~–1

N2

N1

F~
(M1N1 + M2N2) × 5KL(M1N1 + M2N2) × 1

M2

M1

M2

M1

N – N2 + 1

N – N2 + 1

N – N2 + 1

s–

N M2

M2

M1N1
N1

N1

M1

ψ~ = [Ω~–1 Ω~–0.5 Ω~ 0 Ω~ 0.5 Ω~1]MN×5KL

MN × KL
Ω~–1

MN × KL
Ω~1

s

MN × 1

θN–1θN–N2θN1–1θ1θ0

fM–1

fM–M2+1

fM–M2

fM1–1
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Figure 2: Two-dimensional multiradar fusion imaging based on vectorization processing.
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a
g+1

, zg+1
  � argmin

a,z
‖z‖2,1 +

υ
2
‖s − Fa‖

2
2 +

λ
2
z − a − bg

����
����
2
2 ,

(21)

bg+1
� bg

+ a
g+1

− zg+1
 , (22)

s
g+1

� s
g

+ α s − Fa
g+1

 , (23)

where α(0≤ α< 1) is the weighted parameter that controls
the back-adding residual. By controlling the residual, the
convergence speed of the iteration can be accelerated
further.

Equation (21) can be transformed into the following two
suboptimization problems to solve a and z, respectively.

a
g+1

� argmin
a

υ
2

s
g

− Fa
����

����
2
2 +

λ
2

a − zg
+ bg

����
����
2
2 , (24)

zg+1
� argmin

z
‖z‖2,1 +

λ
2
z − a

g+1
− bg

����
����
2
2 . (25)

3e optimization problem in equation (24) can be solved
by taking the derivative of the objective function with respect
to and setting it to zero; we have

υFHF + λI a − υFHsg
− λ zg

− bg
(  � 0. (26)

3e iterative update formula of a can be derived from
equation (26) as

ag+1
� υFHF + λI 

−1
υFHsg

+λ zg
− bg

(  . (27)

3e optimization problem in equation (25) can be solved
by the block shrinkage operator [23], which is equivalent to

z
g+1

� argmin
z



B

i�1
‖z[i]‖2 +

λ
2
z[i] − ag+1

[i] − bg
[i]

����
����
2
2 

⎧⎨

⎩

⎫⎬

⎭.

(28)

B suboptimization problems are involved in equation (28).
3e closed optimal solution corresponding to each block z[i]
can be derived by the threshold shrinkage as

zg+1
[i] � shrink ag+1

[i] + bg
[i],

1
λ

  i � 1, . . . ,B, (29)

where shrink(x, c) � (x/‖x‖2)max ‖x‖2 − c, 0 .

3.2. Condition Number Optimization. 3e convergence
speed of Bregman iterative algorithms can be further im-
proved by optimizing the condition number of the basis
matrix [24]. 3e condition number of the basis matrix F is
defined as

cond(F) �

����������

λmax
FFH

 

λmin
FFH

 





, (30)

where λmax(
FFH

) and λmin(FFH
) are the maximum and

minimum eigenvalues of FFH, respectively. 3e smaller the
condition number, the faster the convergence speed. It can
be seen from equation (30) that cond(F)≥ 1. Since the basis
matrix F is a full rank matrix, the condition number can be
optimized by premultiplying (FFH

)−1/2 on both sides in
equation (12) as

FFH
 

−1/2
s � FFH

 
−1/2

Fa. (31)

Define s1 � (FF
H

)− 1/2s and F1 � (FFH
)− 1/2F; equation

(31) can be rewritten as

s1 � F1a. (32)

Since F1F1H � [(FFH
)−1/2F][(FFH

)−1/2F]H � I, the
condition number of F1 is

cond F1(  �

�����������

λmax
F1F1

H
 

λmin
F1F1

H
 




� 1. (33)

3e condition number in equation (33) is the minimum.
3e iterative convergence speed can be accelerated by the
condition number optimization. Similar to the derivation
process in Section 3.1, the iterative update formulas of the
FLBIUB algorithm can be derived as

ag+1
� υF+F + λI 

−1
υF+sg

+ λ zg
− Fbg

(  ,

zg+1
[i] � shrink ag+1

[i] + bg
[i],

1
λ

  i � 1, . . . , B,

bg+1
� bg

+ ag+1
− zg+1

 ,

sg+1
� sg

+ α s − Fag+1
 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

where F+
� FH

(FFH
)−1.

Since (υF+F + λI)−1 needs to be calculated in each it-
eration when updating a, the computational complexity is
heavy due to deriving the inversion of the large-scale matrix.
Considering that F is given, the matrix inversion
(υF+F + λI)−1 can be calculated only once outside the it-
erative process. To further reduce the computational com-
plexity of matrix inversion, the Woodbury formula can be
utilized to transform it into

υF+F + λI 
−1

�
1
λ
I −

υ
λ

F+ υFF+
+ λI 

−1F. (35)

It can be seen from equation (35) that a matrix inversion
problem with the size of 5KL × 5KL can be transformed into
a matrix inversion problem with the size of
(M1N1 + M2N2) × (M1N1 + M2N2) after using the
Woodbury formula. Since the matrix dimension is greatly
reduced, the computational complexity is also reduced
remarkably.
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3.3. ImplementationProcess. Specifical steps of the proposed
FLBIUB algorithm can be summarized in Algorithm 1.

A flowchart of the two-dimensional multiradar ISAR
fusion imaging of block structure targets based on the
FLBIUB algorithm is shown in Figure 3. Specifically, the
steps are as follows:

Step 1: perform preprocessing such as motion com-
pensation andmutual coherent compensation to obtain
coherent echo data of each radar in range frequency-
azimuth slow time domain
Step 2: discretize the echo data and establish the image
model based on sparse representation
Step 3: vectorize and splice the echo data of each radar
to obtain the observation data s and the corresponding
basis matrix F
Step 4: utilize the FLBIUB algorithm to reconstruct the
signal and obtain the vector of image estimation a
Step 5: convert the vector a into a two-dimensional
matrix A, which is also the target image obtained by the
multiradar fusion imaging

4. Simulation Results and Discussion

In this section, the reconstruction performance of the
FLBIUB algorithm is verified by the one-dimensional block
sparse signal. 3e two-dimensional multiradar fusion im-
aging performance based on the FLBIUB algorithm is fur-
ther verified by the real measurement data. 3e simulation
experiments are all implemented in MATLAB R2017b
software on a personal computer with an Intel® Core™ i5-
8265U 1.60GHz central processing unit (CPU) and 16GB
memory.

4.1. Experiments of One-Dimensional Block Sparse Signal
Reconstruction. Assuming that the one-dimensional gen-
erated original signal a is a block sparse signal with the size of
N × 1. K nonzero elements with random amplitudes are in
the signal. 3e nonzero elements can be divided into B

blocks with random lengths, and the position of each block is
randomly distributed in the signal. F is a random mea-
surementmatrix with the size ofM × N.3e coefficients in F
obey the standard normal distribution and the column
normalization. 3e parameters are set as N � 100, M � 60,
K � 24, and B � 4. 3e generated original signal and the
observation signal are shown in Figures 4(a) and 4(b),
respectively.

4.1.1. 9e Verification of the Effectiveness. Orthogonal
matching pursuit (OMP) algorithm [25], FLBI algorithm
[17], BOMP algorithm [11], and FLBIUB algorithm are
utilized to reconstruct the block sparse signal, respectively.
3e parameters are set as υ � 5‖F+s‖∞, λ � 0.7, and α � 0.9
in the FLBIUB algorithm. 3e termination criterion of the
FLBIUB algorithm is ‖Fa − s‖2/‖s‖2≤ 10−5 or the iteration
number reaches 500. 3e reconstruction time and the rel-
ative reconstruction error are utilized to evaluate the

reconstruction performance, where the relative recon-
struction error is defined as Err � ‖a − a‖2/‖a‖2. 3e re-
construction results of the four algorithms are shown in
Figure 5.

It can be seen from the results that the OMP algorithm
and FLBI algorithm cannot reconstruct the block sparse
signal accurately. 3e reason is that the correlation of the
block sparse signal is not considered in the OMP algorithm
and FLBI algorithm. 3e two algorithms are not suitable for
the reconstruction of block sparse signals.While the FLBIUB
algorithm and BOMP algorithm can both achieve the ac-
curate reconstruction of the block sparse signal. 3e relative
reconstruction error of the FLBIUB algorithm is smaller
than that of the BOMP algorithm. It indicates that the re-
construction accuracy of the FLBIUB algorithm is higher
than the BOMP algorithm. 3e reconstruction times of the
FLBIUB algorithm and BOMP algorithm are both small,
indicating that the two algorithms can both achieve signal
reconstruction quickly.

4.1.2. 9e Influence of the Parameters. 3is section mainly
analyzes the influence of the parameters υ and α on the
reconstruction performance of the FLBIUB algorithm.

To analyze the influence of υ on the reconstruction
performance, we set other parameters such as α � 0.5 and
λ � 0.7. Let x � ‖F+s‖∞; FLBIUB algorithm with different υ
is utilized to reconstruct the block sparse signal. 3e ter-
mination criterion is ‖Fa − s‖2/‖s‖2≤ 10−5 or the iteration
number reaches 200.3e relative reconstruction error versus
iterations number with different υ is shown in Figure 6. It
can be seen that the algorithm converges slowly and requires
more iterations when υ is smaller (for example, υ � 0.1x).
3e convergence speed improves when υ increases, and the
number of iterations required to reach the convergence is
reduced. However, the reconstruction error is also increased.
Hence, the reconstruction accuracy and the convergence
speed should be both considered to set the appropriate value
of υ, which cannot be set too small or too large. Generally, it
is a more appropriate set as υ � 5‖F+s‖∞.

To analyze the influence of λ on the reconstruction
performance, we set other parameters such as α � 0.5 and
υ � 5‖F+s‖∞. FLBIUB algorithm with different λ is utilized
to reconstruct the block sparse signal. 3e termination
criterion is ‖Fa − s‖2/‖s‖2≤ 10−5 or the iteration number
reaches 200. 3e relative reconstruction error versus itera-
tions number with different λ is shown in Figure 7. It can be
seen that the algorithm requires fewer iterations to reach
convergence and the reconstruction error is higher when λ is
smaller (for example, λ � 0.1). 3e convergence speed de-
creases and the number of iterations required to reach
convergence increases when λ increases. However, the re-
construction error is decreased and the reconstruction ac-
curacy is improved as λ increases. Hence, the reconstruction
accuracy and the convergence speed should be both con-
sidered to set the appropriate value of λ according to specific
requirements.

To analyze the influence of α on the reconstruction
performance, we set other parameters such as υ � 5‖F+s‖∞
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Echo data of radar 1
after preprocessing 

Echo data of radar 2
after preprocessing 

Vectorize and splice the
echo data 

The observation data s–
for fusion imaging

Reconstruct the estimation a~
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The fusion target image A

Discretize the echo data and
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Figure 3: Flowchart of the two-dimensional multiradar ISAR fusion imaging.

FLBIUB algorithm.
Input: s, F.
Initialize: a0 � Z0 � b0 � 0, υ> 0, λ> 0, g � 0, F+

� FH
(FFH

)−1.
Iteration process: Determine whether to terminate the iteration. If the iteration termination condition is satisfied, output the result a;
otherwise, continue to perform the following iteration process as
ag+1 � (υF+F + λI)− 1(υF+sg + λ(zg − bg))

zg+1[i] � shrink(ag+1[i] + bg[i], 1/λ) i � 1, . . . , B

bg+1 � bg + (ag+1 − zg+1)

sg+1 � sg + α(s − Fag+1)

g � g + 1
Output: a � ag.

ALGORITHM 1: Specifically steps of the FLBIUB algorithm.
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and λ � 0.7. FLBIUB algorithm with different α is utilized to
reconstruct the block sparse signal. 3e termination crite-
rion is ‖Fa − s‖2/‖s‖2≤ 10− 5 or the iteration number reaches

200. 3e relative reconstruction error versus iterations
number with different α is shown in Figure 8. It can be seen
that the algorithm requires more iterations to reach con-
vergence and the reconstruction error is high when α � 0.
3e reason is that the back-adding residual is not considered
in the algorithm when α � 0. 3e convergence speed im-
proves and the number of iterations required to reach
convergence decreases when α increases. It indicates that
considering the back-adding residual can further improve
the iterative convergence speed. However, the reconstruc-
tion error also increases. Hence, the reconstruction accuracy
and the convergence speed should be both considered to set
the appropriate value of α within [0, 1).

4.1.3. 9e Influence of the Sampling Rate and the Signal
Sparsity. 3is section mainly analyzes the influence of the
sampling rate and signal sparsity on the reconstruction
performance of the proposed algorithm.3e sampling rate is
defined as the ratio of the observation signal length to the
original signal length, which can be expressed as ρ � M/N.
3e signal sparsity K represents the number of nonzero
elements in the sparse signal.
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Figure 5: Block sparse signal reconstruction results of the respective algorithms. (a) FLBIUB algorithm. (b) BOMP algorithm. (c) FLBI
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International Journal of Antennas and Propagation 9



3e influence of the sampling rate on the reconstruction
performance is analyzed by varying the length of the ob-
servation signal. 3e signal sparsity is set as K � 24, and the
length of the original signal is set asN � 100.3e length of the
observation signalM ranges from 40 to 80 with a step size of 5.
BOMP algorithm and FLBIUB algorithm are utilized to re-
construct the block sparse signal, respectively.3e parameters
in the FLBIUB algorithm are set as υ � 5‖F+s‖∞, α � 0.6, and
λ � 0.5.3e termination criterion of the FLBIUB algorithm is
‖aa − s‖2/‖s‖2≤ 10−5 or the iteration number reaches 200. 100
independent Monte Carlo trials have been conducted to
reconstruct the block sparse signal and obtain the estimation a
under each fixed M. A trail is considered as a successful one
when ‖a − a‖

2
2/‖a‖22 ≤ 10−3. 3e reconstruction success rate is

defined as the percentage of the number of successful re-
construction trails to the total number of tails. 3e success
rate of the respective algorithms versus sampling rate is shown
in Figure 9(a). It can be seen from Figure 9(a) that the re-
construction success rate increases with the increase of the
sampling rate. It indicates that the more observations, the
better the reconstruction of the sparse signal. Moreover, the
FLBIUB algorithm has a higher reconstruction success rate

than the BOMP algorithm with the same sampling rate. It
indicates that the FLBIUB algorithm can reconstruct the
sparse signal better under a low sampling rate.

3e influence of the signal sparsity K on the recon-
struction performance is analyzed by varying the number of
sparsity. 3e length of the original signal is set as N � 100,
and the length of the observation signal is set as M � 60.3e
signal sparsity K ranges from 5 to 50 with the step size 5.
BOMP algorithm and FLBIUB algorithm are utilized to
reconstruct the block sparse signal, respectively. 3e pa-
rameters in the FLBIUB algorithm are set as υ � 5‖F+s‖∞,
α � 0.6, and λ � 0.5. 3e termination criterion of the
FLBIUB algorithm is ‖Fa − s‖2/‖s‖2≤ 10−5 or the iteration
number reaches 200. 100 independent Monte Carlo trials
have been conducted to reconstruct the block sparse data
under each fixed K. 3e success rate of the respective al-
gorithms versus sparsity is shown in Figure 9(b). It can be
seen from Figure 9(b) that the success rate decreases with the
increase of sparsity K. It indicates that the smaller the
sparsity, the better the reconstruction of the sparse signal.
Moreover, the FLBIUB algorithm has a higher success rate
than the BOMP algorithm with the same signal sparsity. It
indicates that the FLBIUB algorithm can reconstruct the
sparse signal better within a larger sparsity range and wider
application than the BOMP algorithm.

4.1.4. 9e Verification of the Antinoise Performance. Set the
parameters as N � 100, M � 60, and K � 24 to generate the
original sparse signal and the observation signal. To verify
the antinoise performance of the proposed algorithm, white
Gaussian noise is added to the observation signal. BOMP
algorithm and FLBIUB algorithm are utilized to reconstruct
the block sparse signal, respectively. 3e normalized mean
square error (NMSE) is utilized to evaluate the recon-
struction performance. NMSE is defined as
NMSE � ‖a − a‖

2
2/‖a‖22. 3e smaller the NMSE, the higher

the reconstruction accuracy. 3e parameters in the FLBIUB
algorithm are set as υ � 5‖F+s‖∞, α � 0.6, and λ � 0.5. 3e
termination criterion of the FLBIUB algorithm is
‖Fa − s‖2 ≤Mσ2 or the iteration number reaches 200, where
σ2 is the noise variance. 3e signal-to-noise ratio (SNR)
ranges from 0 dB to 30 dB with a step size of 5 dB. 100
independent Monte Carlo trials have been conducted to
reconstruct the block sparse data under each fixed SNR. 3e
NMSE is averaged over 100 tails.3e NMSE of the respective
algorithms versus SNR is shown in Figure 10.

It can be seen that the NMSE of the FLBIUB algorithm is
very small when SNR is higher than 15 dB. It indicates that
the block sparse signal can be reconstructed accurately by
the FLBIUB algorithm under a high SNR condition. 3e
NMSE of the two algorithms increases as SNR decreases.3e
reason is that high noise will affect the reconstruction
performance of the algorithms under a low SNR condition.
However, the NMSE of the FLBIUB algorithm is lower than
the BOMP algorithm under the same SNR condition. It
illustrates that the FLBIUB algorithm has better antinoise
performance than the BOMP algorithm in block sparse
signal reconstruction.
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4.2. Experiments of Two-Dimensional ISAR Fusion Imaging.
In practical scenes, aircraft targets with complex structures
can be approximated as block structure targets. To verify the
two-dimensional fusion imaging performance of the pro-
posed algorithm for block structure targets, the measured
data of Yak-42 aircraft is exploited to achieve the two-di-
mensional multiradar ISAR fusion imaging. 3e carrier
frequency is 5.52GHz, the bandwidth is 400MHz, the pulse
repetition frequency is 100Hz, the pulse width is 25.6us, and
the sampling frequency is 10MHz. 3e size of the full-band
and full-angle echo data is 200 × 200. 3e two-dimensional
echo data and the range-Doppler (RD) imaging result of the
full-band and full-angle echo data are shown in Figures 11(a)
and 11(b), respectively.

3e sizes of M1 × N1 and M2 × N2 are selected from the
upper left and lower right corners of the full-band and full-
angle echo data as the echo data of radar 1 and radar 2,
respectively. 3e parameters are set as M1 � M2 � 60 and
N1 � N2 � 60. White Gaussian noise is added to the echo

data, and the SNR is 20 dB.3e RD imaging results of radar 1
and radar 2 are shown in Figures 12(a) and 12(b), respec-
tively. Due to the limited bandwidth and observation angle,
the two-dimensional imaging resolution of monostatic radar
is poor. 3e outline of the aircraft in the imaging results of
the two radars is not clear. 3e ISAR fusion imaging result
obtained by the RD algorithm is shown in Figure 12(c).
Compared with the imaging result of monostatic radar, the
resolution is improved after the fusion imaging based on the
RD algorithm. Some detailed structural information can be
seen in Figure 12(c). However, due to the missing frequency
band and observation angle in the observation echo data,
strong sidelobes and energy leakage occur in the FFT
compression imaging process with RD algorithm, which
affects the imaging quality.

3e two-dimensional observation echo data of the two
radars is shown in Figure 13(a). FLBI algorithm, BOMP
algorithm, and FLBIUB algorithm are utilized to achieve
multiradar fusion imaging. 3e fusion imaging results of the
respective algorithms are shown in Figures 13(b)–13(d),
respectively. It can be seen from Figure 13(b) that the basic
outline of the aircraft can be obtained by the FLBI algorithm.
However, some scatterers are missing in the result, and the
block structure characteristics of the target are not obvious
in the fusion image. Since the block sparsity of the signal is
not considered in the FLBI algorithm, the block clustering
effect is not obvious in the reconstruction result. It can be
seen from Figure 13(c) that the block clustering effect is in
the fusion imaging results obtained by the BOMP algorithm.
However, some scatterers are missing, and some false
scatters are introduced in the fusion imaging result, which
affects the recognition of the overall shape of the aircraft. It
can be seen from Figure 13(d) that the outline of the aircraft
in the fusion imaging result obtained by the FLBIUB al-
gorithm is clean, the block structure characteristics of the
target are obvious, and the overall shape of the target is clear
to be distinguished.
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Figure 12: RD imaging results. (a) RD image of radar 1. (b) RD image of radar 2. (c) RD fusion image of two radars.

50

100

150

200

Ra
ng

e c
el

l

100 150 20050
Azimuth cell

(a)

100 150 20050
Azimuth cell

50

100

150

200

Ra
ng

e c
el

l

(b)

Figure 11: Two-dimensional echo data and RD imaging result of the full-band and full-angle echo data. (a) Two-dimensional echo data.
(b) RD imaging result.
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Figure 13: Continued.
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Figure 14: Two-dimensional observation echo data and fusion imaging results with M1 � M2 � 50 and N1 � N2 � 50. (a) Two-di-
mensional observation echo data. (b) Fusion imaging results of FLBI algorithm. (c) Fusion imaging results of BOMP algorithm. (d) Fusion
imaging results of FLBIUB algorithm.
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Figure 13: Two-dimensional observation echo data and fusion imaging results with M1 � M2 � 60 and N1 � N2 � 60. (a) Two-di-
mensional observation echo data. (b) Fusion imaging results of FLBI algorithm. (c) Fusion imaging results of BOMP algorithm. (d) Fusion
imaging results of FLBIUB algorithm.
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4.2.1. Different Observation Cases. 3e SNR of the obser-
vation echo data is kept at 20 dB.3e bandwidth and angle of
the observation data are changed to further verify the fusion
imaging performance under different observation cases.

Case 1. Let M1 � M2 � 50 and N1 � N2 � 50; the two-di-
mensional observation echo data is shown in Figure 14(a).
3e fusion imaging results obtained by the FLBI algorithm,
BOMP algorithm, and FLBIUB algorithm are shown in
Figures 14(b)–14(d), respectively. It can be seen from
Figure 14(b) that some false scatterers are introduced in the
fusion imaging result obtained by the FLBI algorithm, which
affects the recognition of the basic shape of the target. It can
be seen from Figure 14(c) that the basic outline of the aircraft
can be roughly distinguished from the fusion imaging result
obtained by the BOMP algorithm. However, some scatterers
of the nose and wing parts are lost, which affects the imaging
quality. It can be seen from Figure 14(d) that the overall
shape and detailed structure information can be clearly
distinguished in the fusion imaging result obtained by the
FLBIUB algorithm, which has better quality than the other
two algorithms.

Case 2. Let M1 � M2 � 40 and N1 � N2 � 40; the two-di-
mensional observation echo data is shown in Figure 15(a).
3e fusion imaging results obtained by the FLBI algorithm,
BOMP algorithm, and FLBIUB algorithm are shown in
Figures 15(b)–15(d), respectively. It can be seen from
Figure 15(b) that some structure information of the target is
missing, and the complete shape and structure of the target
cannot be reflected from the fusion imaging results obtained
by the FLBI algorithm due to the reduction of the effective
observation data. It can be seen from Figure 15(c) that some
scatterers are missing and some false scatterers are intro-
duced in the fusion imaging result obtained by the BOMP
algorithm. It is difficult to distinguish the basic outline of the
target. It can be seen from Figure 15(d) that a clear and
complete target image can still be obtained by the FLBIUB
algorithm with the reduction of the observation echo data.

Case 3. Let M1 � M2 � 30 and N1 � N2 � 30; the two-di-
mensional observation echo data is shown in Figure 16(a).
3e fusion imaging results obtained by the FLBI algorithm,
BOMP algorithm, and FLBIUB algorithm are shown in
Figures 16(b)–16(d), respectively. It can be seen from
Figure 16(b) that the imaging resolution is low and the basic
shape of the target cannot be judged from the fusion imaging
result obtained by the FLBI algorithm due to the further
reduction of the observation data. It can be seen from
Figure 16(c) that a large number of false scatterers are in-
troduced in the fusion imaging result obtained by the BOMP
algorithm due to the limited observation echo data. 3e
fusion image is seriously defocused, and it is impossible to
distinguish the basic outline of the target. It can be seen from
Figure 16(d) that a few scatterers in the nose part of the
target are missing in the fusion imaging result obtained by
the FLBIUB algorithm due to the limited observation echo
data. However, a clear focused fusion image can still be

obtained, and the basic outline of the target can be also
distinguished from the result.

To further compare the quality of fusion imaging results
obtained by the respective algorithms with different ob-
servation cases, image contrast (IC), target-to-background
ratio (TBR) [26], and running time are utilized as the
metrics. IC can evaluate the focus degree of an image. 3e
higher the value, the more focused the image. TBR can
effectively evaluate the noise suppression and focus degree of
the image. 3e higher the value, the better denoising per-
formance. Running time can reflect the calculation efficiency
of the algorithm. 3e metrics of the fusion imaging results
with different observation cases are shown in Table 2. It can
be seen that the IC and TBR of the imaging result obtained
by the FLBIUB algorithm are both higher than those of the
FLBI algorithm and BOMP algorithm in the same obser-
vation case. 3e running time of the FLBIUB algorithm is
slightly longer than the FLBI algorithm but much shorter
than the BOMP algorithm. It indicates that better fusion
imaging quality can be obtained by the FLBIUB algorithm
with fast imaging efficiency in two-dimensional ISAR fusion
imaging of block structure targets.

4.2.2. Different SNRs. To analyze the noise influence for the
proposed algorithm, the SNR of the observation echo data is
changed to verify the antinoise performance with different
SNRs. LetM1 � M2 � 50 andN1 � N2 � 50; FLBI algorithm,
BOMP algorithm, and FLBIUB algorithm are utilized to
achieve the multiradar fusion imaging when SNR is 20dB,
10 dB, and 0dB. 3e fusion imaging results of the respective
algorithms under different SNRs are shown in Figures 17–19,
respectively. It can be seen from the imaging results that some
noise is not suppressed, and some false scatterers are in the
fusion imaging results obtained by the FLBI algorithm and
BOMP algorithm as the SNR decreases. In particular, when
SNR is 0 dB, false scatterers increase apparently in the fusion
imaging results obtained by the FLBI algorithm and BOMP
algorithm, which seriously affects the imaging quality and
makes it difficult to distinguish the basic shape and structure of
the target. In contrast, the fusion imaging results obtained by
the FLBIUB algorithm are clearer as the SNR decreases. Even
when SNR is 0 dB, a clear and clean fusion imaging result can
still be obtained by the FLBIUB algorithm to distinguish the
geometric structure of the target. It indicates that the FLBIUB
algorithm has better noise suppression performance.

IC, TBR, and running time of the fusion imaging
results obtained by different algorithms under different
SNRs are shown in Table 3. It can be seen from Table 3 that
the IC and TBR of the fusion imaging results obtained by
the same algorithm under different SNRs decrease with
the decrease of SNR. Specifically, the variation of the
FLBIUB algorithm is smaller than that of the other two
algorithms. It shows that the antinoise performance of the
FLBIUB algorithm is more robust. In addition, the IC and
TBR of the fusion imaging results obtained by the FLBIUB
algorithm are higher than those of the other two algo-
rithms with the same SNR. It indicates that the image
quality of the fusion imaging results obtained by the
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Figure 16: Continued.
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Figure 15: Two-dimensional observation echo data and fusion imaging results with M1 � M2 � 40 and N1 � N2 � 40. (a) Two-di-
mensional observation echo data. (b) Fusion imaging results of FLBI algorithm. (c) Fusion imaging results of BOMP algorithm. (d) Fusion
imaging results of FLBIUB algorithm.
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Figure 17: Fusion imaging results obtained by different algorithms when SNR is 20dB. (a) FLBI algorithm. (b) BOMP algorithm. (c) FLBIUB
algorithm.
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Figure 16: Two-dimensional observation echo data and fusion imaging results with M1 � M2 � 30 and N1 � N2 � 30. (a) Two-di-
mensional observation echo data. (b) Fusion imaging results of FLBI algorithm. (c) Fusion imaging results of BOMP algorithm. (d) Fusion
imaging results of FLBIUB algorithm.

Table 2: 3e metrics of fusion imaging results with different observation cases.

Case Case 1 Case 2 Case 3

IC
FLBI 7.2041 6.4372 5.3421
BOMP 7.3429 6.4932 5.0953
FLBIUB 8.1294 7.8903 7.4945

TBR
FLBI 28.8931 24.8492 21.9034
BOMP 29.3941 25.2703 20.0452
FLBIUB 37.4632 35.3942 31.9564

Running time (s)
FLBI 108.3 72.4 52.8
BOMP 384.4 255.9 173.4
FLBIUB 146.8 106.6 76.4
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FLBIUB algorithm is better than that of the other algo-
rithms when achieving multiradar fusion imaging of block
structure targets. Furthermore, the running time of the
three algorithms is close with the same SNR and changes
little with the variation of SNR. It shows that the running
time of the algorithms changes little when SNR changes.

5. Conclusions

A two-dimensional multiradar ISAR fusion imaging
method based on the FLBIUB algorithm is proposed to

improve the two-dimensional resolution of ISAR imaging
of block structure targets. A vectorized sparse represen-
tation model of multiradar ISAR fusion imaging is
established based on the GTD model, which can char-
acterize the scattering characteristics of the echo signal
better than the ideal scatterer model. Considering the
block sparsity of the echo data, the FLBIUB algorithm is
proposed to solve the sparse representation problem on a
large scale and achieve two-dimensional ISAR fusion
imaging. 3e weighted back-adding residual and the
condition number optimization of the basis matrix are
combined to accelerate the iteration convergence speed
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Figure 19: Fusion imaging results obtained by different algorithms when SNR is 0 dB. (a) FLBI algorithm. (b) BOMP algorithm. (c) FLBIUB
algorithm.
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Figure 18: Fusion imaging results obtained by different algorithms when SNR is 10dB. (a) FLBI algorithm. (b) BOMP algorithm. (c) FLBIUB
algorithm.

Table 3: 3e metrics of fusion imaging results under different SNRs.

SNR/dB 20 10 0

IC
FLBI 7.2041 6.7042 6.1131
BOMP 7.3429 6.6731 6.0324
FLBIUB 8.1294 7.6334 7.1935

TBR
FLBI 28.8931 25.2423 21.0294
BOMP 29.3941 25.4561 20.2853
FLBIUB 37.4632 34.5819 31.6432

Running time (s)
FLBI 108.3 109.2 112.9
BOMP 384.4 386.3 385.3
FLBIUB 146.8 149.2 148.7
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and improve the efficiency of fusion imaging further. 3e
experimental results verify the effectiveness and superi-
ority of the proposed algorithm.
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