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The hyaluronan (HA) receptor for endocytosis (HARE) is a multifunctional recycling clearance receptor for 14 different ligands,
including HA and heparin (Hep), which bind to discrete nonoverlapping sites. Four different functional endocytic motifs (M) in
the cytoplasmic domain (CD) target coated pit mediated uptake: (YSYFRI2485 (M1), FQHF2495 (M2), NPLY2519 (M3), and DPF2534
(M4)). We previously found (Pandey et al. J. Biol. Chem. 283, 21453, 2008) that M1, M2, and M3 mediate endocytosis of HA.
Here we assessed the ability of HARE variants with a single-motif deletion or containing only a single motif to endocytose HA
or Hep. Single-motif deletion variants lacking M1, M3, or M4 (a different subset than involved in HA uptake) showed decreased
Hep endocytosis, although M3 was the most active; the remaining redundant motifs did not compensate for loss of other motifs.
Surprisingly, a HARE CD variant with only M3 internalized both HA and Hep, whereas variants with either M2 or M4 alone did
not endocytose either ligand. Internalization of HA and Hep by HARE CDmutants was dynamin-dependent and was inhibited by
hyperosmolarity, confirming clathrin-mediated endocytosis. The results indicate a complicated relationship among multiple CD
motifs that target coated pit uptake and a more fundamental role for motifM3.

1. Introduction

Stabilin-2 (Stab2) and HARE (half-length Stab2) function as
primary scavenger receptors for the systemic clearance from
lymph and blood of hyaluronan (HA) [1], heparin (Hep),
and 12 other functionally and structurally distinct ligands
[2–6]. HA turnover and catabolism by HARE have been
studied extensively for decades [1, 7, 8] and the responsible
receptor was molecularly identified >15 years ago after it
was purified and cloned [5, 6, 9, 10]. HARE endocytosis of
HA occurs over a broad range of sizes from ∼2.5 kDa to
>MDa [11]. Hep is cleared from the body by two different
mechanisms: larger Hep is rapidly cleared from blood in a
high-affinity saturable binding mechanism by HARE/Stab2
in liver sinusoidal endothelial cells [12, 13], whereas low mass
Hep is primarily cleared by kidney [14] in a nonsaturable renal
excretion mechanism [15].

HA and Hep have distinct binding sites within the HARE
ectodomain and neither ligand competes for the binding and

endocytosis of the other [2]. Several articles in this special
issue summarize the many functions of HA. As with HA,
the biological and clinical activities of Hep have been studied
for decades, and Hep is the most highly prescribed drug in
the USA (e.g., for preventing or treating thromboembolic
diseases and postsurgery clotting) [16]. HA is synthesized
by many cell types and is the longest (up to 5 × 104 sugars)
and only unsulfated glycosaminoglycan. In contrast, Hep
is synthesized by mast cells as a serglycin proteoglycan
with much shorter polysaccharide chains, <50 sugars [17,
18]. Hep is the most anionic glycosaminoglycan, due to
extensively sulfated disaccharide isomers and binds to many
different matrix, soluble, and cell surface proteins, including
growth factors [19]. Hep also functions as a coreceptor or
anticoagulant agent [20, 21].

Many receptors require bound ligand in order to interact
with adapter proteins and then be targeted to coated pits
[22]. In contrast, HARE and other constitutively recycling
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clearance receptors (e.g., asialoglycoprotein and LDL recep-
tors) are continuously targeted to coated pits, internalized,
and recycled back to the cell surface whether bound to ligand
or not. Endocytic receptors often contain a tyrosine-based
motif (e.g., YXX𝜑 or NPXY, where X is any amino acid and 𝜑
is a hydrophobic residue) or a dileucinemotif (D/EXXXLL/I)
involved in clathrin-mediated endocytosis [23–26]. YXX𝜑
and dileucine motifs interact with AP-2 adaptor complexes,
whereas NPXY motifs interact with AP-2 and other adaptor
proteins such as Dab2 and ARH [25]. The adaptor protein
GULP is required for Stab2-mediated phagocytosis of aged
(apoptotic) red blood cells, by recognition of a phospho-Tyr
in the HARE CD [27].

The 72-amino acid C-terminal tail of HARE (Y2480–L2551
in full-length Stab2) contains at least four endocytic motifs,
an unusually high number: YSYFRI2485 (M1), FQHF2495
(M2), NPLY2519 (M3), and DPF2534 (M4). Surprisingly, three
of these four motifs (M1, M2, and M3) mediate endocytosis
of HA, with M3 being the most active motif [26]. All three
motifs participate in total coated pit targeting of HARE-HA
complexes, and no single motif is required for uptake if the
other functional motifs are present. The HARE CD motif
network responsible for targeting the receptor to coated pits
reflect either a very high level of redundancy or the presence
of multiple distinct endocytic and signaling pathways. Our
objective here was to identify the endocytic motifs respon-
sible for HARE-Hep endocytosis. The results indicate that
M1, M3, and M4 are utilized for Hep endocytosis, which
is a different subset of three motifs compared to that used
for HA, and that in the absence of other motifs, only M3 is
able to mediate the endocytosis of both HA and Hep; HARE
containing M2 or M4 alone did not mediate HA or Hep
endocytosis.

2. Methods

2.1. Reagents, Buffers, Stable Cell Lines, and Normaliza-
tion. Flp-In 293 cells, FBS, DMEM, hygromycin B, Zeocin,
Lipofectamine 2000, glutamate, plasmid expression vectors,
and super-competent TOP10 Escherichia coli were from In-
Vitrogen (Carlsbad, CA). Stable cells expressing HARE and
HARE-mutants were generated as described previously [26,
28]. Hep was from Celsus (Cincinnati, OH) or Sigma-
Aldrich (St. Louis, MO). Low endotoxin HA, made by
bacterial fermentation, was from Genzyme Corp. (Cam-
bridge, MA). Dynasore was from Sigma-Aldrich. Sodium
125I-iodide (100mCi/mL; specific activity of >0.6 TBq/mg)
in NaOH and PD-10 columns were from GE/Amersham
Biosciences (Piscataway, NJ). Streptavidin (SA) was from
Pierce (Rockford, IL). Preparation and quantification of
biotinylated and iodinated ligands and the compositions of
other buffers were described previously [13, 29, 30]. Other
materials, reagents, and kits were obtained as described [26]
or were from Sigma-Aldrich. HARE cDNA constructs and
vectors for creation of stably transfected Flp-In 293 cell lines
expressing wildtype (WT) HARE or HARE mutants with
single or multiple endocytic motif deletions or site-specific
substitutions were described previously [26, 28]. All recombi-
nant HARE proteins contain C-terminal V5 and His

6
epitope

tags. Endocytosis Medium is DMEM with 0.05% BSA. In all
experiments, the results among different HARE-expressing
cell lines were normalized for HARE expression based on
Western blot quantification of equal lysate protein samples
[26]. Binding or endocytosis result values are expressed as the
mean ± SE fmol/106 cells/HARE.

2.2. 125I-SA∙b-Hep Binding and Endocytosis Assays. Cells ex-
pressing WT HARE, HARE-mutants, or EV were grown in
DMEMwith 8%FBS and 100 𝜇g/mL hygromycin B (complete
medium) in 12-well tissue culture plates for at least 2 days
prior to experiments. They were processed for binding or
endocytosis assays at 90–95% confluence. Radiolabeled 125I-
SA∙b-Hep or 125I-SA∙b-HA complexes were prepared [13]
using a 2 : 1 molar ratio of b-GAG : 125I-SA and were incu-
bated in 0.5mL of Endocytosis Medium for 1 h on a rotary
mixer at 22∘C just prior to the experiment. For nonspecific
binding controls, the same amounts of 125I-SA and free
biotinwere used. 125I-Complexes were diluted in Endocytosis
Medium to the final concentrations indicated. Cells were
washed with Hanks’ balanced salts solution and incubated
at 37∘C for 1 h with Endocytosis Medium (no serum) to
allow HARE-mediated internalization of any bound serum
glycosaminoglycans.Themediumwas aspirated and replaced
with Endocytosis Medium containing 50 nM preformed
complexes of 125I-SA with b-Hep or b-HA with or without
a 50-fold excess of unlabeled ligand as competitor. The cells
were then incubated either at 37∘C for 1, 2, or 4 h to assess
the rate of endocytosis or at 4∘C for 2 h with or without
0.055% digitonin to assess total cellular or surface binding,
respectively [31].

Nonspecific binding of 125I-SAwas also assessed in paral-
lel samples by incubating cells with 125I-SA∙biotin complexes.
The medium was removed by aspiration, and cells were
washed three times (2mL each) with cold Hanks’ balanced
salts solution to remove unbound ligand and solubilized
in 1mL 0.3N NaOH. Radioactivity was measured using a
Packard Cobra II gamma counter and lysate protein content
was determined by the method of Bradford [32] using bovine
serum albumin as standard. For each cell line, including
EV, the binding of 125I-SA∙biotin was subtracted from the
binding of 125I-SA∙b-ligand to correct for nonspecific binding
of SA.

2.3. Treatment with Dynasore or Sucrose. WT, HARE
mutants, or EV cells were preincubated in Endocytosis
Medium as noted above and then incubated at 37∘C for
30min with DMSO alone or 300 𝜇M dynasore, as indicated.
125I-Complexes in Endocytosis Medium were then added to
a final concentration of 50 nM and the cells were incubated
at 37∘C for 4 h. For hyperosmolar treatment, preincubated
cells were further incubated in Endocytosis Medium with
or without 0.45M sucrose at 37∘C for 30min. After 30min,
medium was removed, and Endocytosis Medium with or
without 0.45M sucrose containing 50 nM 125I-ligand was
added and the cells were incubated at 37∘C for 4 h. The
medium was aspirated and cells were washed three times
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Figure 1: HARE CD mutants with different combinations of the four endocytic motifs. The diagram illustrates the various combinations of
HARE CD motifs (M1, M2, M3, and M4) present (dark gray boxes) or deleted (light gray boxes with X) in the panel of stable HARE-CD
variant cell lines used here. The single transmembrane domain (TMD, black box), C-terminal region (CT), and presence of the site-specific
Y2519A mutation inM3 are indicated.

(2mL each) with cold Hanks’ balanced salts solution to
remove unbound 125I-ligand and processed as noted above.

2.4. Statistical Analysis. At least 2–4 independent experi-
ments were performed in triplicate (𝑛 = 6–12) and combined
data are presented as the mean ± SE. All regression lines had
correlation coefficients ≥0.97 and experimental and control
results were compared by unpaired Student’s 𝑡-tests using
SigmaPlot v10 (Systat Software, Inc., Point Richmond, CA).
Values of 𝑃 < 0.05 were considered statistically significant.

3. Results

HARE and Stab2 are scavenger receptors that bind and
clear 14 different ligands, including seven glycosaminogly-
cans, from lymph and blood. We designate the full-length
315 kDa protein as Stab2 and HARE as the 190 kDa isoform
generated by an unknown proteolytic mechanism [33]. Both
HARE/Stab2 are the main systemic clearance receptors for
HA and presumably Hep, in all mammals studied [34–37].
HARE is the predominant Stab2-related protein expressed in
sinusoidal endothelial cells of lymph node and liver, the main
systemic clearance tissues [10, 38]. Although both HA and
Hep are anionic glycosaminoglycans, they bind to discrete
and nonoverlapping sites in the HARE ectodomain [2]. HA
binding requires the Link domain, which it likely binds
to directly, whereas Hep binds to an uncharacterized site
and binding is unaffected by deletion of the Link domain
[2]. Since, HA and Hep bind to different sites, we wanted
to determine if HARE utilizes the same subset of three
redundantly functional endocyticmotifs forHep endocytosis
as found previously for HA endocytosis [26]. Most of the
CD mutants used here had been characterized previously for
their HARE-mediated HA binding and uptake ability. Two
additional single-motif containing CD mutants were created
for the present study (+M2 and +M4) to obtain a set of HARE
CD variants expressing only one of the four motifs (e.g.,
ΔM1M2M4 = +M3); the panel of CD mutants used is shown

schematically in Figure 1. We were not successful in creating
cell lines expressing only motifM1.

3.1. Cell Surface and Total Hep Binding Are Similar among
Multiple HARE CD Mutants. To understand further the
importance of human HARE having the ability to internalize
both HA and Hep, we wanted to determine which of the
four CD endocytic motifs were functional for each ligand.
We previously found that HARE expression levels, as well
as HA binding to surface and intracellular HARE, were
similar to WT in a panel of stable Flp-In 293 cell lines
expressing various CD-mutants [26]. Here we used a set
of variant cell lines, expressing HARE mutants that were
either single-motif deletions or containing a single-motif
(i.e., three motifs deleted). To determine whether the cellular
HARE distribution of Hep binding was affected in any of the
variants, we compared 125I-SA∙b-Hep binding at 4∘C to cell
surface or total cellular HARE (cell surface and intracellular
receptors) in the various HARE CD-mutant cells. Total and
surface binding were monitored in the presence or absence
of digitonin, respectively, under conditions that selectively
permeabilize endocytic, but not nuclear, mitochondrial or
lysosomal compartments [31, 39]. Since Hep nonspecifically
binds to many cell surface and intracellular proteins, the
binding of Hep by EV cells is higher relative toWT cells than
the nonspecific binding ofHA [13, 26]. Only small amounts of
125I-SA∙biotin (e.g., <1% of 125I-SA∙b-Hep values) bound to
cells and this did not increase with time [13]. In contrast, 125I-
SA∙b-Hep uptake was time-dependent and linear over 4 h, as
in Figure 3.

Cell surface (Figures 2(a), 2(c), and 2(e)) and total
(Figures 2(b), 2(d), and 2(f)) 125I-SA∙b-Hep binding to WT
or HARE CD-mutant cells were 2-3 times greater than to EV
cells.As expected, the distribution of 125I-SA∙b-Hep binding
sites between surface and internal was similar to that for
HA binding in WT and the HARE CD mutants [26]. HARE
is a constitutively active receptor involved in continuous
and repeated cycles of ligand internalization and the HARE
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Figure 2: Hep binding to cell surface and total HARE in CD variants. Cells expressing humanHARE (WT), the indicatedHARECDmutants,
or EVwere grown, washed, and preincubated in Endocytosis Medium at 37∘C for 1 h to allow clearance of serum-derived glycosaminoglycans
bound to HARE. Cells were chilled to 4∘C, washed, and incubated with 125I-SA∙b-Hep complexes at 4∘C and processed as described in
Methods section to determine cell surface (a, c, e) or total cellular (b, d, f) specific 125I-SA∙b-Hep binding. Values are means ± SE (𝑛 = 6–9)
and significant differences (assessed by Student’s 𝑡-test) between WT and a HARE CD variant are indicated: #𝑃 < 0.05.

recycling time of 7–9min [28, 40] is similar to that of
other constitutively active recycling receptors [13, 41, 42].The
majority of recycling receptors, including HARE [28, 33], are
localized in intracellular endocytic and recycling compart-
ments. Thus, Hep total binding (surface and internal) by WT
orCD-mutant cells wasmuch greater than surface binding, as
expected. Among the group of nine CD-mutants examined,
there were no significant differences in Hep surface binding
(Figure 2 top panels), confirming that deletion of one or
more endocytic motifs did not alter the dynamic ongoing
movement of HARE to and from the cell surface; the steady-
state surface receptor pool was similar among a set of HARE
variants. Total Hep binding was identical to WT among
the set of nine HARE mutants except for ΔM1 and ΔM3
(Figure 2(b)), which were significantly higher (𝑃 < 0.05).

3.2. Internalization of 125I-SA∙b-Hep by HARE Single-Motif
Deletion Mutants. To assess the contributions of the various
endocytic motifs to the kinetics of Hep endocytosis, cells
expressing WT, HARE-mutants, or EV were incubated at
37∘C with 125I-SA∙b-Hep for different times (Figure 3). Par-
tial impairment of 125I-SA∙b-Hep endocytosis relative toWT
cells occurred in ΔM1 or ΔM4 cells; HARE-specific uptake
(WT uptake minus EV uptake) was 65% and 68% of WT
rates, respectively, for ΔM1 or ΔM4 cells (Figure 3(a)). Cells
expressing the ΔM3mutant showed even greater impairment
of HARE-specific Hep endocytosis (35% of WT), indicating
that M3 is responsible for more targeting to coated pits than
M1 or M4. Surprisingly, ΔM2 cells did not show a defect in
HARE-specific Hep endocytosis, but rather a 35% increase in
HARE-specific uptake compared to WT as though M2 itself
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Figure 3: Hep endocytosis by cells expressing WT or HARE CD variants. Cells expressing WT (e), EV (I), or HARE CDmutants ((a) ΔM1
(Δ), ΔM2 (󳶃), ΔM3 (◻), and ΔM4 (◼) and (b) +M3 (Y2519A) (Δ), andWT (Y2519A) (󳶃)) were pretreated and incubated with 125I-SA∙b-Hep
complexes at 37∘C as in Figure 2 for the indicated times to assess uptake rates as described in Methods section. Values are means ± SE (𝑛 = 9)
and all linear regression lines had correlation coefficients ≥0.97.

had an inhibitory effect on Hep uptake. Thus as found for
HA endocytosis, three of the four motifs are involved in Hep
uptake and no particular motif is absolutely required for Hep
endocytosis, if the other three motifs are present. However,
the subset of active motifs for Hep uptake (M1,M2, andM3)
was not the same as that for HARE-HA complexes (M1, M3,
and M4). Although M1 and M3 are used similarly for both
HA uptake and Hep uptake, a different third motif is utilized
by HARE for Hep (M4) versus HA (M2) endocytosis.

3.3. The Role of Y2519 in HARE-Mediated Internalization of
125I-SA∙b-Hep. Since it is well known that phosphorylated
Tyr residues in NPXYmotifs are important in signaling path-
ways [43, 44], we wanted to identify further the importance
of Y2519 in NPLY2519 for targeting HARE-ligand complexes
to coated pits. We used two CD-mutant HARE cell lines, one
with only a Y-to-A substitution, WT (Y2519A), and the other
with the same substitution in the ΔM1M2M4 background,
+M3 (Y2519A). WT (Y2519A) cells showed no significant
defect in 125I-SA∙b-Hep endocytosis (95% of specific WT
uptake), whereas +M3 (Y2519A) cells were identical to EV
cells, showing complete impairment of Hep endocytosis
(Figure 3(b)). The results show that Tyr in the HARE NPLY
motif is critical for targeting to coated pits by +M3 cells, but
it is not required if HARE has functionalM2 andM4motifs;
thesemotifs compensate for a potential defect inM3.Thedata
are consistent with either the ability of NPLA2519 to retain
targeting function in the presence of, but not the absence of,
the two other Hep∙HARE targeting motifs or the ability of
M1 and M4 to compensate for NPLA2519 and perform the
targeting function.

3.4. Internalization ofHep andHAbyHARE Single-Motif Con-
taining Mutants. To address how multiple motifs function

together to facilitate Hep endocytosis, we examined 125I-
SA∙ligand uptake in cells expressing different triple-motif
deletions so that only single motifs remained (Figure 4).
Interestingly, 125I-SA∙b-Hep endocytosis by +M2 or +M4
cells was severely impaired by ≥95%. In contrast +M3 cells
retained 65% of the HARE-specific endocytic capability of
WT cells, an effect similar to the single-motif deletions ΔM1
or ΔM4. Based on studies with the single-motif deletion
variants, especially ΔM3 cells, we expected that all three
HARE CD variants containing only M2, M3, or M4 would
be able to target HARE-Hep complexes to coated pits and
mediate effective uptake. Since M2 does not participate
in Hep uptake (Figure 3(a)), we expected +M2 cells to be
defective in Hep endocytosis. However, the inability of +M4
cells to take up Hep was unexpected, since this motif is
functional inWTcells.Theunexpected functional differences
among the single-motif containing HARE variants are not
ligand specific, as the same pattern was observed when HA
endocytosis was examined (Figure 4(b)). Again, +M2 cells
(expected to be active; Figure 4(a)) or +M4 cells (expected
to be inactive) were identical to EV cells; they were both
unable to internalize HA, indicating the lack of coated pit
targeting and uptake. In contrast +M3 cells showed ∼60%
of the endocytic capability of WT cells, a very similar result
to that for Hep uptake (Figure 4(a)). Thus, although both
HA (data not shown) and Hep (Figures 2(c) and 2(d))
bind equally well to HARE variants with only a single M2,
M3 or M4 motif and these variants show similar surface-
internal distributions (Figure 2), only M3 by itself is able to
target HARE-ligand complexes to coated pits and mediate
efficient uptake. The quantitative and relative rates of 125I-
SA∙b-Hep endocytosis of the various HARE CD mutants are
summarized and compared to the values for HA uptake [26]
in Table 1.
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Figure 4: HARE mediates the endocytosis of HA or Hep in the presence of M3 alone, but not in the presence of M2 or M4 alone. Cells
expressing WT HARE (e), EV (I), or single-motif containing HARE CD variants +M2 (󳶃), +M3 (Δ in (a); 󳶋 in (b)), orM4 (◻) were grown
and treated as in Figure 2, incubated at 37∘C for the indicated times with 125I-labeled Hep (a) or HA (b), and processed to quantify uptake
as described in Methods section. Values are means ± SE (𝑛 = 9) and all linear regression lines had correlation coefficients ≥0.97. The three
symbols for EV, +M2, and +M4 cells overlap at essentially identical positions in the bottom lines of each panel.

3.5. Internalization of Hep or HA by HARE CD Mutants Is
Inhibited by Hyperosmolarity. The unexpected behavior of
HARE single-motif containing variants prompted us to verify
that the various HARE CD variants mediate endocytosis
using a clathrin coated pit pathway, as shown previously
for native and recombinant WT HARE [28, 40, 45]. Hyper-
osmolar conditions inhibit clathrin assembly into coated
pits and, thus, clathrin-dependent internalization of many
plasma membrane receptors [46–48]. To verify further that
ligand uptake by the various HARE CD-mutant cells is
clathrin-dependent, we assessed the effects of hyperosmolar-
ity on endocytosis using medium containing 0.45M sucrose.
Hyperosmolar sucrose treatment blocked internalization of
HA by ∼77% in WT cells compared to control (untreated)
cells and by 40–70% in the single-motif deletion HARE
CD mutants (Figure 5(a)). Similar results were obtained for
the effects of hyperosmolarity on Hep uptake (Figure 5(b)).
Overall, the results confirm that Hep and HA internalization
by the various HARE CDmutants occurs via clathrin-coated
pit pathways.

3.6. Inhibition of Dynamin Activity Blocks HA or Hep Endo-
cytosis by HARE. Many endocytic pathways in mammalian
cells, including those involving clathrin-coated pits, phago-
cytosis, and caveolae, require the molecular motor protein
dynamin for vesicle formation [49]. Dynasore is a small
cell-permeable chemical that specifically inhibits the GTPase
activity of dynamin and interferes with dynamin-dependent
endocytic pathways [50]. Although not absolutely specific for
clathrin-mediated uptake, dynasore should inhibit HARE-
mediated uptake that occurs via coated pits. Dynasore
treatment significantly inhibited HA uptake by HARE CD
variants with alterations in the motif subset involved in HA
uptake, compared to DMSO-alone controls (Figure 6(a)).

Similarly, dynasore inhibited Hep endocytosis by ∼70–85%
in several HARE CD mutants of the motif subset involved
in Hep uptake (Figure 6(b)). As expected, the above dyna-
sore and hyperosmolar sensitivity results indicate that the
various HARE CD mutants mediate HARE-Hep and HARE-
HA endocytosis by dynamin-dependent clathrin-coated pit
pathways.

4. Discussion

Full-length Stab2 and 190 kDa HARE (the C-terminal half of
Stab2) are the primary scavenger receptors for systemic clear-
ance of multiple structurally distinct ligands (most of which
are derived from tissue biomatrix degradation or cell debris)
including HA, Hep, chondroitin sulfates (types A, C, D,
and E), dermatan sulfate, advanced glycation end products,
acetylated or oxidized LDL, collagenN-terminal propeptides,
and 𝛼M𝛽2 and 𝛼5𝛽5 integrins [2, 4, 13, 28, 45, 51–54]. In
addition, apoptotic cells and debris are rapidly cleared from
blood and lymph by macrophages and sinusoidal endothelial
cells via HARE-mediated binding to phosphatidylserine and
then phagocytosis [3, 55]. Both functional receptor isoforms
are expressed in sinusoidal endothelial cells of liver, lymph
node, spleen, and bonemarrowwith the 190 kDaHAREbeing
the predominant species [10]. Both are also expressed in some
specialized tissues, such as corneal and lens epithelium, heart
valve mesenchymal cells, epithelial cells in renal papillae, and
oviduct [5]. HARE-mediated endocytosis of HA [56] or Hep
[57] activates intracellular signaling leading to activation of
ERK1/2 and NF-𝜅B stimulation of gene expression. Uptake of
the HARE ligands dermatan sulfate and acetylated LDL [57]
and phosphatidylserine [55] also activated NF-𝜅B mediated
gene expression, whereas chondroitin sulfates types A, C, D,
and E did not. Although all 9 of these ligands are effectively



International Journal of Cell Biology 7

Table 1: Endocytosis of Hep or HA by WT or HARE CD mutants.

HARE
variant

Hep endocytosis
(fmol/106 cells/HARE/h)

Specific Hep
endocytosis (%)

Specific HA
endocytosis (%)

HA endocytosis
(fmol/106 cells/HARE/h)

EV 110 ± 10 0 0 29.1 ± 2.8
HARE (WT) 480 ± 20 100 100 1204 ± 89
ΔM1 350 ± 30

∗ 65 51 —
ΔM2 610 ± 40∗ 135 61 —
ΔM3 240 ± 20

∗∗ 35 44 —
ΔM4 360 ± 10∗ 68 119 —
+M2 111 ± 30 0 0 29.7 ± 1.2

∗∗

+M3 350 ± 10
∗ 65 58 —

+M4 129 ± 10 5 0 28.2 ± 12.2
∗∗

+M3 (Y2519A) 100 ± 10
∗∗ 0 5 —

WT (Y2519A) 460 ± 30 95 94 —
EV, WT HARE, or the indicated HARE CD mutant cells were assessed for their ability to endocytose 125I-labeled Hep or HA specifically and results were
normalized to total protein (cell number) and HARE expression level relative to WT as described in Methods section. Values are the mean ± SE (𝑛 = 6–12)
rate of endocytosis or the rate of specific endocytosis (uptake by WT cells minus uptake by EV cells) relative to WT as 100%; significant differences compared
to WT are indicated: ∗𝑃 < 0.005; ∗∗𝑃 < 0.0005. The relative specific HA endocytosis values for the CD variants examined previously [26] are included (third
column), along with the HA values for +M2 and +M4 cells determined here (far right column), for comparison to the Hep endocytosis values.The single-motif
deletion mutant cells (ΔM2 and ΔM4) that show differential involvement in HA versus Hep endocytosis are highlighted (boldface font).

endocytosed, ERK1/2 and NF-𝜅B signaling pathways are
activated by only about half of them.

We proposed that Stab2 and HARE have two important
physiological functions: (i) to clear and degrade multiple
ligands reflecting the status of tissue biomatrices, as first
reported for HA, and (ii) to serve as a Tissue Stress Sensor
System [58] that responds to the amounts and ratios of
multiple biomatrix ligands via a signal transduction network
that leads to the secretion of TGF-𝛽 [59] and other, yet
to be identified, factors such as pro- or anti-inflammatory
cytokines. The physiological importance of HARE/Stab2
for HA homeostasis was verified in Stab2 knockout mice,
which have impaired systemic clearance of HA resulting in
abnormally high circulating HA levels [60]. Cytokine profiles
have not yet been determined in these animals. HARE may
also act as a homing receptor for human prostate tumor
cells, allowingmetastasis to lymph nodes [61] and likely other
HARE-expressing tissues, such as liver and bone marrow.
Metastasis was >95% blocked by treating mice with a specific
anti-HARE HA-blocking antibody.

It is well established that HARE-HA uptake is clathrin
coated pit-mediated [40, 45], and this was confirmed for
Hep uptake in various HARE CD mutants based on the
inhibition of ligand uptake in cells treated with either the
dynamin inhibitor dynasore or sucrose, under hyperosmolar
conditions (Figures 5 and 6). Many endocytic receptors
utilize a single CD motif for endocytosis, such as YXX𝜑
(e.g., transferrin and asialoglycoprotein receptors [62, 63]) or
NPXY (e.g., LDL, insulin, and EGF receptors [64, 65]). To
our knowledge few other, if any, receptors contain multiple
different endocytic motifs that are cooperatively utilized
for endocytosis. For example, LDL receptor-related protein
contains five possible endocytic motifs (1, YXX𝜑; 2, NPXY;
and 2, LL), but only YXX𝜑 is utilized as the dominant
endocytic signal [66]. HARE is unusual and possibly unique

in having four different functional endocytic motifs and in
utilizing subsets of threemotifs for the uptake ofHAandHep.

An unexpected finding in this study was that HARE
utilizes a different subset of three motifs for the endo-
cytosis of Hep compared to HA (Figure 7). Three of the
four endocytic motifs in the HARE CD (M1 (YSYFRI2485),
M3 (NPLY2519), and M4 (DPF2534)) are utilized for Hep
internalization. In contrast, a different subset of three motifs
(M1, M2 (FQHF2595), and M3) is utilized for HA endocy-
tosis [26]. This result and the previous finding that Hep
and HA bind to independent nonoverlapping sites in the
HARE ectodomain [2] indicate that the binding of HA
or Hep may create distinct conformational states within
the intracellular CD that promoted differential recognition
of endocytic motifs M2 and M4 by the relevant adaptor
proteins. Different conformational ormultimeric states of the
intracellular CD could favor efficient binding of particular
adaptor proteins to specific motifs. The CD conformation
of HARE-HA complexes may allow M2 recognition by an
appropriate adaptor protein, but notM4 recognition, whereas
the CD conformation of HARE-Hep complexes may allow
M4 recognition by an appropriate adaptor protein, but not
M2 recognition. Consistent with the idea that binding in
the ectodomain may influence intracellular signaling, Hep
does not bind within the HA-binding HARE Link domain,
whereas both HA and Hep bind to the Link domain of TSG6
[67].

The consequences of this differential mechanism of Hep
versus HA endocytosis are unknown but might include dif-
ferent downstream signaling events or trafficking outcomes
for a portion of the internalized pool of Hep or HA. The
impairment of HA or Hep endocytosis due to a single-motif
deletion was not compensated by the other two functional
motifs, indicating that each motif mediates targeting and
endocytosis by a distinct independent and saturable pathway,
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Figure 5: Endocytosis ofHA andHep byHARECDvariants is blocked by hyperosmolar conditions. Cells expressing EV,WT, or the indicated
single-motif deletionHARECDmutants were grown and pretreated as in Figure 2 and then preincubated at 37∘C for 30minwith Endocytosis
Mediumwith (white) or without (black) 0.45M sucrose.The cells were then incubated with 125I-labelled HA (a) or Hep (b) at 37∘C for 4 h and
processed as described in Methods section. Values are means ± SE (𝑛 = 6) and significant differences (assessed by Student’s 𝑡-test) between
control and sucrose-treated samples are indicated: #𝑃 < 0.05; ∗𝑃 < 0.005; ∗∗𝑃 < 0.0005.
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Figure 6: Endocytosis of HA and Hep by HARE CD variants is blocked by a dynamin inhibitor. WT cells were washed and preincubated in
Endocytosis Medium as in Figure 2 and pretreated in mediumwith DMSO alone (black) or with 300 𝜇Mdynasore (white) at 37∘C for 30min.
The medium was then replaced with fresh media containing DMSO alone or dynasore and 125I-labelled HA (a) or Hep (b). The cells were
incubated at 37∘C for 4 h and specific cell-associated ligand was determined as noted in Methods section. Values are the means ± SE (𝑛 = 3)
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International Journal of Cell Biology 9

YSYFRINRRTIGFQHFESEEDINVAALGKQQPENSNPLYESTTSAPPESYDPFTDSEERQLEGNDPLRTL

Heparin endocytosis motifs

Hyaluronan endocytosis motifs

TMD
M1

M1

M2

M3

M3

M4

Figure 7: Different sets of HARE CD endocytic motifs are functional during HA versus Hep endocytosis. The four HARE endocytic motifs
(boldface) examined are denoted byM1 (YSYFRI2485),M2 (FQHF2495),M3 (NPLY2519), andM4 (DPF2534). The two different subsets of three
of these motifs active in the coated pit mediated endocytosis of HA (M1, M2, andM3) or Hep (M1, M3, andM4) are highlighted by brackets.
M3 is highlighted in red to indicate its special significance as the only motif of the three we were able to test (M2, M3, andM4) that enabled
HARE to target coated pit mediated endocytosis of both HA and Hep.

perhaps through a subset of coated pits. If true, this has
significant implications for possible independent concurrent
signaling pathways mediated by different HARE-ligand com-
plexes. One difference between the signaling stimulated by
HA uptake and the signaling stimulated byHep uptake is that
HA signaling is very size-dependent. Only HA sizes between
40 kDa and 400 kDa are able to activate HARE-mediated
ERK1/2 and NF-𝜅B signaling pathways; smaller or larger HA
is endocytosed but does not activate signaling [11]. HARE-
Hep activation of both signaling pathways is independent of
Hep size [57]. Perhaps the use of different motif subsets for
HA andHep uptake is related to themechanism bywhichHA
size dependence is achieved during internalization of HARE-
HA complexes.

The results indicate that each subset of three motifs
participates in the total uptake of HA or Hep, but that
the nature of their cooperation is unequal and complicated.
Although the loss of only M3 (in ΔM3 cells) impaired Hep
or HA endocytosis by ∼40%, indicating that M3 shares one-
third of the Hep uptake burden, the loss of the other two
Hep uptake motifsM1 andM4 (in +M3 cells) only decreased
endocytosis by the same amount, 35%. This was a surprising
functional difference among the three motifs, since they
appear to function together when all are present, but only
one can function if alone. Hep and HA endocytosis were
completely eliminated in +M3 (Y2519A) cells, showing that
Tyr2519 is important for the endocytic process mediated by
M3 alone. InWT (Y2519A) cells therewas essentially no effect
on uptake of either ligand. However, ongoing studies show
thatWT (Y2519A) cells are completely unable to activate NF-
𝜅B during uptake of HA, Hep, dermatan sulfate, or acetylated
LDL [57].Thus, Tyr2519 is critical for signaling to downstream
effectors, when the receptor is endocytosing loaded cargo, but
it is not needed for just cargo endocytosis alone.

Further studies are required to define the adaptor proteins
(e.g., Gulp or AP-2) that interact with the four endocytic
motifs in the HARE CD and to understand the biological
relevance of the complex coated pit targeting network and
how it is coupled to signal transduction for a subset of
internalized ligands.
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[60] K. Schledzewski, C. Géraud, B. Arnold et al., “Deficiency of liver
sinusoidal scavenger receptors stabilin-1 and -2 in mice causes
glomerulofibrotic nephropathy via impaired hepatic clearance
of noxious blood factors,” Journal of Clinical Investigation, vol.
121, no. 2, pp. 703–714, 2011.

[61] M. A. Simpson, J. A. Weigel, and P. H. Weigel, “Systemic
blockade of the hyaluronan receptor for endocytosis prevents
lymph nodemetastasis of prostate cancer,” International Journal
of Cancer, vol. 131, no. 5, pp. E836–E840, 2012.

[62] J. F. Collawn,M. Stangel, L. A. Kuhn et al., “Transferrin receptor
internalization sequence YXRF implicates a tight turn as the
structural recognition motif for endocytosis,” Cell, vol. 63, no.
5, pp. 1061–1072, 1990.

[63] M. Spiess, “The asialoglycoprotein receptor: a model for endo-
cytic transport receptors,” Biochemistry, vol. 29, no. 43, pp.
10009–10018, 1990.

[64] E. J. Filardo, P. C. Brooks, S. L. Deming, C. Damsky, and D. A.
Cheresh, “Requirement of the NPXYmotif in the integrin beta3
subunit cytoplasmic tail for melanoma cell migration in vitro
and in vivo,” Journal of Cell Biology, vol. 130, no. 2, pp. 441–450,
1995.

[65] W. J. Chen, J. L. Goldstein, and M. S. Brown, “NPXY, a
sequence often found in cytoplasmic tails, is required for coated
pit-mediated internalization of the low density lipoprotein
receptor,”The Journal of Biological Chemistry, vol. 265, no. 6, pp.
3116–3123, 1990.



12 International Journal of Cell Biology

[66] Y. Li, M. P. Marzolo, P. Van Kerkhof, G. J. Strous, and G. Bu,
“The YXXL motif, but not the two NPXY motifs, serves as
the dominant endocytosis signal for low density lipoprotein
receptor-related protein,” Journal of Biological Chemistry, vol.
275, no. 22, pp. 17187–17194, 2000.

[67] D. J. Mahoney, B. Mulloy, M. J. Forster et al., “Characterization
of the interaction between tumor necrosis factor-stimulated
gene-6 and heparin: implications for the inhibition of plasmin
in extracellular matrix microenvironments,” Journal of Biologi-
cal Chemistry, vol. 280, no. 29, pp. 27044–27055, 2005.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Anatomy 
Research International

Peptides
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Molecular Biology 
International 

Genomics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Bioinformatics
Advances in

Marine Biology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Signal Transduction
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Evolutionary Biology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Biochemistry 
Research International

Archaea
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Genetics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporation
http://www.hindawi.com

Nucleic Acids
Journal of

Volume 2014

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Enzyme 
Research

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Microbiology


