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The earliest models used in the study of lattice structures are mean field theories, which do not contain structural dependence.
The Lattice Compatibility Theory (LCT) proposes here a novel framework where the measure of the disorder is based on Urbach
tailing features and lattice matching features between the host matrix and doping agent intrinsic structures. This study has been
implemented on a particular compound (BTO:Co) and refers to the Simha-Somcynsky (SS) theory, a mean field theory where the
measure of the disorder is stated as holes.

1. Introduction

The knowledge of doping agents behaviors within host lattice
matrix is of considerable importance for the optimal design
for applications such as semiconductor windows functional
glasses, transparent electrodes in flat panel displays, buffer
layers, and solar cells [1–9]. Although such behaviors have
been studied for many host-doping agent lattice systems,
theoretical fundaments and updated principles are still
important for predicting or correlating the stability behavior
of many systems within a wide range of lattice shapes.

The first theories based on mean field theory and inde-
pendent from the design of lattice structures failed in the sta-
tistical thermodynamics of branched macromolecules. Stud-
ies on branched structures served as attempts to mathema-
tically correct the mean field theories. One of the most
important of these studies is the Lattice-Cluster Theory
(LCT), developed by Freed and Bawendi [1].

For complex lattice systems, other theories have been
developed.Dee andWalsh [2, 3] proposed the lattice theory as
a tool for depicting the thermodynamic properties of hetero-
geneous structures.This theory was an enhancement of those

of Flory [4, 5] and Huggins [6] concerning chain structures.
Lennard-Jones andDevonshire [7, 8], and Prigogine et al. [9–
11] developed the cell model, according to which molecules
can move in neighbors-induced potential holes. Later, Simha
et al. [12, 13] noted that free volume theories, especially
hole theories, could delineate the thermodynamic properties
of solid structures, and they introduced the notion of free
volume. The so-called Simha-Somcynsky (SS) model [12]
defined accurately the holes in the lattice-like structure and
determined the statistical behavior by finding out the combi-
nation of the holes formed within lattice intermolecular sites.

In the hole theory, a major change in volume is explained
by the number of holes, and the change in cell size plays a
minor role while in the cell theory [14–16], the changes in
volume with changes in temperature and pressure can be
explained only by the changes in cell size. Oppositely, the
lattice theory stipulates that lattice size is fixed, and volume
change is explained solely by the number of vacant sites
[15, 16].

Zhong et al. [17] indicated that the Simha-Somcynsky
(SS) model could not generate sufficient free volume and
still lacks fluidity. They modified the SS model by using
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Figure 1: Simha-Somcynsky configuration (BTO undoped lattice).

the open-cell concept, and they induced a new empirical
spatial parameter.

In this paper, it is outlined that SS theorywas independent
from themacromolecular architecture, and it exhibited differ-
ences in behavior concerning somedoped lattices.Hence new
elements for explanation of these differences are presented
and discussed in the framework of the Lattice Compatibility
Theory (LCT).The paper is organized in the followingway. In
Section 2, we present some relevant theoretical fundaments
to both Simha-Somcynsky Lattice-Hole and Lattice Compat-
ibility Theories along with some patterns of the studied BTO
lattice. In Section 3, we present comparative and conjoint
analyses. Section 4 is the conclusion.

2. Theoretical Fundaments

2.1. Elements from the Generalized Simha-Somcynsky Lat-
tice-Hole Theory. According to the generalized Simha-Som-
cynsky theory [12, 13], any lattice can be considered as a
succession of elementary molecules and holes (Figure 1).
Each cell in the occupied fraction is either empty or contains
themolecule van-der-Waals volume aswell as an inherent free
volume.

In this theory’s framework, the most important aggregate
which traduces entities repartition within the lattice is the
volume fraction𝑦

𝑖
.This parameter is the ratio of the occupied

sites by a molecule 𝑖 on all of lattice sites:

𝑦
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where 𝑁 is the number of molecules, 𝑁
ℎ
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in a molecule 𝑖.

The total occupied volume fraction is coupled with
temperature through the minimization condition
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where 𝑅 is universal gas constant (J/mol K), 𝑇 is absolute
temperature, and 𝑧

𝑖
is the number of nearest neighbors of the

molecule 𝑖.
The configurational partition function 𝑍

𝑖
(𝑁, 𝑦
𝑖
, 𝑇) only

depends on the positional part of the degrees of freedom
and the potential energy of the molecule. All molecules with
the same mass will have identical contributions from their
kinetic degrees of freedom (themomenta), but theymay have
distinct modes of interacting which will result in different
contributions from the configurational part. Ordinarily, the
kinetic and potential energy contributions to the canonical
partition function are separable. The kinetic contribution
can be evaluated analytically, giving, for small molecules, the
thermal de Broglie wavelength. For complex molecules, and
by developing good expansion of multidimensional integral
over the 3D space and statistical mechanics-related pertur-
bation techniques, the configurational partition function is
represented as

𝑍
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𝑖
, 𝑇) = 𝑔 (𝑁, 𝑦

𝑖
) [V
𝑓
(𝑦
𝑖
)]
𝑐𝑁

𝑒
−[𝐸0/𝑘𝑇], (4)

where 𝑔(𝑁, 𝑦
𝑖
) is the combinatorial factor, V

𝑓
is the free

volume, 𝐸
0
is the internal energy when all of the segments are

located at the center of the cell, 𝑘 is Boltzmann constant, and
𝑐 are the external degrees of freedom permolecule, as defined
by Prigogine et al. [9–11] and Hirschfelder et al. [18].

The combinatorial factor 𝑔(𝑁, 𝑦
𝑖
), arising from the mix-

ing of molecules and holes, represents the occupation pos-
sibilities of the molecules into the lattice sites. It is obtained
through the number of molecules 𝑁 and volume fraction
along with the number of nearest neighbors of the molecule
as follows:

𝑔 (𝑁, 𝑦
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The free volume V
𝑓
is, as defined by Park and Kim [19], the

difference between the volume per molecule and the hard-
core volume of the molecule:

V
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where 𝜔 is the cell volume, 𝑉∗ is the molecular characteristic
volume, and 𝜆 is the lattice geometric factor (i.e., 𝜆−2 = 2, for
face-centered cubic lattice).
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2.2. Elements from the Lattice Compatibility Theory Analysis.
The Lattice Compatibility Theory, as mentioned in some
recent studies [20–23], is based on the interaction of doping-
element lattice behavior versus host edifice. Preludes to this
theory have been established by Boubaker [21] in the context
of analysing Urbach tailing controversial behaviour in some
nanocompounds as well as I-III-O

2
ternary oxide ceram-

ics instability at low temperatures beside ternary tellurides
and sulphides. They were also confirmed by Petkova and
Boubaker [20] on the basis of investigation on some copper-
doped bismuth sillenites (BSO) and germanates (BGO) com-
pounds.

An original formulation of the Lattice Compatibility
Theory [20–23] has been established as follows.

The stability of doping agents inside BTO host
structures is favorized [sic] by geometrical com-
patibility, expressed in terms of matching patterns
between doping agent intrinsic lattice and those of
the host.

In the actual discussed case (cobalt-doped BTO lattice),
the nature of the highest occupied band and the location
of holes in BTO lattice structures have been demonstrated
to be determinant. In this context, fundamental geometrical
observations concerning the structure of BTO and the doping
lattice were interpreted in terms of conventional orbitals
patterns-linked geometry.

The Lattice CompatibilityTheory tried to give a plausible
understanding of the disparity concerning doping element
incorporating dynamics starting from intrinsic doping ele-
ment lattice properties in comparison to those of the host.
In precedent study [20–23] materials, changes in Urbach
energy have been associated with a cobalt-doping induced
disorder in BTO matrices. In order to understand Urbach
tailing alteration following doping agent insertion in host
structures, Urbach energy 𝐸

𝑢
has been determined for doped

and undoped samples through the equations
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where 𝛼(ℎ]) represents, for each sample, the experimentally
deduced optical absorption profile.

Urbach energy 𝐸
𝑢
is a measure of the inhomogenous

disorder and atomic scale dispersion inside structures as it
indicates the width of the band tails of the localized states in
presence of defects. Its analytical formulation deduced takes
into account three components: structural disorder, carrier-
phonon interaction, and carrier-impurity, as follows:
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Figure 2: Plots of doped BTO optical coefficient versus energy (as
guides to Urbach tailing quantification).
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Figure 3: Co3+ and Co2+ ions outer shell configuration inside
oxygen-dominant structures.

where Ω
1
, Ω
2
, and Ω

3
are constants, 𝑘

𝐵
is Boltzmann con-

stant, 𝑈 is lattice strain related with the structural disorder,
𝜃
𝐷
is Debye temperature, 𝐿

𝐷
is Debye length, 𝑚∗ is carrier

effective mass, 𝑍 is impurity charge, 𝑞 is electron charge, 𝜀 is
static dielectric permittivity, and ℎ is Planck’s constant.

The width of the localized states (band tail energy or
Urbach energy 𝐸

𝑢
) has been estimated from the slopes of

the plots of ln𝛼(]) versus energy ℎ] (Figure 2). In this
context, fundamental geometrical observations concerning
the structure of BTO and the doping lattice are interpreted
in terms of comparison to cobalt intrinsic lattice parameter
(Figure 2) as well as the fact that in oxygen-rich edifices,
interstitial Co2+ tetrahedral sites split the five degenerated
atomic d orbitals into two groups, leading to 3 unpaired d
electrons on Co2+, while all the d electrons of polyhedral
Co3+ are paired (with a null global magnetic moment), as
illustrated by Figure 3.

Using a complete set of measurements, main lattice
constants of cobalt intrinsic lattice have been compared to
those of BTO and revealed an obvious compatibility with the
cubic main metric and angular parameters of Co2+ intrinsic
lattice. It has been recorded that Co2+ incorporation in BTO
matrix was followed by a loss of the hopping motion of
electrons which decreased the piling up of electrons at host
matrix vacancies hence impeding the buildup of space charge



4 International Journal of Chemical Physics

polarization. The variation in lattice parameters with Co3+
incorporation had been attributed to the increase of the unit
cell volume of the host lattice with increasing Co3+ content.
In fact, since Co3+ ions are trivalent and in order to maintain
the charge balance during doping, incorporation had to be
accompanied by an increase of unit cell volume either by
a reduction of host cations valence or an oxygen content
increase.

In the same context, and according to Muncaster et al.
[24], Huang et al. [25], and Chmaissem et al. [26], cobalt ions
intercalation dynamics in similar host structures with fixed
coordination geometriesweremainly governed by differences
in ionic size and magnetic properties. Relative induced
disorder in BTO:Co3+ edifices show that it is fundamentally
the matter of oxygen uptake. The amount of incorporated
oxygen seems to be wholly dependent on the presence of
additional locations where the bond lengths from oxygen to
surrounding cobalt ions remain within an upper limit [26].

3. Lattice Compatibility Theory (LCT) and
Simha-Somcynsky Conjoint Analysis

Themost fundamental structure alterationwhich occurred in
the host BTO lattice has been interpreted in terms of changes
either in the configurational partition function 𝑍

𝑖
(𝑁, 𝑦
𝑖
, 𝑇)

or in the lattice parameters, according to Simha-Somcynsky
analysis and Lattice Compatibility Theory, respectively.

In the Simha-Somcynsky analysis, the structure-depend-
ent coefficients (𝑧

𝑖
in (3)) increase in different ways during

Co2+ and Co3+ incorporation (Figures 4 and 5).
In this context, for a molecule 𝑖, the relative contribution

of the doping agent is expressed in terms of relative variation
of the molar Helmholtz free energy as follows:

Δ𝐹
𝑖
(𝑇, 𝑦
𝑖
)

Δ𝑧
𝑖

≈ (𝑠
𝑖
− 1)

1

𝑧
𝑖
− 1
. (9)

Under a first-order approximation, cobalt ions edifices pres-
ence induces a drastic decrease of Helmholtz free energy as
well as a lower Urbach energy. It was recorded that these
trends are not the same for Co2+ and Co3+ ions. The loss
of stability which characterized the transition from Co(II)
to Co(III) state and which was recorded by Amine et al.
[27, 28], Duncan et al. [29], Liu et al. [30], Santhanam
and Rambabu [31], and Aklalouch et al. [32, 33] has been
satisfactorily explained in the Lattice Compatibility Theory
(LCT) framework.Themost probable explanation which can
be provided through the Simha-Somcynsky theory lies in the
expression of the Helmholtz free energy (see (3) and (7)).
Indeed, the incorporation of cobalt ions contributes to the
decrease of the Helmholtz free energy [34–37], but, as it is
also equivalent to the increase of the number of occupied
sites within the cell (Figures 4 and 5), it induces an increase
of energy through the first two terms in (3). Moreover, the
latter contribution of Co3+ ions is more important due to its
voluminous polyhedral configuration (Figure 5).

Bi
Ti
O

Co2+
octahedron

Figure 4: Co2+ ions incorporation scheme inside BTO matrix.

Bi
Ti
O

Co3+
polyhedron

Figure 5: Co3+ ions incorporation scheme inside BTO matrix.

4. Conclusion

The presented work showcases some fundaments of the Lat-
tice Compatibility Theory (LCT) framework in relation with
the precedent Simha-Somcynsky theory-linked analyses.The
most probable explanations which can be provided to some
intriguing nanoscale unexpected alterations, through the
LCT theory, have been discussed in terms of the well-known
Simha-Somcynsky (SS) lattice hole theory. What this theory
and more sophisticated frameworks have in common is that
they incorporate a description for holes on the lattice, acting
as free volumes.This approach,which becamenecessary since
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the lattice-based arrangement of molecules became the most
encountered in the recent literature, was confronted to the
results which have been recorded in an unupdated compound
(BTO:Co). The results were as accurate as relevant. The LCT
analyses used in lattice linear structures can also be used
together with the SS model for other similar structures.
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