Research Article

Inhibitory Effect of Enterococcus faecium WB2000 on Volatile Sulfur Compound Production by Porphyromonas gingivalis

Nao Suzuki,1 Takuya Higuchi,2 Masato Nakajima,2 Akie Fujimoto,2 Hiromitsu Morita,2 Masahiro Yoneda,2 Takashi Hanioka,1 and Takao Hirofuji2

1Department of Preventive and Public Health Dentistry, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
2Department of General Dentistry, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan

Correspondence should be addressed to Nao Suzuki; naojsz@college.fdcnet.ac.jp

Received 17 August 2016; Accepted 18 September 2016

Academic Editor: Yoshitaka Hara

Copyright © 2016 Nao Suzuki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Volatile sulfur compounds (VSCs) produced by oral anaerobes are the major compounds responsible for oral malodor. Enterococcus faecium WB2000 is recognized as an antiplaque probiotic bacterium. In this study, the effect of E. faecium WB2000 on VSC production by Porphyromonas gingivalis was evaluated, and the mechanism of inhibition of oral malodor was investigated. P. gingivalis ATCC 33277 was cultured in the presence of four lactic acid bacteria, including E. faecium WB2000. Subsequently, P. gingivalis ATCC 33277, W50, W83, and two clinical isolates were cultured in the presence or absence of E. faecium WB2000, and the emission of VSCs from spent culture medium was measured by gas chromatography. The numbers of five P. gingivalis strains decreased at similar rates in mixed culture with E. faecium WB2000. The concentration of methyl mercaptan was lower in spent culture medium from P. gingivalis and E. faecium WB2000 cultures compared with that from P. gingivalis alone. Therefore, E. faecium WB2000 may reduce oral malodor by inhibiting the growth of P. gingivalis and neutralizing methyl mercaptan.

1. Introduction

Oral malodor is caused mainly by the metabolism of sulfur amino acids by anaerobic bacteria inhabiting the oral cavity [1]. The main compounds responsible for oral malodor are volatile sulfur compounds (VSCs), such as hydrogen sulfide (H₂S), methyl mercaptan (CH₃SH), and dimethyl sulfide; these compounds are produced by some periodontopathic bacteria. Indeed, Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Prevotella intermedia generate considerable amounts of H₂S and CH₃SH [2].

Probiotic bacteria, defined as live microorganisms that benefit the health of the host when administered in adequate amounts (FAO/WHO 2001), are thought to play a role in the maintenance of oral health [3]. Enterococci are facultatively anaerobic, Gram-positive cocci that form a part of the normal flora of the gastrointestinal tract of animals and humans. They are also frequently found in fermented food, such as cheese and meat [4]. Enterococcus faecium and Enterococcus faecalis are the most clinically relevant members of the genus Enterococcus. Traditionally, they are regarded as low-grade pathogens but have emerged as important causes of nosocomial infections [5]. Clinical use of E. faecium and E. faecalis during food fermentation and as probiotics requires a careful safety evaluation [6].

E. faecium strains have been reported to inhibit biofilm formation by cariogenic bacteria in vitro [7, 8]. In addition, a previous double-blind randomized trial in which the subjects cleaned their teeth using a dentifrice containing E. faecium WB2000 or placebo for 4 weeks revealed improvements in salivary flow, salivary buffering capacity, and plaque accumulation [9]. This study aimed to investigate the effect of E. faecium WB2000 on VSC production by P. gingivalis and the mechanism of inhibition of oral malodor by E. faecium WB2000.
2. Materials and Methods

2.1. Bacterial Strains and Culture Conditions. The bacterial strains used in the study are listed in Table 1. *Enterococcus faecium* WB2000, previously classified as *Streptococcus faecalis* [10], was provided by Wakamoto Pharmaceutical. The selective medium for *P. gingivalis* consisted of Brucella agar (Becton Dickinson, Le Pont de Clai, France) supplemented with 5% horse blood, hemin (5 μg/mL), vitamin K (1 μg/mL), and gentamicin (50 μg/mL). Lactic acid bacteria were cultivated on BL agar (Nissui, Tokyo, Japan) supplemented with 0.7% glucose, hemin (5 μg/mL), and vitamin K (1 μg/mL) at 37°C anaerobically. Viable bacterial counts in the culture medium were determined at 6, 12, 24, and 48 h.

2.2. Cocultivation of *P. gingivalis* and Lactic Acid Bacteria. Bacterial cocultivation was carried out using 100 μL of *P. gingivalis* suspension, 100 μL of lactic acid bacterial suspension, and 10 mL fresh GAM broth (Nissui, Tokyo, Japan) supplemented with 0.7% glucose, hemin (5 μg/mL), and vitamin K (1 μg/mL) at 37°C anaerobically. Viable bacterial counts in the culture medium were determined at 6, 12, 24, and 48 h on the appropriate agar medium at 37°C anaerobically for 48 h.

2.3. Measurement of Volatile Sulfur Compounds. The VSC concentration in spent medium from *P. gingivalis* cultured in the presence or absence of *E. faecium* WB2000 was measured after 24 and 48 h. Aliquots (0.2 mL) of spent culture medium were added to 5 mL conical tubes, which were sealed and incubated at room temperature for 5 min. Then, 0.5 mL of the gas phase was collected and measured by gas chromatography (model GC2014, Shimadzu Works, Kyoto, Japan).

3. Results

3.1. Effect of Lactic Acid Bacteria on the Growth of *P. gingivalis* ATCC 33277. The number of viable *P. gingivalis* ATCC 33277 decreased to less than the detection limit after 6 h in mixed culture with *E. faecium* WB2000 (Figure 1(a)). In mixed cultures with the other three lactic acid bacteria (*S. salivarius* JCM 5707, *L. salivarius* CIP 103140, and *L. reuteri* JCM 1112), the number of viable *P. gingivalis* ATCC 33277 decreased to less than the detection limit at 12 h. In mixed culture with *P. gingivalis* ATCC 33277, *E. faecium* WB2000 grew more...
Figure 2: Viable counts of five strains of *P. gingivalis* (ATCC 33277, ATCC 53978, ATCC BAA-308, 2-1, and 7-1) and *E. faecium* WB2000 in mixed cultures. ○: number of *P. gingivalis* in monoculture, ☐: number of *P. gingivalis* in mixed cultures with *E. faecium* WB2000, and △: number of *E. faecium* WB2000 in mixed cultures with *P. gingivalis*.

rapidly than it did in mixed cultures with the other three lactic acid bacteria, and its growth plateaued at 6 h (Figure 1(b)).

3.2. Effect of *E. faecium* WB2000 on the Growth of Various *P. gingivalis* Strains. The effect of *E. faecium* WB2000 on the growth of five *P. gingivalis* strains (ATCC 33277, ATCC 53978, ATCC BAA-308, 2-1, and 7-1) was evaluated. The numbers of all *P. gingivalis* strains decreased to less than the detection limit at 24 and 48 h in mixed cultures with *E. faecium* WB2000 (Figure 2). In contrast, the number of *E. faecium* WB2000 reached a plateau at 24 h.

3.3. Effect of *E. faecium* WB2000 on VSC Production by *P. gingivalis* Strains. The concentrations of VSCs in spent culture medium were measured by gas chromatography (Table 2). The levels of H$_2$S produced by *P. gingivalis* strains were lower than those of CH$_3$SH. The concentrations of H$_2$S in mixed culture media were higher than that in medium in which only *P. gingivalis* was cultured, with the exception of medium from mixed cultures of two *P. gingivalis* clinical isolates (2-1 and 7-1) and *E. faecium* WB2000 after 48 h. In contrast, the CH$_3$SH concentration in mixed culture medium was lower than that in medium from culture of *P. gingivalis* alone, with the exception of medium from mixed cultures of two *P. gingivalis* strains (W50 and 2-1) and *E. faecium* WB2000 after 24 h. The levels of CH$_3$SH in spent medium from *P. gingivalis* cultured for 48 h in the presence or absence of *E. faecium* WB2000 are shown in Figure 3. Although CH$_3$SH production by *P. gingivalis* was strain dependent, the CH$_3$SH concentration was markedly lower in spent medium from mixed cultures of all *P. gingivalis* strains and *E. faecium* WB2000 than in medium from culture of the latter microorganism only.

4. Discussion

The hypothetical mechanisms of probiotic action in the oral cavity are (1) involvement in binding of oral microorganisms to proteins, (2) effects on plaque formation and its complex ecosystem by competing and interfering with interbacterial attachment, (3) involvement in the metabolism of substrates, and (4) production of compounds that inhibit oral bacteria [11]. *E. faecium* has been reported to inhibit biofilm formation by cariogenic bacteria [7, 8]. Kumada et al. [8] reported
Table 2: The hydrogen sulfide and methyl mercaptan concentrations in spent culture medium (ng/mL).

<table>
<thead>
<tr>
<th>Pg strain</th>
<th>Culture medium</th>
<th>Hydrogen sulfide</th>
<th>Methyl mercaptan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>24 h</td>
<td>48 h</td>
</tr>
<tr>
<td>ATCC 33277</td>
<td>Pg</td>
<td>0.45</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>Pg + Ef WB2000</td>
<td>0.94</td>
<td>1.49</td>
</tr>
<tr>
<td>ATCC 53978 (W50)</td>
<td>Pg</td>
<td>0.87</td>
<td>2.20</td>
</tr>
<tr>
<td></td>
<td>Pg + Ef WB2000</td>
<td>1.44</td>
<td>2.91</td>
</tr>
<tr>
<td>ATCC BAA-308 (W83)</td>
<td>Pg</td>
<td>1.75</td>
<td>2.83</td>
</tr>
<tr>
<td></td>
<td>Pg + Ef WB2000</td>
<td>2.06</td>
<td>2.44</td>
</tr>
<tr>
<td>2-1</td>
<td>Pg</td>
<td>0.43</td>
<td>2.18</td>
</tr>
<tr>
<td></td>
<td>Pg + Ef WB2000</td>
<td>1.11</td>
<td>2.03</td>
</tr>
<tr>
<td>7-1</td>
<td>Pg</td>
<td>0.86</td>
<td>9.24</td>
</tr>
<tr>
<td></td>
<td>Pg + Ef WB2000</td>
<td>2.06</td>
<td>2.44</td>
</tr>
</tbody>
</table>

Pg: Porphyromonas gingivalis; Ef: Enterococcus faecium.

Figure 3: The levels of CH$_3$SH in spent medium from P. gingivalis cultured for 48 h in the presence or absence of E. faecium WB2000 (ng/mL). Grey bars: single culture; white bars: dual culture with E. faecium WB2000.

In addition to E. faecium and S. thermophilus, other organisms have been reported to inhibit oral malodor. Streptococcus salivarius K12 suppressed the growth of Solobacterium moorei, which produces H$_2$S and is involved in halitosis [15, 16]. Lactobacillus salivarius WB21 and L. reuteri have been reported to inhibit oral malodor in clinical trials [17–19]. L. salivarius WB21 reduced the number of Fusobacterium nucleatum and ubiquitous bacteria in saliva [19].

E. faecium WB2000 has been used in traditional Japanese medicine (Strong Wakamoto®) to treat gastrointestinal discomfort, and its effect on dry eye was reported recently [20]. Moreover, the effect of dentifrice containing E. faecium WB2000 on plaque control has been investigated [9]. The findings of this study suggest that E. faecium WB2000 may reduce oral malodor by inhibiting the growth of P. gingivalis and neutralizing CH$_3$SH. The effect of E. faecium WB2000 on oral malodor will be investigated in a future clinical trial involving the use of dentifrice.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This study was supported in part by a Grant-in-Aid for Young Scientists (no. 16K20707) and by Grants-in-Aid for Scientific Research (nos. 26463203 and 26463175) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

