Research Article

Multiple Solutions of Quasilinear Elliptic Equations in \mathbb{R}^N

Huei-li Lin

Department of Natural Sciences, Center for General Education, Chang Gung University, Taoyuan 333, Taiwan

Correspondence should be addressed to Huei-li Lin, hlin@mail.cgu.edu.tw

Received 1 October 2009; Revised 15 January 2010; Accepted 1 March 2010

Academic Editor: Martin D. Schechter

Copyright © 2010 Huei-li Lin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Assume that Q is a positive continuous function in \mathbb{R}^N and satisfies some suitable conditions. We prove that the quasilinear elliptic equation

$$-\Delta_p u + |u|^{p-2}u = Q(z)|u|^{q-2}u \quad \text{in} \quad \mathbb{R}^N,$$

admits at least two solutions in \mathbb{R}^N (one is a positive ground-state solution and the other is a sign-changing solution).

1. Introduction

For $N \geq 3$, $2 \leq p < N$, and $p < q < p^* = Np/(N - p)$, we consider the quasilinear elliptic equations

$$-\Delta_p u + |u|^{p-2}u = Q(z)|u|^{q-2}u \quad \text{in} \quad \mathbb{R}^N,$$

$$u \in W^{1,p}(\mathbb{R}^N),$$

(1.1)

$$-\Delta_p u + |u|^{p-2}u = Q_{\infty}|u|^{q-2}u \quad \text{in} \quad \mathbb{R}^N,$$

$$u \in W^{1,p}(\mathbb{R}^N),$$

(1.2)

where Δ_p is the p-Laplacian operator, that is,

$$\Delta_p u = \sum_{i=1}^N \frac{\partial}{\partial z_i} \left(|\nabla u|^{p-2} \frac{\partial u}{\partial z_i} \right).$$

(1.3)
Let Q be a positive continuous function in \mathbb{R}^N and satisfy

$$Q(z) \geq Q_\infty = \lim_{|z| \to \infty} Q(z) > 0, \quad Q(z) \geq Q_\infty \text{ on a set of positive measure.} \quad (Q1)$$

Associated with (1.1) and (1.2), we define the functionals a, b, b^∞, J, and J^∞, for $u \in W^{1,p}(\mathbb{R}^N)$,

$$a(u) = \int_{\mathbb{R}^N} (|\nabla u|^p + |u|^p)dz = ||u||^p_{1,p},$$
$$b(u) = \int_{\mathbb{R}^N} Q(z)|u|^qdz,$$
$$b^\infty(u) = \int_{\mathbb{R}^N} Q_\infty|u|^qdz,$$
$$J(u) = \frac{1}{p} a(u) - \frac{1}{q} b(u), \quad J^\infty(u) = \frac{1}{p} a(u) - \frac{1}{q} b^\infty(u). \quad (1.4)$$

It is easy to verify that the functionals a, b, b^∞, J, and J^∞ are C^1.

For the case $p = 2$, Lions [1, 2] proved that if $\lim_{|z| \to \infty} Q(z) = Q_\infty$, and $Q(z) \geq Q_\infty > 0$, then (1.1) has a positive ground-state solution in \mathbb{R}^N. Benci and Cerami [3] proved that (1.2) does not have any ground-state solution in an exterior domain. Bahri and Li [4] proved that there is at least one positive solution of (1.1) in \mathbb{R}^N (or an exterior domain) when $\lim_{|z| \to \infty} Q(z) = Q_\infty > 0$ and $Q(z) \geq Q_\infty - C \exp(-\delta|z|)$ for $\delta > 2$. Cao [5] has studied the multiplicity of solutions (one is a positive ground-state solution and the other is a nodal solution) of (1.1) with Neumann condition in an exterior domain as follows. Assume that $\lim_{|z| \to \infty} Q(z) = Q_\infty > 0$, and $Q(z) \geq Q_\infty + C|z|^{-m} \exp(-\delta|z|)$ for $C > 0$, $m < (N-1)/2$, $\delta = q/(q+1)$, then (1.1) has at least two nontrivial solutions (one is a positive ground-state solution and the other is a nodal solution) in an exterior domain.

This article is motivated by the above papers. If Q is a positive continuous function in \mathbb{R}^N and satisfies (Q1), then we prove that (1.1) admits a positive ground-state solution in \mathbb{R}^N. Combine it with some ideas of Cerami et al. [6] to show that if Q also satisfies $Q(z) \geq Q_\infty + C \exp(-\delta|z|)$ for $0 < \delta < \theta = (p-1)^{-1}/p$, then a nodal solution of (1.1) exists.

2. Preliminaries

We define the Palais-Smale (denoted by (PS)) sequences and (PS)-conditions in $W^{1,p}(\mathbb{R}^N)$ for J as follows.

Definition 2.1. (i) For $\beta \in \mathbb{R}$, a sequence $\{u_n\}$ is a (PS)$_\beta$-sequence in $W^{1,p}(\mathbb{R}^N)$ for J if $J(u_n) = \beta + o_n(1)$ and $J'(u_n) = o_n(1)$ strongly in $W^{-1,p'}(\mathbb{R}^N)$ as $n \to \infty$, where $W^{-1,p'}(\mathbb{R}^N)$ is the dual space of $W^{1,p}(\mathbb{R}^N)$ and $1/p + 1/p' = 1$.

(ii) J satisfies the (PS)$_\beta$-condition in $W^{1,p}(\mathbb{R}^N)$ if every (PS)$_\beta$-sequence in $W^{1,p}(\mathbb{R}^N)$ for J contains a convergent subsequence.

Lemma 2.2. Let $\beta \in \mathbb{R}$ and let $\{u_n\}$ be a (PS)$_\beta$-sequence in $W^{1,p}(\mathbb{R}^N)$ for J, then $\{u_n\}$ is a bounded sequence in $W^{1,p}(\mathbb{R}^N)$. Moreover, $a(u_n) = b(u_n) + o_n(1) = (qp/(q-p))\beta + o_n(1)$ as $n \to \infty$ and $\beta \geq 0$.

International Journal of Differential Equations

Proof. Since \(p \geq 2 \), we have that \(\sqrt[p]{a(u_n)} \leq 1 \) if \(a(u_n) \leq 1 \) and \(\sqrt[p]{a(u_n)} \leq \sqrt{a(u_n)} \) if \(a(u_n) > 1 \). For sufficiently large \(n \), we get

\[
|\beta| + 2 + \sqrt{a(u_n)} \geq |\beta| + 1 + \sqrt{a(u_n)}
\]

It follows that \(\{u_n\} \) is bounded in \(W^{1,p}(\mathbb{R}^N) \). Then \(\langle J'(u_n), u_n \rangle = o_n(1) \) as \(n \to \infty \). Thus,

\[
\beta + o_n(1) = J(u_n) = \left(\frac{1}{p} - \frac{1}{q} \right) a(u_n) + o_n(1) = \left(\frac{1}{p} - \frac{1}{q} \right) b(u_n) + o_n(1),
\]

that is, \(a(u_n) = b(u_n) + o_n(1) = (qp/(q-p))\beta + o_n(1) \) as \(n \to \infty \) and \(\beta \geq 0 \).

Define

\[
a\left(\mathbb{R}^N \right) = \inf_{u \in M(\mathbb{R}^N)} J(u),
\]

where \(M(\mathbb{R}^N) = \{ u \in W^{1,p}(\mathbb{R}^N) \setminus \{0\} \mid a(u) = b(u) \} \), and

\[
a^\infty \left(\mathbb{R}^N \right) = \inf_{u \in M^\infty(\mathbb{R}^N)} J^\infty(u),
\]

where \(M^\infty(\mathbb{R}^N) = \{ u \in W^{1,p}(\mathbb{R}^N) \setminus \{0\} \mid a(u) = b^\infty(u) \} \).

Lemma 2.3. Let \(u \) be a sign-changing solution of (1.1). Then \(J(u) \geq 2a(\mathbb{R}^N) \).

Proof. Define \(u^+ = \max\{u,0\} \) and \(u^- = \max\{-u,0\} \). Since \(u \) is a sign-changing solution of (1.1), then \(u^- \) is nonnegative and nonzero. Multiply (1.1) by \(u^- \) and integrate it to obtain

\[
\int_{\mathbb{R}^N} (|\nabla u|^{p-2} \nabla u \nabla u^- + |u|^{p-2} u u^-) dz = \int_{\mathbb{R}^N} Q(z)|u|^{p-2} u u^- dz,
\]

that is, \(u^- \in M(\mathbb{R}^N) \) and \(J(u^-) \geq a(\Omega) \). Similarly, \(J(u^+) \geq a(\mathbb{R}^N) \). Hence,

\[
J(u) = J(u^+) + J(u^-) \geq 2a(\mathbb{R}^N).
\]

Lemma 2.4. (i) For each \(u \in W^{1,p}(\mathbb{R}^N) \setminus \{0\} \), there exists a positive number \(s_u \) such that \(s_u u \in M(\mathbb{R}^N) \) and \(\sup_{s \geq 0} J(su) = J(s_u u) \).

(ii) Let \(\beta > 0 \) and let \(\{u_n\} \) be a sequence in \(W^{1,p}(\mathbb{R}^N) \setminus \{0\} \) for \(J \) such that \(a(u_n) = b(u_n) + o(1) \) and \(J(u_n) = \beta + o(1) \). Then there is a sequence \(\{s_n\} \) in \(\mathbb{R}^+ \) such that \(s_n = 1 + o(1) \), \(\{s_n u_n\} \subset M(\mathbb{R}^N) \), and \(J(s_n u_n) = \beta + o(1) \) as \(n \to \infty \).
Proof. (i) For each $u \in W_0^{1,p}(\mathbb{R}^N) \setminus \{0\}$ and $s \geq 0$, let

$$h_u(s) = J(su) = \frac{s^p}{p} a(u) - \frac{s^q}{q} b(u). \quad (2.7)$$

Thus, $h_u'(s) = s^{p-1}a(u) - s^{q-1}b(u)$. Define $s_u = (a(u)/b(u))^{1/(q-p)} > 0$, then $h_u'(s_u) = 0$, that is, $s_u u \in M(\mathbb{R}^N)$.

(ii) By (i), there exists a sequence $\{s_n\}$ in \mathbb{R}^+ such that $\{s_n u_n\} \subset M(\mathbb{R}^N)$, that is, $s_n^p a(u_n) = s_n^q b(u_n)$ for each n. Since $a(u_n) = b(u_n) + o(1)$ and $J(u_n) = \beta + o(1)$, we have that $s_n = 1 + o(1)$. Hence, $J(s_n u_n) = \beta + o(1)$ as $n \to \infty$. \square

Lemma 2.5. There exists $c > 0$ such that $\|u\|_{1,p} \geq c > 0$ for each $u \in M(\mathbb{R}^N)$, where c is independent of u.

Proof. For each $u \in M(\mathbb{R}^N)$, by the Sobolev inequality, we obtain that

$$\|u\|_{1,p}^p = \int_{\mathbb{R}^N} Q(z)|u|^p dz \leq c_1 \|u\|_{1,p}^q. \quad (2.8)$$

This implies that $\|u\|_{1,p} \geq c_1^{-1/(q-p)} = c > 0$ for each $u \in M(\mathbb{R}^N)$. \square

By Lemma 2.5, $\alpha(\mathbb{R}^N) > 0$.

Lemma 2.6. Let $u \in M(\mathbb{R}^N)$ such that

$$J(u) = \min_{v \in M(\mathbb{R}^N)} J(v) = \alpha(\mathbb{R}^N), \quad (2.9)$$

then u is a nonzero solution of (1.1) in \mathbb{R}^N.

Proof. Suppose that $\varphi(v) = \int_{\mathbb{R}^N} (|\nabla v|^p + |v|^p) dz - \int_{\mathbb{R}^N} Q(z)|v|^q dz$, then

$$\langle \varphi'(v), v \rangle = (p-q) \int_{\mathbb{R}^N} (|\nabla v|^p + |v|^p) dz < 0 \quad \text{for each } v \in M(\mathbb{R}^N). \quad (2.10)$$

Since $J(u) = \min_{v \in M(\mathbb{R}^N)} J(v)$, by the Lagrange multiplier theorem, there is a $\lambda \in \mathbb{R}$ such that $J'(u) = \lambda \varphi'(u)$ in $W^{-1,q'}(\mathbb{R}^N)$. Then we have

$$0 = \langle J'(u), u \rangle = \lambda \langle \varphi'(u), u \rangle. \quad (2.11)$$

Thus, $\lambda = 0$ and $J'(u) = 0$ in $W^{-1,q'}(\mathbb{R}^N)$. Therefore, u is a nonzero solution of (1.1) in \mathbb{R}^N with $J(u) = \alpha(\mathbb{R}^N)$. \square
Lemma 2.7. There is a \((PS)_{a(\mathbb{R}^N)}\)-sequence in \(W^{1,p}(\mathbb{R}^N)\) for \(J\).

Proof. Let \(\{u_n\} \subset M(\mathbb{R}^N)\) be a minimizing sequence of \(a(\mathbb{R}^N)\). Applying the Ekeland principle, there exists a sequence \(\{v_n\} \subset M(\mathbb{R}^N)\) such that \(\|v_n - u_n\|_{1,p} < 1/n\), \(J(v_n) = a(\mathbb{R}^N) + o(1)\), and \(J_{\mid M(\mathbb{R}^N)}(v_n) = o(1)\) strongly in \(W^{-1,p}(\mathbb{R}^N)\) as \(n \to \infty\). Let \(\varphi(u) = a(u) - b(u)\) for each \(u \in W^{1,p}(\mathbb{R}^N) \setminus \{0\}\), then

\[
M(\mathbb{R}^N) = \left\{ u \in W^{1,p}(\mathbb{R}^N) \setminus \{0\} \mid \varphi(u) = 0 \right\}.
\]

(2.12)

Thus, there exists a sequence \(\{\theta_n\} \subset \mathbb{R}\) such that \(J'(v_n) = \theta_n \varphi'(v_n) + o_n(1)\), where \(o_n(1) \to 0\) as \(n \to \infty\). Since \(v_n \in M(\mathbb{R}^N)\), we have that

\[
0 = \langle J'(v_n), v_n \rangle = \theta_n \langle \varphi'(v_n), v_n \rangle + (o_n(1), v_n),
\]

\[
\langle \varphi'(v_n), v_n \rangle = (p - q)a(v_n) \not\equiv 0 \ \forall n.
\]

(2.13)

Hence, \(\theta_n \to 0\) as \(n \to \infty\). This implies that \(J'(v_n) = o(1)\) strongly in \(W^{-1,p}(\mathbb{R}^N)\) as \(n \to \infty\), that is, \(\{v_n\} \subset M(\mathbb{R}^N)\) is a \((PS)_{a(\Omega)}\)-sequence in \(W^{1,p}(\mathbb{R}^N)\) for \(J\).

\[Q.E.D. \]

Remark 2.8. The above definitions and lemmas also hold for \(J^\infty, M^\infty(\mathbb{R}^N), \) and \(a^\infty(\mathbb{R}^N)\).

3. Existence of a Ground-State Solution

Using the arguments by Lions [1, 2], Benci and Cerami [3], Struwe [7], and Alves [8], we have the following decomposition lemma.

Lemma 3.1 (Palais-Smale Decomposition Lemma for \(J\)). Assume that \(Q\) is a positive continuous function in \(\mathbb{R}^N\) and \(\lim_{|z| \to \infty} Q(z) = Q_\infty > 0\). Let \(\{u_n\}\) be a \((PS)_p\)-sequence in \(W^{1,p}(\mathbb{R}^N)\) for \(J\). Then there are a subsequence \(\{u_n\}_1\), a positive integer \(l\), sequences \(\{\gamma^i_n\}_{n=1}^\infty\) in \(\mathbb{R}^N\), functions \(u\) in \(W^{1,p}(\mathbb{R}^N)\), and \(\omega^i \not\equiv 0\) in \(W^{1,p}(\mathbb{R}^N)\) for \(1 \leq i \leq l\) such that

\[
\left| \gamma^i_n \right| \to \infty \ \text{for} \ 1 \leq i \leq l,
\]

\[
-\Delta_p u + |u|^{p-2} u = Q(z)|u|^{q-2} u \ \text{in} \ \mathbb{R}^N,
\]

\[
-\Delta_p \omega^i + |\omega^i|^{p-2} \omega^i = Q_\infty |\omega^i|^{q-2} \omega^i \ \text{in} \ \mathbb{R}^N,
\]

\[
u_n = u + \sum_{i=1}^l \omega^i \left(- \gamma^i_n \right) + o_n(1) \ \text{strongly in} \ W^{1,p}(\mathbb{R}^N),
\]

\[
J(u_n) = J(u) + \sum_{i=1}^l J(\omega^i) + o_n(1).
\]

(3.1)

In addition, if \(u_n \geq 0\), then \(u \geq 0\) and \(\omega^i \geq 0\) for \(1 \leq i \leq l\).
Lemma 3.2. Let \(\{u_n\} \subset M(\mathbb{R}^N) \) be a \((PS)_\beta\)-sequence in \(W^{1,p}(\mathbb{R}^N) \) for \(0 < \beta < \alpha^\infty(\mathbb{R}^N) \). Then there exist a subsequence \(\{u_n\} \) and a non-zero \(u \in W^{1,p}(\mathbb{R}^N) \) such that \(u_n \to u \) strongly in \(W^{1,p}(\mathbb{R}^N) \) and \(J(u) = \beta \), that is, \(J \) satisfies the \((PS)_\beta\)-condition in \(W^{1,p}(\mathbb{R}^N) \).

Proof. Since \(\{u_n\} \subset M(\mathbb{R}^N) \) is a \((PS)_\beta\)-sequence in \(W^{1,p}(\mathbb{R}^N) \) for \(0 < \beta < \alpha^\infty(\mathbb{R}^N) \), by Lemma 2.2, \(\{u_n\} \) is bounded in \(W^{1,p}(\mathbb{R}^N) \). Thus, there exist a subsequence \(\{u_n\} \) and \(u \in W^{1,p}(\mathbb{R}^N) \) such that \(u_n \to u \) weakly in \(W^{1,p}(\mathbb{R}^N) \). It is easy to check that \(u \) is a solution of (1.1) in \(\mathbb{R}^N \). Applying Palais-Smale Decomposition Lemma 3.1, we get

\[
\alpha^\infty > \beta = J(u_n) \geq l\alpha^\infty. \tag{3.2}
\]

Then \(l = 0 \) and \(u \neq 0 \). Hence, \(u_n \to u \) strongly in \(W^{1,p}(\mathbb{R}^N) \) and \(J(u) = \beta \). \(\Box \)

Let \(w \in W^{1,p}(\mathbb{R}^N) \) be the positive ground-state solution of (1.2) in \(\mathbb{R}^N \). Using the same arguments by Li and Yan [9] and Marcos do Ó [10, Lemma 3.8], or see Serrin and Tang [11, page 899] and Li and Zhao [12, Theorem 1.1], we obtain the following results:

(i) \(w \in L^\infty(\mathbb{R}^N) \cap C^{1,p}_{\text{loc}}(\mathbb{R}^N) \) for some \(0 < \gamma_0 < 1 \) and \(\lim_{|z| \to \infty} w(z) = 0 \);

(ii) for any \(\epsilon > 0 \), there exist positive numbers \(C_1 \) and \(C_2 \) such that

\[
C_2 \exp(-(\theta + \epsilon)|z|) \leq w(z) \leq C_1 \exp(-(\theta - \epsilon)|z|) \quad \forall z \in \mathbb{R}^N, \tag{3.3}
\]

where \(\theta = (p - 1)^{-1/p} \).

Remark 3.3. Similarly, we also show that all positive solutions of (1.1) in \(\mathbb{R}^N \) have exponential decay.

By Lemma 3.2, we can prove the following theorem.

Theorem 3.4. Assume that \(Q \) is a positive continuous function in \(\mathbb{R}^N \) and satisfies (Q1). Then there exists a positive ground-state solution \(w_0 \) of (1.1) in \(\mathbb{R}^N \).

Proof. Let \(w \in W^{1,p}(\mathbb{R}^N) \) be the positive ground-state solution of (1.2) in \(\mathbb{R}^N \), then \(w \) is a minimizer of \(\alpha^\infty(\mathbb{R}^N) \) and

\[
\int_{\mathbb{R}^N} |(\nabla w|^p + w^p)dz = \int_{\mathbb{R}^N} Q_{\infty}w^p dz. \tag{3.4}
\]
By Lemma 2.4(i), there exists a positive number s_w such that $s_w w \in M(\mathbb{R}^N)$, that is,
\[\int_{\mathbb{R}^N} ((\nabla (s_w w))^p + (s_w w)^p)dz = \int_{\mathbb{R}^N} Q(z)(s_w w)^q dz. \] Since $Q(z) > Q_\infty$ on a set of positive measure, we can deduce that $s_w < 1$. Therefore,
\[
a(\mathbb{R}^N) \leq J(s_w w) = \left(\frac{1}{p} - \frac{1}{q} \right) (s_w)^p \int_{\mathbb{R}^N} (|\nabla w|^p + w^p)dz
\]
\[
< \left(\frac{1}{p} - \frac{1}{q} \right) \int_{\mathbb{R}^N} (|\nabla w|^p + w^p)dz
\]
\[
= \left(\frac{1}{p} - \frac{1}{q} \right) \int_{\mathbb{R}^N} Q_\infty w^q dz = a_\infty (\mathbb{R}^N).
\] (3.5)

Applying Lemma 3.2, there exists $u_0 \in W^{1,p}(\mathbb{R}^N)$ such that $J(u_0) = a(\mathbb{R}^N)$. From the results of Lemmas 2.6 and 2.3, by Maximum Principle, u_0 is a positive ground-state solution of (1.1) in \mathbb{R}^N.

\[\square \]

4. Existence of a Nodal Solution

In this section, assume that Q is a positive continuous function in \mathbb{R}^N and satisfies (Q1). In order to prove Lemma 4.8, Q also satisfies the following condition (Q2): there exist some constants $C > 0$ and $0 < \delta < \theta = (p - 1)^{-1/p}$ such that
\[
Q(z) \geq Q_\infty + C \exp(-\delta |z|) \forall z \in \mathbb{R}^N.
\] (Q2)

Let h be a functional in $W^{1,p}(\mathbb{R}^N)$ defined by
\[
h(u) = \begin{cases} \frac{b(u)}{a(u)} & \text{for } u \neq 0, \\ 0 & \text{for } u = 0. \end{cases}
\] (4.1)

We define
\[
M_0 = \{ u \in W^{1,p}(\mathbb{R}^N) \mid h(u^+) = 1, \ h(u^-) = 1 \} \subset M(\mathbb{R}^N),
\]
\[
\mathcal{M} = \{ u \in W^{1,p}(\mathbb{R}^N) \mid |h(u^+) - 1| < \frac{1}{2} \} \subset M_0,
\] (4.2)

where $u^+ = \max\{u, 0\}$ and $u^- = \max\{-u, 0\}$.

Lemma 4.1. (i) If $u \in W^{1,p}(\mathbb{R}^N)$ changes sign, then there exist positive numbers $s^+(u) = s^+$ such that $s^+ u^+ \in M(\mathbb{R}^N)$ and $s^- u^- \in M(\mathbb{R}^N)$.

(ii) There exists $c' > 0$ such that $\|u^+\|_{1,p} \geq c' > 0$ for each $u \in \mathcal{M}$.
Proof. (i) Since u^+ and u^- are nonzero and nonnegative, by Lemma 2.4(i), it is easy to obtain the result.

(ii) For each $u \in \mathcal{A}$, by Lemma 2.4(i), there exists $s^+(u) = s^+ > 0$ such that $s^+ u^+ \in \mathbf{M}(\mathbb{R}^N)$. Then

$$\frac{1}{2} < (s^+)^{p-q} = \frac{b(u^+)}{a(u^+)} < \frac{3}{2}$$ for each $u \in \mathcal{A}$. \hfill (4.3)

By Lemma 2.5, we have

$$\|s^+ u^+\|_{1,p} \geq c$$ for some $c > 0$ and each $u \in \mathcal{A}$. \hfill (4.4)

Hence, $\|u^+\|_{1,p} \geq c/s^+ \geq c' > 0$ for each $u \in \mathcal{A}$.

Consider these minimization problem

$$\gamma(\mathbb{R}^N) = \inf_{u \in \mathbf{M}_0} J(u).$$ \hfill (4.5)

By Lemma 4.1, $\gamma(\mathbb{R}^N) > 0$.

Lemma 4.2. There exists a sequence $\{u_n\} \subset \mathcal{A}$ such that $J(u_n) = \gamma(\mathbb{R}^N) + o_n(1)$ and $J'(u_n) = o_n(1)$ strongly in $W^{1,p}(\mathbb{R}^N)$ as $n \to \infty$.

Proof. It is similar to the proof of Zhu [13]. \hfill \Box

Lemma 4.3. Let f and g be real-valued functions in \mathbb{R}^N. If $g(z) > 0$ in \mathbb{R}^N, then one has the following inequalities:

(i) $(f + g)^+ \geq f^+$,
(ii) $(f + g)^- \leq f^-$,
(iii) $(f - g)^+ \leq f^+$,
(iv) $(f - g)^- \geq f^-$.

Lemma 4.4. Let $\{u_n\} \subset \mathcal{A}$ be a $(PS)_{\gamma(\mathbb{R}^N)}$-sequence in $W^{1,p}(\mathbb{R}^N)$ for J satisfying

$$a(\mathbb{R}^N) < \gamma(\mathbb{R}^N) < a(\mathbb{R}^N) + a^{\infty}(\mathbb{R}^N) \left(< 2a^{\infty}(\mathbb{R}^N) \right).$$ \hfill (4.6)

Then there exists $u^* \in \mathbf{M}_0$ such that u_n converges to u^* strongly in $W^{1,p}(\mathbb{R}^N)$ and u^* is a higher-energy solution of (1.1) such that $J(u^*) = \gamma(\mathbb{R}^N)$.

Proof. By the definition of the $(PS)_{\gamma(\mathbb{R}^N)}$-sequence in $W^{1,p}(\mathbb{R}^N)$ for J, it is easy to see that $\{u_n\}$ is a bounded sequence in $W^{1,p}(\mathbb{R}^N)$ and satisfies

$$\int_{\mathbb{R}^N} (|\nabla u_n^+|^p + |u_n^+|^p) \, dz = \int_{\mathbb{R}^N} Q(z)|u_n^+|^q \, dz + o_n(1).$$ \hfill (4.7)
By Lemma 4.1(ii), there exists \(c' > 0 \) such that

\[
c' \leq \int_{\mathbb{R}^N} (|\nabla u_n|^p + |u_n|^p)\,dz = \int_{\mathbb{R}^N} Q(z)|u_n|^q\,dz + o_n(1). \tag{4.8}
\]

Using the Palais-Smale Decomposition Lemma 3.1, then we have \(\gamma(\mathbb{R}^N) = J(u^*) + \sum_{i=1}^l J(\omega_i) \), where \(u^* \) is a solution of (1.1) in \(\mathbb{R}^N \) and \(\omega_i \) is a solution of (1.2) in \(\mathbb{R}^N \). Since \(J(\omega_i) \geq \alpha^\infty(\mathbb{R}^N) \) for each \(i \in \mathbb{N} \) and \(\alpha(\mathbb{R}^N) < \alpha^\infty(\mathbb{R}^N) \), we have \(l \leq 1 \). Now we want to show that \(l = 0 \). On the contrary, suppose that \(l = 1 \).

(i) \(\omega_1 \) is a sign-changing solution of (1.2): by Lemma 2.3 and Remark 2.8, we have \(\gamma(\mathbb{R}^N) \geq 2\alpha^\infty(\mathbb{R}^N) \), which is a contradiction.

(ii) \(\omega_1 \) is a constant-sign solution of (1.2): we may assume that \(\omega_1 > 0 \). Applying the Decomposition Lemma 3.1, there exists a sequence \(\{z_n^1\} \) in \(\mathbb{R}^N \) such that \(|z_n^1| \to \infty \), and

\[
\left\| u_n - u^* - \omega_1 \left(\cdot - z_n^1 \right) \right\|_{L^1_p} = o_n(1). \tag{4.9}
\]

By the Sobolev continuous embedding inequality, we obtain

\[
\left\| u_n - u^* - \omega_1 \left(\cdot - z_n^1 \right) \right\|_{L^q} = o_n(1). \tag{4.10}
\]

Since \(\omega_1 > 0 \), by Lemma 4.3, then

\[
\left\| (u_n - u^*)^+ \right\|_{L^q} = o_n(1) \quad \text{as} \quad n \to \infty. \tag{4.11}
\]

(a) Suppose that \(u^* \equiv 0 \); we obtain \(\|u_n^+\|_{L^q} = o_n(1) \) as \(n \to \infty \). Then

\[
0 < c' \leq \int_{\mathbb{R}^N} Q(z)|u_n^-|^q\,dz = o_n(1), \tag{4.12}
\]

which is a contradiction.

(b) Suppose that \(u^* \neq 0 \). We have \(\gamma(\mathbb{R}^N) = J(u^*) + J^\infty(\omega_1) \geq \alpha(\mathbb{R}^N) + \alpha^\infty(\mathbb{R}^N) \), which is a contradiction.

By (i) and (ii), then \(l = 0 \). Thus, \(\|u_n - u^*\|_{L^1_p} = o_n(1) \) as \(n \to \infty \) and \(J(u^*) = \gamma(\mathbb{R}^N) \). Finally, we claim that \(u^* \) is a sign-changing solution of (1.1) in \(\mathbb{R}^N \). If \(u^* > 0 \) (or \(< 0 \)), by Lemma 4.3, then \(\|u_n^+\|_{L^q} = o_n(1) \) (or \(\|u_n^-\|_{L^q} = o_n(1) \)). Similarly, we have the inequality (4.12), which is a contradiction. Moreover, by Lemma 2.3, \(2\alpha(\mathbb{R}^N) \leq \gamma(\mathbb{R}^N) \).

Recall that \(\omega \) is the positive ground-state solution of (1.2) in \(\mathbb{R}^N \). For any \(\varepsilon > 0 \), there exist positive numbers \(C_1 \) and \(C_2 \) such that

\[
C_2 \exp\left(-(|\theta + \varepsilon)|z| \right) \leq \omega(z) \leq C_1 \exp\left(-(|\theta - \varepsilon)|z| \right) \quad \forall z \in \mathbb{R}^N, \tag{4.13}
\]
where \(\theta = (p - 1)^{-1/p}. \) Define
\[
\omega_n(z) = \omega(z - z_n) \quad \text{where } z_n = (0, \ldots, 0, n) \in \mathbb{R}^N.
\] (4.14)

Clearly, \(\omega_n(z) \in W^{1,p}(\mathbb{R}^N). \)

Lemma 4.5. There are \(n_0 \in \mathbb{N} \) and real numbers \(t_1^* \) and \(t_2^* \) such that for \(n \geq n_0 \)
\[
t_1^* u_0 - t_2^* w_n \in M_0, \quad \gamma\left(\mathbb{R}^N\right) \leq J(t_1^* u_0 - t_2^* w_n),
\] (4.15)

where \(1/p \leq t_1^*, t_2^* \leq p, \) and \(u_0 \) is the positive ground-state solution of (1.1) in \(\mathbb{R}^N. \)

Proof. Applying the mean value theorem by Miranda [14], the proof is similar to that of Zhu [13] (or see Hsu [15, page 728]). \(\Box \)

We need the following lemmas to prove that \(\sup_{1/p < t_1^*, t_2^* < 1/p} J(t_1^* u_0 - t_2^* w_n) < \alpha(\mathbb{R}^N) + \alpha^\infty(\mathbb{R}^N) \) for sufficiently large \(n. \)

Lemma 4.6. Let \(E \) be a domain in \(\mathbb{R}^N. \) If \(f : E \to \mathbb{R} \) satisfies
\[
\int_E |f(z) e^{\sigma |z|}| dz < \infty \quad \text{for some } \sigma > 0,
\] (4.16)

then
\[
\left(\int_E f(z) e^{-\sigma |z|} e^{|z||z|} dz\right) e^{\sigma |z|} = \int_E f(z) e^{\sigma (|z| + |z|)} dz + O(1) \quad \text{as } |z| \to \infty.
\] (4.17)

Proof. Since \(\sigma |z| \leq \sigma |z| + \sigma |z - z|, \) we have
\[
\left| f(z) e^{-\sigma |z|} e^{\sigma |z|}\right| \leq \left| f(z) e^{\sigma |z|}\right|.
\] (4.18)

Since \(-\sigma |z - z| + \sigma |z| = \sigma(|z| + |z|) + O(1) \) as \(|z| \to \infty, \) then the lemma follows from the Lebesgue-dominated convergence theorem. \(\Box \)

Lemma 4.7. For all \(x, y \in \mathbb{R}^N, \) one has the following inequality:
\[
|x - y|^{\rho} \leq \left(|x|^{\rho - 2} x - |y|^{\rho - 2} y\right)(x - y), \quad \text{where } \rho \geq 2.
\] (4.19)

Proof. See Yang [16, Lemma 4.2.]. \(\Box \)

Lemma 4.8. There exists an \(n_0^* \in \mathbb{N} \) such that for \(n \geq n_0^* \geq n_0 \)
\[
\gamma\left(\mathbb{R}^N\right) \leq \sup_{1/p < t_1^*, t_2^* < 1/p} J(t_1^* u_0 - t_2^* w_n) < \alpha(\mathbb{R}^N) + \alpha^\infty(\mathbb{R}^N),
\] (4.20)

where \(u_0 \) is a positive ground-state solution of (1.1) in \(\mathbb{R}^N. \)
Proof. By Lemma 4.7, then

\[
J(t_1^* u_0 - t_2^* w_n)
\]

\[
= \frac{1}{p} \left\| t_1^* u_0 - t_2^* w_n \right\|_{1,p}^p - \frac{1}{q} b(t_1^* u_0 - t_2^* w_n)
\]

\[
\leq \frac{1}{p} \left\{ \int_{\mathbb{R}^N} \left(|\nabla (t_1^* u_0)|^{p-2} \nabla (t_1^* u_0) - |\nabla (t_2^* w_n)|^{p-2} \nabla (t_2^* w_n) \right) \right\}
\]

\[
+ \frac{1}{p} \left\{ \int_{\mathbb{R}^N} \left(|t_1^* u_0|^{p-2} (t_1^* u_0) - |t_2^* w_n|^{p-2} (t_2^* w_n) \right) \right\} - \frac{1}{q} b(t_1^* u_0 - t_2^* w_n)
\]

\[
\leq J(t_1^* u_0) + J^\infty(t_2^* w) - \frac{(t_2^*)^q}{q} \int_{\mathbb{R}^N} (Q(z) - Q_\infty) w(z-z_n)^q dz
\]

\[
- \frac{1}{q} b(t_1^* u_0 - t_2^* w_n) + \frac{1}{q} b(t_1^* u_0) + \frac{1}{q} b(t_2^* w_n).
\]

(4.21)

Since \(\sup_{t \geq 0} J(t u_0) = \alpha(\mathbb{R}^N) \) and \(\sup_{t \geq 0} J^\infty(t w) = \alpha^\infty(\mathbb{R}^N) \), using the inequality

\[
|c_1 - c_2|^q > c_1^q + c_2^q - K \left(c_1^{q-1} c_2 + c_1 c_2^{q-1} \right),
\]

(4.22)

for any \(c_1, c_2 > 0 \), and some positive constant \(K \), then

\[
\sup_{1/p \leq 1, t_2^* \leq \infty} J(t_1^* u_0 - t_2^* w_n) \leq \alpha(\mathbb{R}^N) + \alpha^\infty(\mathbb{R}^N) - \frac{1}{pq} \int_{\mathbb{R}^N} (Q(z) - Q_\infty) w(z-z_n)^q dz
\]

\[
+ K' \left[\int_{\mathbb{R}^N} \left(u_0^{q-1} w_n + w_0^{q-1} u_0 \right) dz \right].
\]

(4.23)

(i) Since \(Q(z) \geq Q_\infty + C \exp(-\delta |z|) \) for some constants \(C > 0 \) and \(0 < \delta < \theta \), by Lemma 4.6, we have that there exists an \(n_1 \geq n_0 \) such that for \(n \geq n_1 \)

\[
\int_{\mathbb{R}^N} (Q(z) - Q_\infty) w(z-z_n)^q dz \geq C' \exp\left(-\min\{\delta, q(\theta + \epsilon)\} |\Xi| \right) \geq C' \exp(-\delta n).
\]

(4.24)

(ii) Applying Lemma 4.6, there exists an \(n_2 \geq n_1 \) such that for \(n \geq n_2 \)

\[
\int_{\mathbb{R}^N} u_0^{q-1} w_n dz \leq C_1 \int_{\mathbb{R}^N} \exp\left(-(q-1)(\theta - \epsilon)|z|\right) \exp\left(-(\theta - \epsilon)|z-z_n|\right) dz \leq C_1' \exp\left(-(\theta - \epsilon)n\right).
\]

(4.25)
Similarly, we also obtain that there exists an \(n_3 \geq n_2 \) such that for \(n \geq n_3 \)

\[
\int_{\mathbb{R}^N} u_{n}^{q-1} u_0 \, dz \leq C_1^n \exp(-\varepsilon n) \tag{4.26}
\]

By (i) and (ii), choosing \(0 < \varepsilon < \theta - \delta \), we can find an \(n_0^* \geq n_3 \geq n_0 \) such that for \(n \geq n_0^* \)

\[
\sup_{1/p \leq t \leq p} J(t^1 u_0 - t^2 u_n) < a\big(\mathbb{R}^N\big) + a^\infty\big(\mathbb{R}^N\big). \tag{4.27}
\]

Theorem 4.9. Assume that \(Q \) is a positive continuous function in \(\mathbb{R}^N \) and satisfies (Q1) and (Q2), then (1.1) has a positive solution and a nodal solution in \(\mathbb{R}^N \).

Proof. By Lemmas 4.2, 4.4, 4.5, and 4.8 and Theorem 3.4, we obtain the proof.

References

