Research Article

Existence of Positive Solutions for Higher Order \((p, q)\)-Laplacian Two-Point Boundary Value Problems

Rajendra Prasad Kapula, 1 Penugurthi Murali, 1 and Kona Rajendrakumar 2

1 Department of Applied Mathematics, Andhra University, Visakhapatnam 530003, India
2 Department of Mathematics, VITAM College of Engineering, Visakhapatnam 531173, India

Correspondence should be addressed to Rajendra Prasad Kapula; rajendra92@rediffmail.com

Received 17 April 2013; Revised 17 July 2013; Accepted 17 July 2013

We derive sufficient conditions for the existence of positive solutions to higher order \((p, q)\)-Laplacian two-point boundary value problem,

\[
(-1)^{m_1+n_1-1}\phi_p(u^{(2m_1)}(t)))^{(n_1)} = f_1(t, u(t), v(t)), \quad t \in [0, 1],
\]

\[
(-1)^{m_2+n_2-1}\phi_q(v^{(m_2)}(t)))^{(2n_2)} = f_2(t, u(t), v(t)), \quad t \in [0, 1],
\]

where \(f_1, f_2\) are continuous functions from \([0, 1] \times \mathbb{R}^2\) to \([0, \infty)\), \(m_1, n_1, m_2, n_2 \in \mathbb{N}\) and \(1/p + 1/q = 1\). We establish the existence of at least three positive solutions for the two-point coupled system by utilizing five-functional fixed point theorem. And also, we demonstrate our result with an example.

1. Introduction

The goal of differential equations is to understand the physical phenomena of nature by developing mathematical models. Among all, a class of differential equations governed by nonlinear differential operators, which have wide applications and interest, has been developed to study such type of equations. In this theory, the most investigated operator is the classical \(p\)-Laplacian, given by \(\phi_p(y) := y|y|^{p-2}\) with \(p > 1\). These problems have a wide range of applications in physics and related sciences such as biophysics, plasma physics, and chemical reaction design. Due to the importance in both theory and applications, \(p\)-Laplacian boundary value problems have created a great deal of interest in recent years; we mention a few [1–11].

Recently, Prasad and Murali [12] established the existence of positive solutions of \(p\)-Laplacian singular boundary value problem on time scale,

\[
\phi_p(y^A(t)))^{v} + q(t) f(t, y(t), y^A(t)) = 0,
\]

\[
t \in (0, 1),
\]

by assuming suitable conditions on \(f\). Till now in the literature of boundary value problems, the theory was not developed to the system of higher order boundary value problems with \((p, q)\)-Laplacian. Mainly, this type of problems arises in radar invention models and microatom invention models.

Due to our interest in the literature, in this paper, we consider two-point higher order \((p, q)\)-Laplacian boundary value problem (BVP)

\[
(-1)^{m_1+n_1-1}\phi_p(u^{(2m_1)}(t)))^{(n_1)} = f_1(t, u(t), v(t)), \quad t \in [0, 1],
\]

\[
(-1)^{m_2+n_2-1}\phi_q(v^{(m_2)}(t)))^{(2n_2)} = f_2(t, u(t), v(t)), \quad t \in [0, 1],
\]

where \(f_1, f_2\) are continuous functions from \([0, 1] \times \mathbb{R}^2\) to \([0, \infty)\).
\[u^{(2i)}(0) = 0 = u^{(2i)}(1), \quad i = 0, 1, 2, \ldots, m_1 - 1, \]
\[\phi_p (u^{(2m_1)}(t)) \bigg|_{t=0}^{(j)} = 0, \quad j = 0, 1, 2, \ldots, n_1 - 2, \]
\[\phi_q (u^{(2m_1)}(t)) \bigg|_{t=1}^{(i)} = 0, \quad i = 0, 1, \ldots, n_2 - 1, \]
\[\phi_p (v^{(2m_2)}(t)) \bigg|_{t=0}^{(j)} = 0 = \phi_q (v^{(2m_2)}(t)) \bigg|_{t=1}^{(j)}, \quad j = 0, 1, 2, \ldots, m_2 - 2, \quad v(1) = 0, \]

(2)

where \(f_1, f_2 \) are continuous functions from \([0, 1] \times \mathbb{R}^2\) to \([0, \infty)\), \(m_1, n_1, m_2, n_2 \in \mathbb{N} \) and \(1/p + 1/q = 1 \). If we take \(p = q \) in the above problem then it reduces to \(p \)-Laplacian problem.

To obtain a solution of the BVP (2), we construct Green's functions for the corresponding homogeneous BVPs. For \(n_1 \geq 2 \), let \(G(t,s) \) be Green's function of the BVP,
\[(-1)^{n_1-1} x^{(n_1)}(t) = 0, \quad t \in [0,1], \]
\[x^{(j)}(0) = 0, \quad j = 0, 1, 2, \ldots, n_1 - 2, \quad x(1) = 0 \]
and it is given by
\[G(t,s) = \begin{cases} n_1-1 & \frac{(1-s)^{n_1-1}}{(n_1-1)!}, \quad 0 \leq t \leq s < 1, \\ n_1-1 & \frac{(1-s)^{n_1-1}-(t-s)^{n_1-1}}{(n_1-1)!}, \quad 0 < s \leq t \leq 1. \end{cases} \]

(3)

Let \(H_{m_1}(t,s) \) be Green's function of the BVP
\[(-1)^{m_1} y^{(2m_1)}(t) = 0, \quad t \in [0,1], \]
\[y^{(2)}(0) = 0 = y^{(2)}(1), \quad i = 0, 1, \ldots, m_1 - 1, \]
and it can be recursively defined as
\[H_{m_1}(t,s) = \int_0^1 H_{m_1-1}(t,r) H_1(r,s) \, dr, \]
where \(H_1(t,s) \) is Green's function of
\[-y''(t) = 0, \quad y(0) = 0 = y(1) \]
and is given by
\[H_1(t,s) = \begin{cases} t(1-s), & 0 \leq t \leq s < 1, \\ s(1-t), & 0 < s \leq t \leq 1. \end{cases} \]

(4)

Then \(u(t) \) can be expressed in the form
\[u(t) = \int_0^1 H_{m_1}(t,s) \phi_p^{-1} \times \left(\int_0^1 G(s,r) f_1(r,u(r),v(r)) \, dr \right) ds. \]

Since \(\phi_p^{-1} = \phi_q \), we have
\[u(t) = \int_0^1 H_{m_1}(t,s) \phi_q \left(\int_0^1 G(s,r) f_1(r,u(r),v(r)) \, dr \right) ds. \]

(10)

For \(n_1 = 1 \),
\[u(t) = \int_0^1 H_{m_1}(t,s) \phi_q \left(\int_0^1 f_1(r,u(r),v(r)) \, dr \right) ds. \]

(11)

For \(m_2 \geq 2 \), let \(H(t,s) \) be Green's function of the BVP
\[(-1)^{m_2-1} x^{(m_2)}(t) = 0, \quad t \in [0,1], \]
\[x^{(j)}(0) = 0, \quad j = 0, 1, 2, \ldots, m_2 - 2, \quad x(1) = 0 \]
and it is given by
\[H(t,s) = \begin{cases} m_2-1 & \frac{(1-s)^{m_2-1}}{(m_2-1)!}, \quad 0 \leq t \leq s < 1, \\ m_2-1 & \frac{(1-s)^{m_2-1}-(t-s)^{m_2-1}}{(m_2-1)!}, \quad 0 < s \leq t \leq 1. \end{cases} \]

(12)

Let \(G_{n_2}(t,s) \) be Green's function of the BVP
\[(-1)^{n_2} y^{(2n_2)}(t) = 0, \quad t \in [0,1], \]
\[y^{(2)}(0) = 0 = y^{(2)}(1), \quad i = 0, 1, \ldots, n_2 - 1, \]
and it can be recursively defined as
\[G_{n_2}(t,s) = \int_0^1 G_{n_2-1}(t,r) G_1(r,s) \, dr, \]
where \(G_1(t,s) \) is Green's function of
\[-y''(t) = 0, \quad y(0) = 0 = y(1) \]
and is given by
\[G_1(t,s) = \begin{cases} t(1-s), & 0 \leq t \leq s < 1, \\ s(1-t), & 0 < s \leq t \leq 1. \end{cases} \]

(13)

Then \(v(t) \) can be expressed in the form
\[v(t) = \int_0^1 H(t,s) \phi_q^{-1} \times \left(\int_0^1 G(s,r) f_2(r,u(r),v(r)) \, dr \right) ds. \]

Since \(\phi_q^{-1} = \phi_p \), we have
\[v(t) = \int_0^1 H(t,s) \phi_p \left(\int_0^1 G_{n_2}(s,r) f_2(r,u(r),v(r)) \, dr \right) ds. \]

(14)
For $m_2 = 1$,\footnote{For details refer to [11].}
\[
v(t) = \int_t^1 \phi_p \left(\int_0^1 G_{n_2}(s, \tau) f_2(\tau, u(\tau), v(\tau)) \, d\tau \right) \, ds.
\] (20)
Further, it is easily seen that $H_{m_1}(t, s), H(t, s), G_{n_1}(t, s)$ and $G(t, s)$, all are nonnegative on $[0, 1] \times [0, 1]$. A solution of the BVP (2) is a function $(u, v) \in C^{2m_2}_1[0, 1] \times C^{2m_2}_1[0, 1]$ such that $(\phi_p \circ u^{(2m_2)}_p, \phi_q \circ v^{(m_1)}_q) \in C^n_1[0, 1] \times C^{2n}_1[0, 1]$, and (u, v) satisfies the BVP (2).

A positive solution (u, v) of the BVP (2) is a solution of
\[
H(t, s) \geq 1 \quad (31)
\]
where $H(t, s)$ is the BVP (2)such that $u(t, s) \geq 1$ for $(t, s) \in [a, b]$, and $G(t, s)$ is the BVP (2)such that $u(t, s) \geq 1$ for $(t, s) \in [a, b]$.

The rest of the paper is organized as follows. In Section 2, we present the bounds of Green's functions. In Section 3, we establish the existence of at least three positive solutions for two-point BVP (2) by using Avery's generalization of Leggett-Williams fixed point theorem. And also, we find our result with an example.

2. Bounds of Green's Functions

In this section, we state some lemmas to estimate bounds on Green's functions which are needed in later discussions. The following lemma is included in the paper to prove the remaining lemmas.

Lemma 1. Let $w \in (0, (b-a)/2]$ and $I = [a + w, b - w]$. Then, for any $j \in \mathbb{N}$
\[
G_j(t, s) \geq \left(\frac{w}{b - a} \right)^j \phi_w^{j-1} G_1(s, s), \quad \forall (t, s) \in I \times [a, b],
\] (21)
where $\phi_w = \frac{b-w}{a+w} G_1(r, r) \forall r > 0$.

Proof. The proof is by induction. First, for $j = 1$ inequality (21) is obvious. Next, for fixed j, assume that (21) is true; from recursive formula we have, for each $(t, s) \in I \times [a, b]$,
\[
G_{j+1}(t, s) = \int_a^b G_j(t, r) G_1(r, s) \, dr
\]
\[
\geq \int_a^b \left(\frac{w}{b - a} \right)^j \phi_w^{j-1} G_1(r, r) G_1(r, s) \, dr
\]
\[
\geq \left(\frac{w}{b - a} \right)^j \phi_w^{j-1} \int_{a+w}^{b-w} G_1(r, r) G_1(r, s) \, dr
\]
\[
\geq \left(\frac{w}{b - a} \right)^j \phi_w^{j-1} \int_{a+w}^{b-w} G_1(r, r) \left(\frac{w}{b - a} \right) G_1(s, s) \, dr
\]
\[
= \frac{w}{b - a} \left(\frac{w}{b - a} \right)^{j-1} \phi_w G_1(s, s).
\] (22)
Hence, by induction the proof is complete. \Box

In the previous lemma by choosing $a = 0, b = 1,$ and $w = 1/4, w = 1/3, \text{and } w = 1/8$, we get $I = [1/4, 3/4], I_1 = [1/3, 2/3], \text{and } I_2 = [1/8, 7/8]$. We know that $G_1(s, s) = s(1 - s)$.

Lemma 2. For $(t, s) \in I \times [0, 1]$, one has
\[
G_j(t, s) \geq \left(\frac{11}{6} \right)^{j-1} \frac{1}{4^{3j-2}} (1 - s). \quad (23)
\]
\[
G_j(t, s) \geq \left(\frac{13}{3} \right)^{j-1} (1 - s). \quad (24)
\]
\[
G_j(t, s) \geq \frac{39}{2048} \left(\frac{39}{2048} \right)^{j-1} (1 - s), \quad (25)
\]
where $j = 1, 2, \ldots, n_2$.

Lemma 3. For $t, s \in [0, 1]$, one has
\[
G_j(t, s) \leq \frac{1}{6^{j-1}} (1 - s), \quad (26)
\]
where $j = 1, 2, \ldots, n_2$.

For details refer to [9].

In Lemma 1, replacing $G_j(\cdot, \cdot)$ by $H_j(\cdot, \cdot)$, we have the following.

Lemma 4. For $(t, s) \in I \times [0, 1]$, one has
\[
H_j(t, s) \geq \left(\frac{11}{6} \right)^{j-1} \frac{1}{4^{3j-2}} (1 - s). \quad (27)
\]
\[
H_j(t, s) \geq \left(\frac{13}{3} \right)^{j-1} (1 - s). \quad (28)
\]
\[
H_j(t, s) \geq \frac{39}{2048} \left(\frac{39}{2048} \right)^{j-1} (1 - s), \quad (29)
\]
where $j = 1, 2, \ldots, m_1$.

Lemma 5. For $t, s \in [0, 1]$, one has
\[
H_j(t, s) \leq \frac{1}{6^{j-1}} (1 - s), \quad (30)
\]
where $j = 1, 2, \ldots, m_1$.

For details refer to [9].

Lemma 6. For $(t, s) \in I \times [0, 1]$, one has
\[
H(t, s) \geq \frac{1}{4^{m_1}} H(s, s). \quad (31)
\]
\[
H(t, s) \geq \frac{1}{3^{m_1}} H(s, s). \quad (32)
\]
\[
H(t, s) \geq \frac{1}{8^{m_1}} H(s, s). \quad (33)
\]
For details refer to [11].
Lemma 7. For \(t, s \in [0, 1] \), one has
\[
H(t, s) \leq H(s, s).
\]
For details refer to [11].

Lemma 8. For \((t, s) \in I \times [0, 1]\), one has
\[
G(t, s) \geq \frac{1}{n^2-1}G(s, s).
\]
For \((t, s) \in I_1 \times [0, 1]\), one has
\[
G(t, s) \geq \frac{1}{3^2-1}G(s, s).
\]
For \((t, s) \in I_2 \times [0, 1]\), one has
\[
G(t, s) \geq \frac{1}{8^2-1}G(s, s).
\]
For details refer to [11].

Lemma 9. For \((t, s) \in [0, 1]\), one has
\[
G(t, s) \leq G(s, s).
\]
For details refer to [11].

Denote
\[
M = \min \left\{ \left(\frac{11}{6} \right)^{j-1} \phi_j \left(\frac{1}{4^{m-1}} \right), j = 1, \ldots, m_1 - 1, \right. \]
\[
\left. \frac{1}{4^{m_2-1}} \phi_j \left(\left(\frac{11}{6} \right)^{j-1} \frac{1}{4^{m_2-1}} \right), j = 1, \ldots, n_2 - 1 \right\}.
\]

3. Existence of Multiple Positive Solutions

In this section, we establish the existence of at least three positive solutions for the system of BVP (2), by using Avery’s generalization of the Leggett-Williams fixed point theorem.

Let \(B \) be a real Banach space with cone \(P \). We define the nonnegative continuous convex functionals \(\gamma, \beta, \) and \(\theta \) and nonnegative continuous concave functionals \(\alpha, \psi \) on \(P \), for nonnegative numbers \(a', b', c', d', \) and \(h' \); we define the following sets:
\[
P(\gamma, c') = \{ y \in P \mid \gamma(y) < c' \},
\]
\[
P(\gamma, \alpha, a', c') = \{ y \in P \mid a' \leq \alpha(y), \gamma(y) \leq c' \},
\]
\[
Q(\gamma, \beta, d', c') = \{ y \in P \mid \beta(y) \leq d', \gamma(y) \leq c' \},
\]
\[
Q(\gamma, \beta, \psi, h', d', c') = \{ y \in P \mid h' \leq \psi(y), \beta(y) \leq d', \gamma(y) \leq c' \}.
\]

In obtaining multiple positive solutions of the BVP (2), the following so-called five-functionals fixed point theorem will be fundamental.

Theorem 10 (see [4]). Let \(P \) be a cone in a real Banach space \(B \). Suppose \(\alpha \) and \(\psi \) are nonnegative continuous concave functionals on \(P \) and \(\gamma \); \(\beta \) and \(\theta \) are nonnegative continuous convex functionals on \(P \) such that, for some positive numbers \(c' \) and \(k \),
\[
\alpha(y) \leq \beta(y), \quad \|y\| \leq ky(y) \quad \forall y \in \overline{P(y, c')}.
\]

Suppose further that \(T : \overline{P(y, c')} \to \overline{P(y, c')} \) is completely continuous, and there exist constants \(h', d', a', b', c' \geq 0 \) with \(0 < a' < d' \) such that each of the following is satisfied
\[
\begin{align*}
(\text{B1}) & \quad \{ y \in P(y, \theta, \alpha, a', b', c') \mid \alpha(y) > a' \} \neq \emptyset, \\
(\text{B2}) & \quad \{ y \in Q(\gamma, \beta, \psi, h', d', c') \mid \beta(y) < d' \} \neq \emptyset, \\
(\text{B3}) & \quad \alpha(Ty) > a' \quad \text{for } y \in P(y, \alpha, a', c') \quad \text{with } \theta(Ty) > b', \\
(\text{B4}) & \quad \beta(Ty) < d' \quad \text{for } y \in Q(\gamma, \beta, d', c') \quad \text{with } \psi(Ty) < h'.
\end{align*}
\]

Then \(T \) has at least three fixed points \(y_1, y_2, y_3 \in \overline{P(y, c')} \) such that
\[
\beta(y_1) < d', \quad a < \alpha(y_2), \quad d' < \beta(y_3) \quad \text{with } \alpha(y_3) < a'.
\]
We observe that, for any \((u, v) \in P\),
\[
\alpha(u, v) = \min_{t \in I} (u(t) + v(t)) \leq \beta(u, v),
\]
\[
\|u, v\| = \frac{1}{\mathcal{M}} \min_{t \in I} (u(t) + v(t))
\]
\[
\leq \frac{1}{\max_{t \in I}(u(t) + v(t))} = \frac{1}{\mathcal{M}} \gamma(u, v).
\]

We derive growth conditions on \(f_1, f_2\) so that the BVP (2) has at least three positive solutions. We are now ready to present the main result of this section.

We denote
\[
\mathcal{S} = \int_{0}^{1} G(\tau, \tau) \, d\tau; \quad \mathcal{R} = \int_{0}^{1} H(s, s) \, ds.
\]

Theorem 11. Suppose there exists \(0 < a^1 < b^1 < b^1 / \mathcal{M} < c^1\) such that \(f_1, f_2\) satisfy the following conditions:

\(\text{(A1)}\) \(|f_1(t, u, v)| < \phi_1(6^{m^1}a^1 / 2\mathcal{S})\) and \(|f_2(t, u, v)| < 6^{m^2}\phi_2(a^1 / 2\mathcal{R})\), for all \(t \in [0, 1]\) and \(u, v \in [a^1, a^1]\),

\(\text{(A2)}\) \(|f_1(t, u, v)| > 4^{n_1 - 3}\phi_1(b^1 6^{m^2}4^{11n^1 - 1})\) for all \(t \in [1/4, 3/4]\) and \(u, v \in [b^1, b^1 / \mathcal{M}]\) or

\(|f_2(t, u, v)| > 6^{n_2}4^{11n^1 - 2}\phi_2(4^{n_2} \mathcal{R})\) for all \(t \in [1/4, 3/4]\) and \(u, v \in [b^1, b^1 / \mathcal{M}]\),

\(\text{(A3)}\) \(|f_1(t, u, v)| < \phi_1(6^{m^3}c^1 / 2\mathcal{S})\) and \(|f_2(t, u, v)| < 6^{n_3}\phi_2(c^1 / 2\mathcal{R})\), for all \(t \in [0, 1]\) and \(u, v \in [0, c^1]\).

Then the BVP (2) has at least three positive solutions.

Proof. Define the completely continuous operator \(T : P \rightarrow B\) by

\[
T(u, v) = \left(\int_{0}^{1} H_{m_1}(t, s) \phi_1 \left(\int_{0}^{1} G(s, \tau) f_1(\tau, u(\tau), v(\tau)) \, d\tau\right) \, ds, \int_{0}^{1} H(t, s) \phi_p \left(\int_{0}^{1} G_{n_2}(s, \tau) f_2(\tau, u(\tau), v(\tau)) \, d\tau\right) \, ds\right).
\]

And also we denote

\[
T_1(u, v) := \int_{0}^{1} H_{m_1}(t, s) \phi_1 \left(\int_{0}^{1} G(s, \tau) f_1(\tau, u(\tau), v(\tau)) \, d\tau\right) \, ds,
\]

\[
T_2(u, v) := \int_{0}^{1} H(t, s) \phi_p \left(\int_{0}^{1} G_{n_2}(s, \tau) f_2(\tau, u(\tau), v(\tau)) \, d\tau\right) \, ds.
\]

It is obvious that a fixed point of \(T\) is a solution of the BVP (2). We seek three fixed points \((x_1, x_2), (y_1, y_2), \) and \((z_1, z_2) \in P\) of \(T\). First, we show that \(T : P \rightarrow P\). Let \((u, v) \in P\). Clearly, \(T_1(u, v)(t) \geq 0, T_2(u, v)(t) \geq 0\) for \(t \in [0, 1]\). Consider

\[
\min_{t \in I} T(u, v) = \min_{t \in I} (T_1(u, v)(t) + T_2(u, v)(t))
\]

\[
= \min_{t \in I} T_1(u, v)(t) + \min_{t \in I} T_2(u, v)(t)
\]

\[
\geq \min_{t \in I} \mathcal{M} \|T(u, v)\|_0 + \min_{t \in I} \mathcal{M} \|T(u, v)\|_0
\]

Thus, \(T : P \rightarrow P\). Next, for all \((u, v) \in P\), by (46), (47), respectively, we have \(\alpha(u, v) \leq \beta(u, v)\) and \(\|u, v\| \leq (1/\mathcal{M}) \gamma(u, v)\). To show that \(T : \overline{P(y, c^1)} \rightarrow \overline{P(y, c^1)}\), let \((u, v) \in \overline{P(y, c^1)}\). This implies \(\|u, v\| \leq (1/\mathcal{M}) c^1\). We may now use condition (A3) to obtain

\[
\gamma(T_1(u, v), T_2(u, v))
\]

\[
= \max_{t \in I_2} \left(\int_{0}^{1} G(s, \tau) f_1(\tau, u(\tau), v(\tau)) \, d\tau\right) \, ds
\]

\[
\times \left(\int_{0}^{1} G(t, s) \phi_p \left(\int_{0}^{1} G_{n_2}(s, \tau) f_2(\tau, u(\tau), v(\tau)) \, d\tau\right) \, ds\right)
\]

\[
\leq \max_{t \in I_2} \frac{1}{6^{m^1 - 1}} \int_{0}^{1} s(1 - s) \phi_p^{-1} \, ds
\]

\[
\times \left(\int_{0}^{1} G(t, \tau) f_1(\tau, u(\tau), v(\tau)) \, d\tau\right) \, ds
\]

\[
\times \left(\int_{0}^{1} G_{n_2}(s, \tau) f_2(\tau, u(\tau), v(\tau)) \, d\tau\right) \, ds
\]

\[
= \frac{1}{6^{m^1 - 1}} \phi_p^{-1} \left(\int_{0}^{1} G(t, \tau) f_1(\tau, u(\tau), v(\tau)) \, d\tau\right)
\]

\[
\times \int_{0}^{1} s(1 - s) \, ds
\]

\[
+ \int_{0}^{1} H(s, s) \phi_p^{-1} \, ds
\]

\[
\times \left(\int_{0}^{1} G_{n_2}(s, \tau) f_2(\tau, u(\tau), v(\tau)) \, d\tau\right) \, ds
\]

\[
= \frac{1}{6^{m^1 - 1}} \phi_p^{-1} \left(\int_{0}^{1} G(t, \tau) f_1(\tau, u(\tau), v(\tau)) \, d\tau\right)
\]

\[
\times \int_{0}^{1} s(1 - s) \, ds
\]

\[
+ \int_{0}^{1} H(s, s) \phi_p^{-1} \, ds
\]
\[P(\gamma, \theta, \alpha, b, c) \]

\[\frac{b' + b'/\mathcal{M}}{2} \]

\[\in \{(u, v) \in P(\gamma, \theta, \alpha, b', b'/\mathcal{M}, c') | \alpha(u, v) > b'\} \neq \emptyset. \]

Next, let \((u, v) \in P(\gamma, \theta, \alpha, b', b'/\mathcal{M}, c').\) It follows that from (A2)

\[\alpha(T_1(u, v), T_2(u, v)) = \min_{t \in \mathcal{T}} T_1(u, v)(t) + T_2(u, v)(t) \]

\[\geq \min_{t \in \mathcal{T}} T_1(u, v)(t) \]

\[= \min_{t \in \mathcal{T}} \int_0^1 H_m(t, s) \phi_p^{-1} \]

\[\times \left(\int_0^1 G(\tau, \tau) f_1(\tau, u(\tau), v(\tau)) d\tau \right) ds \]

\[\geq \int_0^1 \frac{11^n - 1}{6^{m-1}4^{n-2}} \phi_p^{-1} \]

\[\times \left(\int_0^1 \frac{1}{4^{n-1}} G(\tau, \tau) f_1(\tau, u(\tau), v(\tau)) d\tau \right) ds \]

\[= \left(\frac{11^n - 1}{6^{m-1}4^{n-2}} \right) \phi_p^{-1} \]

\[\times \left(\int_0^1 \frac{1}{4^{n-1}} G(\tau, \tau) f_1(\tau, u(\tau), v(\tau)) d\tau \right) \]

\[\times \int_0^1 s(1-s) ds \]

\[\geq \left(\frac{11^n - 1}{6^{m-1}4^{n-2}} \right) \phi_p^{-1} \]

\[\times \left(\int_0^1 \frac{1}{4^{n-1}} G(\tau, \tau) f_1(\tau, u(\tau), v(\tau)) d\tau \right) \]

\[\times \left(\int_0^1 G(\tau, \tau) f_1(\tau, u(\tau), v(\tau)) d\tau \right) = b'. \]

Similarly,

\[\min_{t \in \mathcal{T}} \int_0^1 H(t, s) \phi_q^{-1} \]

\[\times \left(\int_0^1 G_n(s, \tau) f_2(\tau, u(\tau), v(\tau)) d\tau \right) ds \]

\[\geq \int_0^1 \frac{1}{4^{m-1}} H(t, s) \phi_q^{-1} \]

\[\times \left(\int_0^1 \frac{11^{m-1}}{6^{n-1}4^{m-2}} (1-\tau) f_2(\tau, u(\tau), v(\tau)) d\tau \right) ds \]

\[\times \int_0^1 H(t, s) ds = b'. \]

and, hence, we have \(\alpha(T_1(u, v), T_2(u, v)) \geq b'.\)

Next, we show that (B2) is fulfilled. The constant function is

\[\frac{a'\mathcal{M} + a'}{2} \]

\[\in \{(u, v) \in Q(\gamma, \beta, \psi, a', \mathcal{M}, a', c') | \beta(v_1, v_2) < a'\} \neq \emptyset. \]

Let \((u, v) \in Q(\gamma, \beta, \psi, a', \mathcal{M}, a', c').\) And from (A1),

\[\beta(T_1(u, v), T_2(u, v)) = \max_{t \in \mathcal{T}} (T_1(u, v)(t) + T_2(u, v)(t)) \]

\[= \max_{t \in \mathcal{T}} \int_0^1 H_m(t, s) \phi_p^{-1} \]

\[\times \left(\int_0^1 G(s, \tau) f_1(s, u(\tau), v(\tau)) d\tau \right) ds \]

\[+ \max_{t \in \mathcal{T}} \int_0^1 H(t, s) \phi_q^{-1} \]

\[\times \left(\int_0^1 G_n(s, \tau) f_2(s, u(\tau), v(\tau)) d\tau \right) ds \]

\[\leq \max_{t \in \mathcal{T}} \frac{1}{6^{m-1}} \int_0^1 s(1-s) \phi_p^{-1} \]

\[\times \left(\int_0^1 G(s, \tau) f_1(s, u(\tau), v(\tau)) d\tau \right) ds \]

\[\times \left(\int_0^1 G_n(s, \tau) f_2(s, u(\tau), v(\tau)) d\tau \right) ds \]
\[+ \max_{t \in I} \int_0^1 H(s, s) \phi_q^{-1} \times \left(\int_0^1 \frac{1}{6^m-1} \tau (1 - \tau) f_2 (\tau, u(\tau), v(\tau)) d\tau \right) ds \]
\[= \frac{1}{6^m-1} \phi_p^{-1} \left(\int_0^1 G(\tau, \tau) f_1 (\tau, u(\tau), v(\tau)) d\tau \right) \times \int_0^1 s (1 - s) ds \]
\[+ \int_0^1 H(s, s) \phi_q^{-1} \times \left(\int_0^1 \frac{1}{6^m-1} \tau (1 - \tau) f_2 (\tau, u(\tau), v(\tau)) d\tau \right) ds \]
\[= \frac{1}{6^m-1} \phi_p^{-1} \left(\int_0^1 G(\tau, \tau) f_1 (\tau, u(\tau), v(\tau)) d\tau \right) \times \int_0^1 H(s, s) ds \]
\[+ \frac{1}{4^m-1} \phi_q^{-1} \times \left(\int_0^1 \frac{1}{6^m-1} \tau (1 - \tau) f_2 (\tau, u(\tau), v(\tau)) d\tau \right) \times \int_0^1 s (1 - s) ds \]
\[+ \int_0^1 H(s, s) \phi_q^{-1} \times \left(\int_0^1 \frac{1}{6^m-1} \tau (1 - \tau) f_2 (\tau, u(\tau), v(\tau)) d\tau \right) ds = a'. \]

Finally, we show that (B4) holds. Let \((u, v) \in Q(\gamma, \beta, a', c')\) with \(\psi(T_1(u, v), T_2(u, v)) < d' / \mathcal{M}\). Using (23), (27), (31), and (35), we have

\[\beta(T_1(u, v), T_2(u, v)) \]
\[= \max_{t \in I} \int_0^1 H_m (t, s) \phi_p^{-1} \times \left(\int_0^1 G(s, \tau) f_1 (\tau, u(\tau), v(\tau)) d\tau \right) ds \]
\[+ \max_{t \in I} \int_0^1 H(t, s) \phi_q^{-1} \times \left(\int_0^1 G_n (s, \tau) f_2 (\tau, u(\tau), v(\tau)) d\tau \right) ds \]
\[+ \frac{1}{6^m-1} \phi_p^{-1} \left(\int_0^1 \frac{1}{6^m-1} \tau (1 - \tau) f_2 (\tau, u(\tau), v(\tau)) d\tau \right) \times \int_0^1 G_n (s, \tau) f_2 (\tau, u(\tau), v(\tau)) d\tau d\tau \]
\[+ \int_0^1 H(s, s) \phi_q^{-1} \times \left(\int_0^1 \frac{1}{4^m-1} G(\tau, \tau) f_1 (\tau, u(\tau), v(\tau)) d\tau \right) ds \]
\[+ \int_0^1 \frac{1}{4^m-1} G(\tau, \tau) f_1 (\tau, u(\tau), v(\tau)) d\tau d\tau \]
\[
= \left(\frac{11^{m_1-1}}{6^{m_1-1}4^{m_2-2}} \right) \phi^{-1}_p \times \left(\int_0^1 \frac{1}{4^{m_1-1}} G(r, r) f_1(r, u(r), v(r)) \, dr \right) \\
\times \left(\int_0^1 s(1-s) \, ds \right) \\
+ \frac{1}{4^{m_1-1}} \phi^{-1}_q \\
\times \left(\frac{11^{m_1-1}}{6^{m_1-1}4^{m_2-2}} \int_0^1 (1-r) f_2(r, u(r), v(r)) \, dr \right) \\
\times \int_0^1 H(s, s) \, ds \\
= \mathcal{M} \psi \left(T_1(u, v), T_2(u, v) \right) > a'.
\]

\[\tag{60}\]

We have proved that all the conditions of Theorem 10 are satisfied, and so there exist at least three positive solutions. Therefore the BVP (2) has at least three positive solutions. This completed the proof of the theorem. \(\Box\)

4. Example

Considering the higher order \((p,q)\)-Laplacian two-point boundary value problem,

\[(-1)^j \left[\phi_p \left(u''(t) \right) \right]^{(j)} = f_1(t, u(t), v(t)), \quad t \in [0, 1], \]

\[(-1)^j \left[\phi_q \left(v'(t) \right) \right]^{(j)} = f_2(t, u(t), v(t)), \quad \frac{1}{p} + \frac{1}{q} = 1, \]

\[u(0) = 0 = u(1), \]

\[\left[\phi_p \left(u''(t) \right) \right]_{t=0}^{j} = 0, \quad j = 0, 1, \]

\[\left[\phi_p \left(u''(t) \right) \right]_{t=1}^{j} = 0, \]

\[\left[\phi_q \left(v'(t) \right) \right]_{t=0}^{j} = 0 = \left[\phi_q \left(v'(t) \right) \right]_{t=1}^{j}, \]

\[v(1) = 0, \]

where

\[f_1(t, u(t), v(t)) = \begin{cases}
12.09813u^2 - 577.134, & u, v \in [0.015625, 1], \\
0.267u + 11,520.73, & u, v \in [1, 16], \\
283.56u + 16,061.89, & u, v \in [16, 43],
\end{cases} \]

\[f_2(t, u(t), v(t)) = \begin{cases}
21.34u^2 + 3.67, & u, v \in [0.015625, 1], \\
0.34u + 24.67, & u, v \in [1, 16], \\
170.85u - 2,703.63, & u, v \in [16, 43],
\end{cases} \]

are continuous functions from \([0, 1] \times \mathbb{R}^2\) to \(\mathbb{R}\). A simple calculation shows that \(\mathcal{M} = 0.0625\), \((p = 2)\), \(\delta = 1/30\), and \(\mathcal{R} = 1\). If we choose \(a' = 1/4\), \(b = 1\), and \(c = 43\), then conditions (A1)–(A3) are satisfied. Therefore, it follows from Theorem II that the BVP (61) has at least three positive solutions.

Acknowledgment

One of the authors (Dr. Penugurthi Murali) is thankful to CSIR, India, for awarding him a Research Associate.

References
