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Abstract. 
We provide sufficient conditions for the existence of periodic solutions of the polynomial third order differential system ,  ,  and  , where , , and  are polynomials in the variables , , and  of degree  with  being periodic functions,  is a real number, and  is a small parameter.



1. Introduction and Statements of Results
One of the main problems in the theory of differential systems is the study of their periodic orbits, their existence, their number, and their stability. As usual, a limit cycle of a differential equation is a periodic orbit isolated in the set of all periodic orbits of the differential equation.
In this paper, we study the existence of the periodic orbits of the polynomial third order differential systemwhere  is a real number, , , and  are polynomials in the variables , , and  of degree ,  with  being periodic functions, and  is a small parameter.
This problem has been studied in the homogeneous case (more precisely in the case where  with ) by different authors by applying other versions of theorems of averaging method; see for instance [1–4]. More precisely, in paper [1], the authors considered the following system: where , , and  are polynomials in the variables , , and  of degree . They found that this system has at most  limit cycles bifurcating from the periodic orbits of the linear system , , and . Moreover, there are such perturbed systems having  limit cycles. In paper [2], the authors considered the following system: where , , and  are arbitrary polynomials of degree  starting with terms of degree 2. They found that there are systems in the previous system having at least  limit cycles bifurcating from the periodic orbits of the system , , and  In paper [3], the authors considered the following differential system:where , , and  are polynomials in the variables , , and  of degree  and  is a real number different from zero. They found that this system has at least  limit cycles bifurcating from the periodic orbits of the linear center contained in  when  In [4], the authors considered the homogeneous case of system (1) with  and the polynomials , , and  of degrees , , and . They found that there are at most  limit cycles bifurcating from the periodic orbits of the linear differential system , , and  where . In [5–8], the authors studied the limit cycles of classes of three order differential equations using averaging theory. There have been many papers studying the periodic solutions to third-order differential equations using Schauder’s or Leray Schauder’s fixed point theorem (see [9–11]) or the nonlocal reduction method (see [12, 13]).
There are very few results which study the bifurcation of limit cycle from the periodic orbits for 3-dimensional systems in ; see [14, 15].
To obtain analytically periodic solutions is in general a very difficult work, usually impossible. Here with the averaging theory we reduce this difficult problem for differential system (1) to find the zeros of a nonlinear system of three equations with three unknowns. It is known that in general the averaging theory for finding periodic solutions does not provide all the periodic solutions of the system. To explain this idea, there are two main reasons. First, the averaging theory for studying the periodic solutions of a differential system is based on the so-called displacement function, whose zeros provide periodic solutions. This displacement function in general is not global and consequently it cannot control all the periodic solution, only the ones which are in its domain of definition and that are hyperbolic. Second, the displacement function is expanded in power series of a small parameter , and the averaging theory only controls the zeros of the dominant term of this displacement function. When the dominant term is , we talk about the averaging theory of order . For more details, see for instance [16] and the references quoted there. For more information about averaging theory, see Section 2 of this paper.
Our main results on the periodic solutions of the differential system (1) are the following ones.
Theorem 1.  One considers differential system (1) with . One defines  where  If then for every  solution of the system satisfying differential system (1) with  has a periodic solution , which tends to the periodic solution given by of the differential system when . 
Note that this solution is periodic of period .
Theorem 2.  One considers differential system (1) with . One defines  where If then for every  solution of the system satisfying differential system (1) with  has a periodic solution , which tends to the periodic solution given by of the differential system when . 
Note that this solution is periodic of period .
Theorems 1 and 2 are proved in Section 3. Their proofs are based on the averaging theory for computing periodic orbits; see Section 2.
Corollary 3.  Consider differential system (1) with  where Then, this differential system has four periodic solutions with , tending to the periodic solutions  where of the differential system when . 
Corollary 3 is proved in Section 3.
Corollary 4.  Consider differential system (1) with  where Then, this differential system has two periodic solutions ,  tending to the periodic solutions of the differential system when . 
Corollary 4 is proved in Section 3.
2. Basic Results on Averaging Theory
In this section, we present the basic results on the averaging theory that we will need for proving the main results of this paper.
We consider the problem of the bifurcation of -periodic solutions from differential systems of the formwith  to  being sufficiently small. Here the functions  and  are  functions, -periodic in the first variable, and  is an open subset of . The main assumption is that the unperturbed systemhas a submanifold of periodic solutions. A solution of this problem is given using the averaging theory. For a general introduction to the averaging theory, see the books of Sanders and Verhulst [17] and of Verhulst [18].
Let  be the solution of system (26) such that . We write the linearization of the unperturbed system along a periodic solution  as
In what follows we denote by  some fundamental matrix of linear differential system (27) and by  the projection of  onto its first  coordinates; that is, . We assume that there exists a -dimensional submanifold  of  filled with -periodic solutions of (26). Then, an answer to the problem of bifurcation of -periodic solutions from the periodic solutions contained in  for system (25) is given in the following result.
Theorem 5.  Let  be an open and bounded subset of , and let  be a  function. We assume that (i) and that for each  the solution  of (26) is -periodic;(ii)for each  there is a fundamental matrix  of (27) such that the matrix  has in the upper right corner the  zero matrix and in the lower right corner a  matrix  with .
We consider the function : If there exists  with  and , then there is a -periodic solution  of system (25) such that  as . 
Theorem 5 goes back to Malkin [19] and Roseau [20]; for a shorter proof see [21].
We assume that there exists an open set  with  such that, for each ,  is -periodic, where  denotes the solution of the unperturbed system (26) with . The set  is isochronous for system (25); that is, it is a set formed only by periodic orbits, all of them having the same period. Then, an answer to the problem of the bifurcation of -periodic solutions from the periodic solutions  contained in  is given in the following result.
Theorem 6 (perturbations of an isochronous set).  One assumes that there exists an open and bounded set  with  such that, for each , the solution  is -periodic, considering a function  defined by If there exists an  with  and , then there exists a -periodic solution  to system (25) such that  as . 
For the proof of Theorem 6, please see Corollary  of [21].
3. Proof of Theorems and Corollaries
The solution of system (1) with  such that  iswhere 
So 
For studying the periodicity of this solution, we distinguish the two cases:  and . These two cases will be studied, respectively, in Theorems 1 and 2.
3.1. Proof of Theorem 1
We will apply Theorem 6 to differential system (1) with . We note that system (1) can be written as system (25) taking
We will study the periodic solutions of system (26) in our case, that is, the periodic solutions of system (1) with  and . The solutions (32) with  such that  are
These solutions are -periodic if and only if 
We obtain the following periodicity conditions: 
The set of periodic solutions (34) has dimension 3. To look for the periodic solutions of our system (1) with , we must calculate the zeros  of the system , where  is given by (29). The fundamental matrix  of the differential system (27) is
Now computing the function  given in (29), we find that the system  can be written aswhere where , , and  have been defined in the statement of Theorem 1. The zeros  of the systemwith respect to the variables , , and , provide periodic solutions of system (1) with  and  being sufficiently small if they are simple, that is, if
For simple zeros  of system (40), we obtain a -periodic solution  of differential system (1) with , for  being sufficiently small which tends to the periodic solution of the differential system when .
This completes the proof of Theorem 1.
3.2. Proof of Theorem 2
We will apply Theorem 5 to differential system (1) with . It can be written as system (25) taking 
We will study the periodic solutions of system (26) in our case, that is, the periodic solutions of system (1) with  and . The solution (32), with  such that , is
These solutions are -periodic if and only if 
We obtain the following periodicity conditions: 
The set of the periodic solutions becomes
The set of the periodic solutions (48) has dimension two. To look for the periodic solutions of our system (1) with , we must calculate the zeros  of the system , where  is given by (28). The fundamental matrix  of the differential system (27) is
It verifies 
Consequently, all the assumptions of Theorem 5 are satisfied. Therefore, we must study the zeros of the system  of two equations with two unknowns, where  is given in the statement of Theorem 5. More precisely, we have  where where , , and  have been defined in the statement of Theorem 2. The zeros  of the systemwith respect to the variables  and , provide periodic solutions of system (1) with  and  being sufficiently small if they are simple, that is, if 
For simple zeros  of system (52), we obtain a -periodic solution  of differential system (1) with , for  being sufficiently small which tends to the periodic solution of the differential system when .
This completes the proof of Theorem 2.
3.3. Proof of Corollary 3
We must apply Theorem 1 with 
First, we can verify easily conditions (7) 
Computing the functions , , and  of Theorem 1, we obtain
The system  has four solutions  given by , , , and .
Since for these four solutions  is , , , and , respectively, we obtain using Theorem 1 the solutions given in the statement of Corollary 3.
3.4. Proof of Corollary 4
We must apply Theorem 2 with 
First, we can verify easily conditions (14): 
Computing functions  and  of Theorem 2, we obtain 
The system  has two solutions  given by , .
Since for these two solutions is  and  respectively, we obtain using Theorem 2 the solutions given in the statement of Corollary 4.
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