Research Article

Positive Solutions for a Coupled System of Nonlinear Semipositone Fractional Boundary Value Problems

S. Nageswara Rao and M. Zico Meetei

Department of Mathematics, Jazan University, Jazan, Saudi Arabia

Correspondence should be addressed to S. Nageswara Rao; snrao@jazanu.edu.sa

Received 15 September 2018; Revised 22 December 2018; Accepted 31 December 2018; Published 3 February 2019

Academic Editor: Peiguang Wang

Copyright © 2019 S. Nageswara Rao and M. Zico Meetei. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we consider a four-point coupled boundary value problem for system of the nonlinear semipositone fractional differential equation

\[D_{\alpha}^\alpha u(t) + \lambda f(t, u(t), v(t)) = 0, \quad 0 < t < 1, \]
\[D_{\alpha}^\alpha v(t) + \mu g(t, u(t), v(t)) = 0, \quad 0 < t < 1, \]

with the coupled boundary conditions

\[u(0) = v(0) = 0, \]
\[a_1 D_0^\beta u(1) = b_1 D_0^\beta v(\xi), \]
\[a_2 D_0^\beta v(1) = b_2 D_0^\beta u(\eta), \]

\(\eta, \xi \in (0, 1), \)

where \(\alpha \in (1, 2], \beta \in (0, 1], D_{\alpha}^\alpha \) and \(D_{\alpha}^\beta \) are the standard Riemann-Liouville derivatives, \(f, g \in C([0, 1] \times [0, +\infty) \times [0, +\infty], [0, +\infty)) \) and \(a_i, b_i, i = 1, 2 \) are real positive constants.

1. Introduction

In recent years, fractional-order calculus has been one of the most rapidly developing areas of mathematical analysis. In fact, a natural phenomenon may depend not only on the time instant but also on the previous time history, which can be successfully modeled by fractional calculus. Fractional-order differential equations are naturally related to systems with memory, as fractional derivatives are usually nonlocal operators. Thus, fractional differential equations (FDEs) play an important role because of their applications in various fields of science, such as mathematics, physics, chemistry, optimal control theory, finance, biology, and engineering [1–6]. In particular, a great interest has been shown by many authors in the subject of fractional-order boundary value problems (BVPs), and a variety of results for BVPs equipped with different kinds of boundary conditions have been obtained; for instance, see [7–18] and the references cited therein.

We consider the four-point coupled system of nonlinear fractional differential equations:

\[D_{\alpha}^\alpha u(t) + \lambda f(t, u(t), v(t)) = 0, \quad 0 < t < 1, \]
\[D_{\alpha}^\alpha v(t) + \mu g(t, u(t), v(t)) = 0, \quad 0 < t < 1, \]

with the coupled boundary conditions

\[u(0) = v(0) = 0, \]
\[a_1 D_0^\beta u(1) = b_1 D_0^\beta v(\xi), \]
\[a_2 D_0^\beta v(1) = b_2 D_0^\beta u(\eta), \]

\(\eta, \xi \in (0, 1), \)

where \(\alpha \in (1, 2], \beta \in (0, 1], D_{\alpha}^\alpha \) and \(D_{\alpha}^\beta \) are the standard Riemann-Liouville derivatives, \(f, g \in C([0, 1] \times [0, +\infty) \times [0, +\infty), [0, +\infty)) \) and \(a_i, b_i, i = 1, 2 \) are real positive constants.

Here we emphasize that our problem is new in the sense of nonseparated coupled boundary conditions introduced here. To the best of our knowledge, fractional-order coupled system (1) has yet to be studied with the boundary conditions (2). In consequence, our findings of the present work will be a useful contribution to the existing literature on the topic. The existence of positive solution results for the given problem is new, though they are proved by applying the well-known fixed point theorem.

We present intervals for parameters \(\lambda, \mu, f, \) and \(g \) such that the above problem (1)-(2) has at least one positive solution. By a positive solution (1)-(2), we mean a pair of
functions \((u, v) \in C[0, 1] \times C[0, 1]\) satisfying (1) and (2) with \(u(t) \geq 0, v(t) \geq 0\) for all \(t \in [0, 1]\) and \(u(t) > 0, v(t) > 0\).

We use the following notations for our convenience:

\[
K_i = \int_0^1 G_i(1, s) \, ds \quad \text{and} \quad L_i = \int_0^1 H_i(1, s) \, ds
\]

for \(i = 1, 2\). (3)

\[
A_i = \int_{s=t} G_i(1, s) \, ds \quad \text{and} \quad B_i = \int_{s=t} H_i(1, s) \, ds
\]

for \(i = 1, 2\). (3)

Before stating our results, we make precise assumptions throughout the paper:

(H1) The functions \(f, g \in C((0, 1) \times [0, \infty) \times [0, \infty), (\infty, \infty))\) and there exist functions \(p_1, p_2 \in C([0, 1] \times [0, \infty))\) such that \(f(t, u, v) \geq -p_2(t)\) and \(g(t, u, v) \geq -p_2(t)\) for any \(t \in [0, 1]\) and \((u, v) \in [0, \infty)\)

(H2) \(a_1, a_2, b_1, b_2\) are positive constants such that \(a_1, a_2 \geq b_1 b_2 / (\xi^{1-\alpha+\beta} \eta^{1-\alpha+\beta})\)

(H3) \(f(t, 0, 0) > 0, g(t, 0, 0) > 0\) for all \(t \in [0, 1]\).

(H4) The functions \(f, g \in C((0, 1) \times [0, \infty) \times [0, \infty), (\infty, \infty))\), \(f, g\) may be singular at \(t = 0\) and/or \(t = 1\), and there exist functions \(p_1, p_2 \in C((0, 1), [0, \infty))\), \(a_1, a_2 \in C([0, 1], [0, \infty)), b_1, b_2 \in C([0, 1] \times [0, \infty), [0, \infty))\) such that \(-p_1(t) \leq f(t, u, v) \leq a_1(t) b_1(1, v, u) - p_2(t) \leq g(t, u, v) \leq a_2(t) b_2(t, u, v)\) for all \(t \in (0, 1), u, v \in [0, \infty), 0 < \int_0^1 p_1(s) \, ds < \infty, 0 < \int_0^1 a_i(s) \, ds < \infty, i = 1, 2\).

(H5) There exists \(t \in I = [1/4, 3/4] \subset (0, 1)\) such that

\[
f_{\infty} = \lim_{u+v \to \infty} \min_{t \in I} f(t, u, v) / (u + v) = \infty
\]

or \(g_{\infty} = \lim_{u+v \to \infty} \min_{t \in I} g(t, u, v) / (u + v) = \infty\). (4)

The rest of the paper is organized as follows. In Section 2, we construct the Green functions for the associated linear fractional-order boundary value problems and estimate the bounds for these Green functions. In Section 3, we establish the existence of at least one positive solution of the boundary value problem (1)-(2) by applying fixed point theorem. Finally, as an application, we give an example to illustrate our result.

2. Green Functions and Bounds

In this section, we construct the Green functions for the associated linear fractional-order boundary value problems and estimate the bounds for these Green functions, which are needed to establish the main results.

Lemma 1. Let \(\alpha > 0\). Then, the differential equation \(D_0^\alpha u(t) = 0\) has a solution

\[
u(t) = c_1 t^{\alpha-1} + c_2 t^{\alpha-2} + \cdots + c_n t^{\alpha-n}
\]

for some \(c_i \in \mathbb{R}, i = 1, 2, \ldots, n\), where \(n\) is the smallest integer greater than or equal to \(\alpha\).

Lemma 2. Let \(\alpha > 0\). Then, \(D_0^\alpha u(t) = u(t) + c_1 t^{\alpha-1} + c_2 t^{\alpha-2} + \cdots + c_n t^{\alpha-n}\) for some \(c_i \in \mathbb{R}, i = 1, 2, \ldots, n\), where \(n\) is the smallest integer greater than or equal to \(\alpha\).

Lemma 3. Let \(\Delta = \Gamma(\alpha) N \neq 0\) and \(N = a_1 a_2 - b_1 b_2 \xi^{1-\alpha+\beta} \eta^{1-\alpha+\beta}\). Let \(x, y \in C([0, 1])\) be given functions. Then, the boundary value problem,

\[
D_0^\alpha u(t) + x(t) = 0, \quad 0 < t < 1,
\]

\[
D_0^\alpha v(t) + y(t) = 0, \quad 0 < t < 1,
\]

\[
u(0) = v(0) = 0,
\]

\[
a_1 D_0^\beta u(1) = b_1 D_0^\beta v(\xi),
\]

\[
a_2 D_0^\beta v(1) = b_2 D_0^\beta u(\eta),
\]

\[
\xi, \eta \in (0, 1),
\]

has an integral representation

\[
u(t) = \int_0^1 G_1(t, s) x(s) \, ds + \int_0^1 H_1(t, s) y(s) \, ds,
\]

\[
\nu(t) = \int_0^1 G_2(t, s) y(s) \, ds + \int_0^1 H_2(t, s) x(s) \, ds,
\]

where

\[
G_1(t, s) = \frac{1}{\Delta} \begin{cases} a_1 a_2 t^{\alpha-1} (1-s)^{\alpha-\beta-1} - N (t-s)^{\alpha-1} - b_1 b_2 t^{\alpha-1} \xi^{\alpha-\beta-1} \eta^{\alpha-\beta-1}, & 0 \leq s \leq t \leq 1, \ s \leq \eta, \\
+ a_1 a_2 t^{\alpha-1} (1-s)^{\alpha-\beta-1} - N (t-s)^{\alpha-1}, & 0 \leq s \leq t \leq 1, \ s \geq \eta, \\
+ a_1 a_2 t^{\alpha-1} (1-s)^{\alpha-\beta-1} - b_1 b_2 t^{\alpha-1} \xi^{\alpha-\beta-1} \eta^{\alpha-\beta-1}, & 0 \leq t \leq s \leq 1, \ s \leq \eta, \\
+ a_1 a_2 t^{\alpha-1} (1-s)^{\alpha-\beta-1}, & 0 \leq t \leq s \leq 1, \ s \geq \eta,
\end{cases}
\]
Green functions

Assume that condition (H2) is satisfied. Then, the Green functions \(G_i(t, s)\) and \(H_i(t, s)\) are nonnegative, for all \(t, s \in [0, 1]\).

Lemma 5. Assume that condition (H2) is satisfied. Then, the Green functions \(G_i(t, s)\) and \(H_i(t, s)\) are nonnegative, for all \(t, s \in [0, 1]\).

Lemma 6. Assume that condition (H2) is satisfied. Then, the Green functions \(G_i(t, s)\) and \(H_i(t, s)\) are nonnegative, for all \(t, s \in [0, 1]\).

Lemma 7. Assume that condition (H2) is satisfied. Then, the Green functions \(G_i(t, s)\) and \(H_i(t, s)\) are nonnegative, for all \(t, s \in [0, 1]\).

3. Main Results

In this section, we investigate the existence of positive solutions for our problem (1)-(2).

We consider the system of nonlinear fractional differential equations

\[
D_0^\alpha x(t) + \lambda \left(f(t, [x(t) - q_1(t)])^\gamma, [y(t) - q_2(t)]^\gamma \right) + p_1(t) = 0, \quad 0 < t < 1,
\]

\[
D_0^\alpha y(t) + \mu \left(g(t, [x(t) - q_1(t)])^\gamma, [y(t) - q_2(t)]^\gamma \right) + p_2(t) = 0, \quad 0 < t < 1,
\]

with the boundary conditions

\[
x(0) = y(0) = 0,
\]

\[
a_1 D_0^\beta x(1) = b_1 D_0^\beta y(\xi),
\]

\[
a_2 D_0^\beta y(1) = b_2 D_0^\beta x(\eta),
\]

\[
\eta, \xi \in (0, 1),
\]

where a modified function \([z(t)]^\gamma\) for any \(z \in C[0, 1]\) by

\[
[z(t)]^\gamma = z(t), \quad \text{if } z(t) \geq 0, \quad \text{and}
\]

\[
[z(t)]^\gamma = 0, \quad \text{if } z(t) = 0.
\]

Here \((q_1, q_2)\) with

\[
q_1(t) = \lambda \int_0^1 G_1(t, s) p_1(s) \, ds + \mu \int_0^1 H_1(t, s) p_2(s) \, ds, \quad t \in [0, 1],
\]
\[q_2(t) = \mu \int_0^1 G_2(t, s) p_2(s) \, ds + \lambda \int_0^1 H_2(t, s) p_1(s) \, ds, \quad t \in [0, 1], \tag{15} \]

is solution of the system of fractional differential equations
\[
\begin{aligned}
D_{\alpha}^{\alpha} q_1(t) + \lambda p_1(t) &= 0, \quad 0 < t < 1, \\
D_{\alpha}^{\alpha} q_2(t) + \mu p_2(t) &= 0, \quad 0 < t < 1,
\end{aligned}
\tag{16}
\]

with the boundary conditions
\[
\begin{aligned}
q_1(0) &= q_2(0) = 0, \\
a_1 D_{\alpha}^{\alpha} q_1(1) &= b_1 D_{\alpha}^{\alpha} q_2(1), \\
a_2 D_{\alpha}^{\alpha} q_2(1) &= b_2 D_{\alpha}^{\alpha} q_1(1),
\end{aligned}
\tag{17}
\]

Under the assumptions \((H1)\) and \((H2)\) or \((H2)\) and \((H4)\), we have \(q_1(t) \geq 0, q_2(t) \geq 0\) for all \(t \in [0, 1]\).

We shall prove that there exists a solution \((x, y)\) for the boundary value problem \((12)-(13)\) with \(x(t) \geq q_1(t)\) and \(y(t) \geq q_2(t)\) on \([0, 1]\), \(x(t) > q_1(t), y(t) > q_2(t)\) on \((0, 1)\). In this case, \((u, v)\) with \(u(t) = x(t) - q_1(t)\) and \(v(t) = y(t) - q_2(t)\), \(t \in [0, 1]\) represents a positive solution of boundary value problem \((1)-(2)\).

By using Lemma 3, a solution of the system
\[
\begin{aligned}
x(t) &= \lambda \int_0^1 G_1(t, s) \, ds + \left(f(s, [x(s) - q_1(s)]^+, [y(s) - q_2(s)]^+) \right) + p_1(s) \, ds + \mu \int_0^1 H_1(t, s) \, ds, \quad t \in [0, 1], \\
y(t) &= \mu \int_0^1 G_2(t, s) \, ds + \left(g(s, [x(s) - q_1(s)]^+, [y(s) - q_2(s)]^+) \right) + p_2(s) \, ds, \quad t \in [0, 1],
\end{aligned}
\tag{18}
\]

is a solution for problem \((12)-(13)\).

We consider the Banach space \(X = C[0, 1]\) with supremum norm \(\| \cdot \|\) and the Banach space \(Y = X \times X\) with the norm \(\|(u, v)\| = \|u\| + \|v\|\). We define the cone \(P \subset Y\)

\[
P = \left\{ (x, y) \in Y : x(t) \geq 0, y(t) \geq 0 \quad \forall t \in [0, 1] \right\}
\tag{19}
\]

where \(I = [1/4, 3/4]\).

For \(\lambda, \mu > 0\), we define the operators \(Q_1, Q_2 : Y \rightarrow Y\) defined by \(Q(x, y) = (Q_1(x, y), Q_2(x, y))\), \((x, y) \in Y\) with
\[
\begin{aligned}
Q_1(x, y) &= \lambda \int_0^1 G_1(t, s) \, ds + \left(f(s, [x(s) - q_1(s)]^+, [y(s) - q_2(s)]^+) \right) + p_1(s) \, ds + \mu \int_0^1 H_1(t, s) \, ds, \quad t \in [0, 1], \\
Q_2(x, y) &= \mu \int_0^1 G_2(t, s) \, ds + \left(g(s, [x(s) - q_1(s)]^+, [y(s) - q_2(s)]^+) \right) + p_2(s) \, ds + \lambda \int_0^1 H_2(t, s) \, ds, \quad t \in [0, 1].
\end{aligned}
\tag{20}
\]

It is clear that if \((x, y)\) is a fixed point of operator \(Q\), then \((x, y)\) is a solution of problem \((12)-(13)\).

Lemma 10. If \((H1)\) and \((H2)\) or \((H2)\) and \((H4)\) hold, then operator \(Q : P \rightarrow P\) is a completely continuous operator.

Proof. The operators \(Q_1\) and \(Q_2\) are well defined. To prove this, let \((x, y) \in P\) be fixed with \(\|(x, y)\| = \bar{L}\). Then we have
\[
\begin{aligned}
[x(s) - q_1(s)]^+ \leq x(s) \leq \|x\| \leq \|(x, y)\| = \bar{L}, \quad &\forall s \in [0, 1], \\
[y(s) - q_2(s)]^+ \leq y(s) \leq \|y\| \leq \|(x, y)\| = \bar{L},
\end{aligned}
\tag{21}
\]

\[
\begin{aligned}
\forall s \in [0, 1].
\end{aligned}
\]

If \((H_1)\) and \((H_2)\) hold, then we deduce easily that \(Q_1(x, y)(t) < \infty\) and \(Q_2(x, y)(t) < \infty\) for all \(t \in [0, 1]\). If \((H_2)\) and \((H_4)\) hold, we deduce, for all \(t \in [0, 1]::
\[
\begin{aligned}
Q_1(x, y) &\leq \lambda \int_0^1 G_1(1, s) \left[\alpha_1(s) \beta_1(s, [x(s) - q_1(s)]^+, [y(s) - q_2(s)]^+) \right] \, ds, \\
Q_2(x, y) &\leq \mu \int_0^1 G_2(1, s) \left[\beta_2(s, [x(s) - q_1(s)]^+, [y(s) - q_2(s)]^+) \right] \, ds.
\end{aligned}
\]

International Journal of Differential Equations
Similarly, \(\min_{t \in I} Q_1(x, y)(t) \geq \left(\frac{1}{4} \right)^{\alpha - 1} \left\| Q_1(x, y) \right\| \geq \left(\frac{1}{4} \right)^{\alpha - 1} \left(\frac{1}{4} \right)^{\alpha - 1} \left\| Q_2(x, y) \right\| \geq \left(\frac{1}{4} \right)^{\alpha - 1} \left\| Q_1(x, y) \right\| + \left(\frac{1}{4} \right)^{\alpha - 1} \left\| Q_2(x, y) \right\| = \left(\frac{1}{4} \right)^{\alpha - 1} \left\| Q_1(x, y) \right\| + \left(\frac{1}{4} \right)^{\alpha - 1} \left\| Q_2(x, y) \right\| = \left(\frac{1}{4} \right)^{\alpha - 1} \left\| Q(x, y) \right\| \).

Hence, \(Q(x, y) \in P \). This implies that \(Q(P) \subset P \). According to the Ascoli-Arzelà theorem, we can easily get that \(Q : P \rightarrow P \) is completely continuous.

Theorem II. Assume that (H1) – (H3) hold. Then, there exist constants \(\lambda_0 > 0 \) and \(\mu_0 > 0 \) such that, for any \(\lambda \in (0, \lambda_0] \) and \(\mu \in (0, \mu_0] \), the boundary value problem (1)-(2) has at least one positive solution.

Proof. Let \(\delta \in (0, 1) \) be fixed. From (H1) and (H3), there exist \(R_0 \in (0, 1] \) such that

\[
\begin{align*}
 f(t, u, v) &\geq \delta f(t, 0, 0), \\
g(t, u, v) &\geq \delta g(t, 0, 0),
\end{align*}
\]

\(\forall t \in [0, 1], u, v \in [0, R_0] \).

We define

\[
\begin{align*}
\overline{f}(R_0) &= \max_{t \in [0, 1], u, v \in [0, R_0]} \{ f(t, u, v) + p_1(t) \} \\
&\geq \max_{t \in [0, 1]} \{ \delta f(t, 0, 0) + p_1(t) \} > 0, \\
\overline{g}(R_0) &= \max_{t \in [0, 1], u, v \in [0, R_0]} \{ g(t, u, v) + p_2(t) \} \\
&\geq \max_{t \in [0, 1]} \{ \delta g(t, 0, 0) + p_2(t) \} > 0,
\end{align*}
\]

\(\lambda_0 = \max \left\{ \frac{R_0}{8K_1f(R_0)}, \frac{R_0}{8L_2f(R_0)} \right\} \),

\(\mu_0 = \max \left\{ \frac{R_0}{8L_1g(R_0)}, \frac{R_0}{8K_2g(R_0)} \right\} \).

We will show that, for any \(\lambda \in (0, \lambda_0] \) and \(\mu \in (0, \mu_0] \), problem (12)-(13) has at least one positive solution.

So, let \(\lambda \in (0, \lambda_0] \) and \(\mu \in (0, \mu_0] \) be arbitrary but fixed for the moment. We define the set \(U = \{(x, y) \in P, \| x \| + \| y \| < R_0 \} \). We suppose that there exist \(x, y \) in \(\partial U \) such that \(\| x \| + \| y \| = R_0 \) and \(\theta \in (0, 1) \) such that \((x, y) = \theta Q(x, y) \) or \(x = \theta Q_1(x, y), y = \theta Q_2(x, y) \).

We deduce that

\[
\begin{align*}
[x(t) - q_1(t)]^* &= x(t) - q_1(t) \leq x(t) \leq R_0, \\
&\text{if } x(t) - q_1(t) \geq 0, \\
[x(t) - q_1(t)]^* &= 0, \\
&\text{for } x(t) - q_1(t) < 0, \forall t \in [0, 1],
\end{align*}
\]

Similarly, \(\min_{t \in I} Q_2(x, y)(t) \geq (1/4)^{\alpha - 1} \left\| Q_2(x, y) \right\| \). Therefore,

\[
\begin{align*}
\min_{t \in I} \left\{ Q_1(x, y)(t) + Q_2(x, y)(t) \right\} &\geq \left(\frac{1}{4} \right)^{\alpha - 1} \left\| Q_1(x, y) \right\| + \left(\frac{1}{4} \right)^{\alpha - 1} \left\| Q_2(x, y) \right\| = \left(\frac{1}{4} \right)^{\alpha - 1} \left\| Q_1(x, y) \right\| + \left(\frac{1}{4} \right)^{\alpha - 1} \left\| Q_2(x, y) \right\| = \left(\frac{1}{4} \right)^{\alpha - 1} \left\| Q(x, y) \right\|.
\end{align*}
\]
\[y(t) - q_2(t) \leq y(t) \leq R_0, \]
\[\text{if } y(t) - q_2(t) \geq 0, \]
\[y(t) - q_2(t) = 0, \]
\[\text{for } y(t) - q_2(t) < 0, \forall t \in [0, 1]. \]

Then by Lemma 3, for all \(t \in [0, 1] \), we obtain
\[
x(t) = \theta Q_1(x, y)(t) < Q_1(x, y)(t)
\leq \lambda \int_0^1 G_1(1, s)f(R_0)ds
+ \mu \int_0^1 H_1(1, s)f(R_0)ds
\leq \lambda_0 K_1G_1(R_0) + \mu_0 L_1f(R_0) \leq \frac{R_0}{8} + \frac{R_0}{8} = \frac{R_0}{4}. \tag{28}
\]
\[
y(t) = \theta Q_2(x, y)(t) < Q_2(x, y)(t)
\leq \mu \int_0^1 G_2(1, s)f(R_0)ds
+ \lambda \int_0^1 H_2(1, s)f(R_0)ds
\leq \mu_0 K_2G_2(R_0) + \lambda_0 L_2f(R_0) \leq \frac{R_0}{8} + \frac{R_0}{8} = \frac{R_0}{4}. \tag{29}
\]

\[
\text{Hence, } \|x\| \leq \frac{R_0}{4} \text{ and } \|y\| \leq \frac{R_0}{4}. \text{ Then, } R_0 = \|(x, y)\| = \|x\| + \|y\| \leq \frac{R_0}{4} + \frac{R_0}{4} = \frac{R_0}{2}, \text{ which is contradiction.}
\]

Therefore, by Theorem 8 (with \(\Omega = P \)), we deduce that \(Q \) has a fixed point \((x_0, y_0) \in \mathcal{U} \cap P \). That is, \((x_0, y_0) = Q(x_0, y_0)\) or \(x_0 = Q_1(x_0, y_0), y_0 = Q_2(x_0, y_0)\), and \(\|x_0\| + \|y_0\| \leq R_0\) with \(x_0 \geq (1/4)^{\alpha - 1} \|x_0\|\) and \(y_0(t) \geq (1/4)^{\alpha - 1} \|y_0\|\) for all \(t \in [0, 1] \). Moreover, by (25), we conclude
\[
x_0(t) = Q_1(x_0, y_0)(t)
\geq \lambda \int_0^1 G_1(t, s)(\delta f(t, 0, 0) + p_1(s))ds
+ \mu \int_0^1 H_1(t, s)(\delta f(t, 0, 0) + p_2(s))ds
\geq \lambda \int_0^1 G_1(t, s)p_1(s)ds
+ \mu \int_0^1 H_1(t, s)p_2(s)ds = q_1(t),
\forall t \in [0, 1], \tag{30}
\]
\[
x_0(t) > \lambda \int_0^1 G_1(t, s)p_1(s)ds
+ \mu \int_0^1 H_1(t, s)p_2(s)ds = q_1(t),
\forall t \in (0, 1), \tag{31}
\]
\[
y_0(t) = Q_2(x_0, y_0)(t)
\geq \mu \int_0^1 H_2(t, s)(\delta f(t, 0, 0) + p_2(s))ds
+ \lambda \int_0^1 G_2(t, s)(\delta f(t, 0, 0) + p_1(s))ds
\geq \mu \int_0^1 H_2(t, s)p_2(s)ds
+ \lambda \int_0^1 G_2(t, s)p_1(s)ds = q_2(t),
\forall t \in [0, 1], \tag{32}
\]
\[
y_0(t) > \mu \int_0^1 H_2(t, s)p_2(s)ds
+ \lambda \int_0^1 G_2(t, s)p_1(s)ds = q_2(t),
\forall t \in (0, 1). \tag{33}
\]

Therefore, \(x_0(t) \geq q_1(t), y_0(t) \geq q_2(t)\) for all \(t \in [0, 1] \), and \(x_0(t) > q_1(t), y_0(t) > q_2(t)\) for all \(t \in (0, 1)\). Let \(u_0(t) = x_0(t) - q_1(t)\) and \(v_0(t) = y_0(t) - q_2(t)\) for all \(t \in [0, 1] \). Then, \(u_0(t) \geq 0, v_0(t) \geq 0\) for all \(t \in [0, 1] \), \(u_0(t) > 0, v_0(t) > 0\) for all \(t \in (0, 1) \). Therefore, \((u_0, v_0)\) is a positive solution of (1)-(2). \(\square \)

Theorem 12. Assume that (H1), (H4), and (H5) hold. Then, there exist \(\lambda^* > 0\) and \(\mu^* > 0\) such that, for any \(\lambda \in (0, \lambda^*] \) and \(\mu \in (0, \mu^*] \), the boundary value problem (1)-(2) has at least one positive solution.

Proof. We choose a positive number
\[
R_1 > \max \left\{ 1, 2 \int_0^1 (G_1(1, s)p_1(s) + G_2(1, s)p_2(s))ds \right\}
\]
and we define the set \(\Omega_1 = \{(x, y) \in P; \|(x, y)\| < R_1\} \). We introduce
\[
\lambda^* = \min \left\{ 1, \frac{R_1}{4M_1} \left(\int_0^1 G_1(1, s)(\alpha_1(s) + p_1(s))ds \right)^{-1} \right\},
\mu^* = \min \left\{ 1, \frac{R_1}{4M_2} \left(\int_0^1 H_1(1, s)(\alpha_2(s) + p_2(s))ds \right)^{-1} \right\}, \tag{34}
\]
\[
\mu^* = \min \left\{ 1, \frac{R_1}{4M_2} \left(\int_0^1 G_2(1, s)(\alpha_2(s) + p_2(s))ds \right)^{-1} \right\}, \tag{35}
\]
\[
\mu^* = \min \left\{ 1, \frac{R_1}{4M_2} \left(\int_0^1 G_2(1, s)(\alpha_2(s) + p_2(s))ds \right)^{-1} \right\}, \tag{36}
\]
Let $\lambda \in (0, \lambda^*)$ and $\mu \in (0, \mu^*)$. Then, for any $(x, y) \in P \cap \partial \Omega_1$, and $s \in [0, 1]$, we have
\[
\|x(s) - q_1(s)\|^* \leq x(s) \leq \|x\| \leq R_1, \\
\|y(s) - q_2(s)\|^* \leq y(s) \leq \|y\| \leq R_1.
\] (33)

Then, for any $(x, y) \in P \cap \partial \Omega_1$, we obtain
\[
\|Q_1(x, y)\| \leq \lambda \int_0^1 G_1(1, s) \left[\alpha_1(s) \cdot \beta_1(s, (x(s) - q_1(s))^*, (y(s) - q_2(s))^*) \right. \\
+ p_1(s) \left. \right] ds + \mu \int_0^1 H_1(1, s) \left[\alpha_2(s) \cdot \beta_2(s, (x(s) - q_1(s))^*, (y(s) - q_2(s))^*) \right. \\
+ p_2(s) \left. \right] ds \leq \lambda^* M_1 \int_0^1 G_1(1, s) \left[\alpha_1(s) \cdot \beta_1(s, (x(s) - q_1(s))^*, (y(s) - q_2(s))^*) \right. \\
+ p_1(s) \left. \right] ds + \mu^* M_2 \int_0^1 H_1(1, s) \left[\alpha_2(s) \cdot \beta_2(s, (x(s) - q_1(s))^*, (y(s) - q_2(s))^*) \right. \\
+ p_2(s) \left. \right] ds \leq R_1, \\
\|Q_2(x, y)\| \leq \mu \int_0^1 G_2(1, s) \left[\alpha_2(s) \cdot \beta_2(s, (x(s) - q_1(s))^*, (y(s) - q_2(s))^*) \right. \\
+ p_2(s) \left. \right] ds + \mu \int_0^1 H_2(1, s) \left[\alpha_1(s) \cdot \beta_1(s, (x(s) - q_1(s))^*, (y(s) - q_2(s))^*) \right. \\
+ p_1(s) \left. \right] ds \leq \mu^* M_1 \int_0^1 G_1(1, s) \left[\alpha_2(s) \cdot \beta_2(s, (x(s) - q_1(s))^*, (y(s) - q_2(s))^*) \right. \\
+ p_2(s) \left. \right] ds + \lambda^* M_1 \int_0^1 H_2(1, s) \left[\alpha_1(s) \cdot \beta_1(s, (x(s) - q_1(s))^*, (y(s) - q_2(s))^*) \right. \\
+ p_1(s) \left. \right] ds \leq R_1.
\] (34)

Therefore,
\[
\|Q(x, y)\| = \|Q_1(x, y)\| + \|Q_2(x, y)\| \leq \|(x, y)\|, \quad \forall (x, y) \in P \cap \partial \Omega_1.
\] (35)

On the other hand, we choose a constant $L > 0$ such that
\[
\lambda \left(\frac{1}{4} \right)^{2(a-1)} A_1 L \geq 4, \\
\mu \left(\frac{1}{4} \right)^{2(a-1)} A_2 L \geq 4.
\] (36)

From (H5), we deduce that there exists a constant $M_0 > 0$ such that
\[
f(t, u, v) \geq L(u + v) \\
or g(t, u, v) \geq L(u + v),
\] (37)

\[\forall t \in I, u, v \geq 0, u + v \geq M_0.
\]

Now we define
\[
R_2 = \max \left\{ 2 R_1, 4^n M_0, \right. \\
4 \int_0^1 \left[G_1(1, s) p_1(s) + H_1(1, s) p_2(s) \right] ds \left. \right\} > 0,
\] (38)

and let $\Omega_2 = \{(x, y) \in P, \|(x, y)\| < R_2\}$. We suppose that $f_{\infty} = \infty$, that is, $f(t, u, v) \geq L(u + v)$ for all $t \in I$ and $u, v \geq 0, u + v \geq M_0$. Then, for any $(x, y) \in P \cap \partial \Omega_2$, we have $\|(x, y)\| = R_2$ or $\|x\| + \|y\| = R_2$. We deduce that $\|x\| \geq R_2/2$ or $\|y\| \geq R_2/2$.

We suppose that $\|x\| \geq R_2/2$. Then, for any $(x, y) \in P \cap \partial \Omega_2$, we obtain
\[
x(t) - q_1(t) = x(t) - \lambda \int_0^1 G_1(t, s) p_1(s) ds \\
- \mu \int_0^1 H_1(t, s) p_2(s) ds \geq x(t) - \left(\frac{1}{4} \right)^{a-1} \left[\left(\int_0^1 G_1(t, s) p_1(s) ds + \int_0^1 H_1(t, s) p_2(s) ds \right) \right] \\
\geq x(t) - \frac{x(t)}{\|x\|} \\
\leq \int_0^1 \left(G_1(t, s) p_1(s) + H_1(t, s) p_2(s) \right) ds - x(t) \int_1^1 \left[\frac{1}{\|x\|} \int_0^1 \left(G_1(t, s) p_1(s) + H_1(t, s) p_2(s) \right) ds \right] \\
\geq \frac{1}{2} x(t) \geq 0.
\] (39)
Therefore, we conclude
\[
\left[x(t) - q_1(t) \right]^* = x(t) - q_1(t) \geq \frac{1}{2} x(t)
\]
\[
\geq \frac{1}{2} \left(\frac{1}{4} \right)^{\frac{1}{\alpha}} \|x\| \geq \frac{1}{4} \left(\frac{1}{4} \right)^{\frac{1}{\alpha}} R_2
\]
\[
= \left(\frac{1}{4} \right)^{\frac{1}{\alpha}} R_2 \geq M_0, \quad \forall t \in I.
\]
Hence,
\[
\left[x(t) - q_1(t) \right]^* + \left[y(t) - q_2(t) \right]^* \geq \left[x(t) - q_1(t) \right]^* \geq M_0, \quad \forall t \in I.
\]
Then, for any \((x, y)\) \(\in P \cap \partial \Omega_2\) and \(t \in I\), by (37) and (41), we deduce
\[
f(t, [x(t) - q_1(t)]^* + [y(t) - q_2(t)]^*)
\geq L \left([x(t) - q_1(t)]^* + [y(t) - q_2(t)]^* \right)
\geq L \|x(t) - q_1(t)\| \geq \frac{L}{2} x(t), \quad \forall t \in I.
\]
It follows that, for any \((x, y)\) \(\in P \cap \partial \Omega_2, t \in I\), we obtain
\[
Q_1(x, y)(t) \geq \lambda \int_0^1 G_1(t, s)
\cdot \left(f(s, [x(s) - q_1(s)]^* + [y(s) - q_2(s)]^*) \right)
+ p_1(s) ds \geq \lambda \int_{s \in I} G_1(t, s)
\cdot \left(f(s, [x(s) - q_1(s)]^* + [y(s) - q_2(s)]^*) \right)
+ p_1(s) ds \geq \left(\frac{1}{4} \right)^{\frac{1}{\alpha}} \lambda \int_{s \in I} G_1(1, s)
\cdot L \left([x(s) - q_1(s)]^* \right) ds \geq \lambda \left(\frac{1}{4} \right)^{\frac{1}{\alpha}}
\cdot A_2 \left(\frac{1}{4} \right)^{\frac{1}{\alpha}} \frac{L}{4} R_2 = \lambda \frac{L}{4} \left(\frac{1}{4} \right)^{2(\alpha-1)} A_1 R_2 \geq R_2.
\]
Then, \(\|Q_1(x, y)\| \geq \|(x, y)\|\) and
\[
\|Q(x, y)\| \geq \|Q(x, y)\|, \quad \forall (x, y) \in P \cap \partial \Omega_2.
\]
Hence, we obtain relation (44). If \(\|y\| \geq R_2/2\), then in a similar way as above, we deduce again relation (44). Therefore, by Theorem 9, relation (35), and (44), we conclude that \(Q\) has a fixed point \((x, y) \in P \cap (\Omega_2 \setminus \Omega_1)\).

\section*{4. Example}

In this section, we give an example to illustrating our result. Let
\[
\alpha = \frac{3}{2},
\beta = \frac{1}{4},
\eta = \frac{2}{3},
\xi = \frac{1}{3},
\]
\[
a_1 = a_2 = 1,
\]
\[
b_1 = b_2 = 1.
\]

Consider the system of fractional differential equations,
\[
D_t^{3/2} u(t) + L f(t, u(t), v(t)) = 0, \quad t \in (0, 1),
\]
\[
D_t^{1/2} v(t) + \mu g(t, u(t), v(t)) = 0, \quad t \in (0, 1),
\]
\[
u(0) = v(0) = 0,
\]
\[
D_t^{1/4} u(1) = D_t^{1/4} v \left(\frac{1}{3} \right),
\]
\[
D_t^{1/4} v(1) = D_t^{1/4} u \left(\frac{2}{3} \right),
\]
where \(f(t, u, v) = (u + v)^3 + \cos u, g(t, u, v) = (u + v)^{1/3} + \cos v\). We have \(p_1(t) = p_2(t) = 1\) for all \(t \in [0, 1]\), and then assumption \((H1)\) is satisfied. Besides, assumption \((H3)\)
is also satisfied, because $f(t, 0, 0) = 1$ and $g(t, 0, 0) = 1$ for all $t \in [0, 1]$. Let $\delta = 1/3 < 1$ and $R_0 = 1$. Then $f(t, u, v) \geq \delta f(t, 0, 0) = 1/3$, $g(t, u, v) \geq \delta g(t, 0, 0) = 1/3$, $\forall t \in [0, 1], u, v \in [0, 1]$. In addition,

$$\overline{f}(R_0) = \overline{f}(1) = \max_{t \in [0, 1], u, v \in [0, 1]} \{f(t, u, v) + p_1(t)\} \approx 9.999848,$$

$$\overline{g}(R_0) = \overline{g}(1) = \max_{t \in [0, 1], u, v \in [0, 1]} \{g(t, u, v) + p_2(t)\} \approx 3.259769.$$

We also obtain $\Delta = (0.8865)(0.3133) \approx 0.2778 > 0$, $M_1 = 992$, $M_2 = 1280$, $K_1 = 0.1488$, $K_2 = 0.01598$, $L_1 = 0.0536$, $L_2 = 0.1268$, and then $\lambda_0 = \max\{R_0/8K_1, R_0/8K_2, \overline{f}(R_0), \overline{g}(R_0)\} = 0.782239674$, $\mu_0 = \max\{R_0/8L_1, \overline{g}(R_0), R_0/8L_2, \overline{f}(R_0)\} = 0.7154155$. We can apply Theorem 11. So we conclude that there exist $\lambda_0, \mu_0 > 0$ such that, for every $\lambda \in (0, \lambda_0)$ and $\mu \in (0, \mu_0]$, the boundary value problem (47) has at least one positive solution.

5. Conclusions

This paper studies the existence of positive solution of a four-point coupled system of nonlinear fractional differential equations. We give sufficient conditions on λ, μ, f, j, and g such that the system has at least one positive solution. The existence of positive solution is discussed by using Guo-Krasnosel’skii fixed point theorem. Also, an example which illustrates the obtained result is presented.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that no competing interests exist.

References

