
International Journal of Distributed Sensor Networks, 1: 329–344, 2005
Copyright © Taylor & Francis Inc.
ISSN: 1550-1329 print/1550-1477 online
DOI: 10.1080/15501320500330745

329

UDSN1550-13291550-1477International Journal of Distributed Sensor Networks, Vol. 01, No. 3-4, October 2005: pp. 0–0International Journal of Distributed Sensor Networks

Self-Stabilizing Global Optimization Algorithms for
Large Network Graphs†

Self-Stabilizing Global OptimizationSrimani et al. WAYNE GODDARD, STEPHEN T. HEDETNIEMI,
DAVID P. JACOBS, and PRADIP K. SRIMANI

Department of Computer Science, Clemson University, Clemson, SC

The paradigm of self-stabilization provides a mechanism to design efficient localized distributed
algorithms that are proving to be essential for modern day large networks of sensors. We
provide self-stabilizing algorithms (in the shared-variable ID-based model) for three graph
optimization problems: a minimal total dominating set (where every node must be adjacent to a
node in the set) and its generalizations, a maximal k-packing (a set of nodes where every pair of
nodes are more than distance k apart), and a maximal strong matching (a collection of totally
disjoint edges).

Keywords Self-stabilization; Optimization Alogrithms; k-packing

1. Introduction

Most of the essential fundamental services for mobile networked distributed systems
(ad hoc, wireless or sensor) involve maintaining a global predicate over the entire net-
work (defined by some invariance relation on the global state of the network) by using
local knowledge at each of the participating nodes. With the advent of large scale sen-
sor networks, where a very large number of sensor nodes with limited computing and
communication capabilities are involved to achieve a larger global task, scalability in
coordinating the nodes and implementing fault tolerance in the network now require
fundamentally new approaches [1]. The participating sensor nodes can no longer keep
track of even a small fraction of the knowledge about the global network due to lim-
ited storage. Similarly, the traditional approach to building fault tolerant distributed
system is no longer economically viable. The traditional approach of fault masking is
pessimistic in the sense that it assumes a worst case scenario and protects the system
against such an eventuality. Validity is guaranteed in the presence of faulty processes,
which necessitates restrictions on the number of faults and on the fault model. But
fault masking is not free; it requires additional hardware or software, and it consider-
ably increases the cost of the system. This additional cost is not an economic option,
especially when most faults are transient in nature and a temporary unavailability of a
system service is acceptable for a short period of time. We need a new paradigm of
localized distributed algorithms, where a node takes simple actions based on local
knowledge of only its immediate neighbors and yet the system achieves a global
objective [1].

†This work has been supported by NSF grant # ANI-0218495.
Address correspondence to Pradip K Srimani, Department of Computer Science, Clemson University,

Clemson, SC 29634–0974. E-mail: srimani@cs.clemson.edu

330 Srimani et al.

Self-stabilization is a relatively new paradigm for designing such localized distributed
algorithms for networks; it is an optimistic way of looking at system fault tolerance and
scalable coordination, because it provides a built-in safeguard against transient failures
that might corrupt the data in a distributed system. The concept was introduced by Dijkstra
in 1974 [2], and Lamport [3] showed its relevance to fault tolerance in distributed systems
in 1983; a good survey of early self-stabilizing algorithms can be found in [4] and
Herman’s bibliography [5] also provides a fairly comprehensive listing of most papers in
this field. The system is able to adjust when faults occur, but 100% fault tolerance is not
warranted. The promise of self-stabilization, as opposed to fault masking, is to recover
from failure in a reasonable amount of time and without intervention by any external
agency. Since the faults are transient (eventual repair is assumed), it is no longer necessary
to assume a bound on the number of failures. The participating nodes communicate only
with their immediate neighbors and require minimal storage to keep the local knowledge
and yet a desired global objective is achieved. Since no communication is needed beyond
a node’s immediate neighborhood, communication overhead scales well with increase or
decrease in the network size.

Another fundamental idea of self-stabilizing algorithms is that the distributed system
may be started from an arbitrary global state. After a finite amount of time the system reaches
a correct global state, called a legitimate or stable state. An algorithm is self-stabilizing if

 i. for any initial illegitimate state it reaches a legitimate state after a finite number of
node moves, and

ii. for any legitimate state and for any move allowed by that state, the next state is a
legitimate state.

A self-stabilizing system does not guarantee that the system is able to operate properly
when a node continuously injects faults in the system (Byzantine fault) or when communi-
cation errors occur so frequently that the new legitimate state cannot be reached. While the
system services are unavailable when the self-stabilizing system is in an illegitimate state,
the repair of a self-stabilizing system is simple; once the offending equipment is removed
or repaired the system provides its service after a reasonable time.

Graph theoretic optimization problems are useful for such dynamic networks; fault tol-
erant distributed protocols for such problems provide the key resources for designing such
wireless, sensor and ad hoc networks and they offer new insight into the fundamental role
of discrete distributed algorithms in developing these real life applications [6]. For exam-
ple, a minimal spanning tree must be maintained to minimize latency and bandwidth
requirements of multicast/broadcast messages or to implement echo-based distributed algo-
rithms [7]; a minimal dominating set must be maintained to optimize the number and the
locations of the resource centers in a network [8]; an (r,d) configuration must be maintained
in a network where various resources must be allocated but all nodes have a fixed capacity
r [9]. In some sense, the concept “graph problem” is not very restrictive as it can apply to
any problem where there is some static global computation in the network. Our purpose in
the present paper is to further explore the intrinsic algorithmic power of this paradigm to
design protocols for maintaining global predicates in a network based on only local knowl-
edge at nodes. We are interested in algorithms to implement global synchronization where
the legitimacy specification in terms of local property. Specifically, we propose new self-
stabilizing algorithms for generalizations of dominating sets, generalization of matching,
and maximal k-packing and provide correctness proofs and complexity analyses.

Dominating sets with specific properties have been used in several routing proposals
for mobile networks [10], or for server placement (see for example [11]). Natural
generalizations of a dominating set S can be obtained by placing a lower bound on the

Self-Stabilizing Global Optimization 331

number of neighbours that each node (or each node not in S) must have in S, or by insisting
that each node outside S be sufficiently close to at least one node in S. That is, the set S
must be sufficiently dense and the goal is to find a minimal such set. We provide a self-
stabilizing algorithm for a family of these generalizations. This includes what is called a
total dominating set: a set S of nodes such that each node in the graph is adjacent to at
least one node of S1.

We then provide a self-stabilizing algorithm for the generalization of a maximal inde-
pendent set S where every two nodes in S must be sufficiently far apart. That is, the set
must be locally sparse and the goal is to find a maximal such set. A special case of this
algorithm occurs when one specifies that no two nodes in S can be within distance k of
each other; such a set is called a k-packing. A self-stabilizing algorithm for finding a max-
imal 2-packing was given by Karaata [13]; our protocol uses a different approach and gen-
eralizes the results in [13].

A different class of graph problems involves finding a maximal matching: this is a set
of edges, no two of which are adjacent. A self-stabilizing algorithm for this problem was
constructed by Hsu and Huang [14] (and shown to run in linear-time in [15]). A generali-
zation is given in [16]. These matching algorithms work for anonymous networks. We
consider here a variation called a strong or induced matching. This is a matching M with
the added property that no two edges in M are joined by an edge. We provide a self-stabi-
lizing algorithm to find a maximal strong matching2. We observe the following major
characteristics of the proposed protocols.

• The protocols developed for various global predicates in a network are all localized
in the sense that nodes need to know the states only of its immediate neighbors.
Thus, the solutions are scalable for arbitrary number of nodes in the network and
since the protocols are self-stabilizing, nodes can enter and leave the system as long
as each node knows an upper-bound on the number of nodes in the network and the
nodes are assigned unique IDs.

• The protocols show an unified way of utilizing ordered ID space of nodes to solve
different graph optimization problems which can be used as building blocks for
other related problems.

• Although the protocols have been described using the shared memory model, they
can easily be implemented (by using the existing local mutual exclusion protocols
at a lower layer of the networks) in a distributed system; in ad hoc or sensor net-
works where message exchange is essentially by broadcast, local mutual exclusion
is already implemented by the very nature of transmission.

• The protocols are self-stabilizing and hence no system wide reset is necessary in
presence of link and node failures and the protocols can tolerate an arbitrary num-
ber of such faults as long as the rate of failures is lower than the convergence time
of the protocols.

1.1 Model, Notation, and Related Work

We restrict attention to bidirectional networks or symmetric graphs. We use the standard
shared-variable model [17], in which a node sees the variables of its neighbors; this
is the same model that has been used in earlier self-stabilizing protocol design. Since
our objective is to explore the algorithmic aspects distributed protocols based on local

1A preliminary version of the total domination algorithm was presented in [12]
2A preliminary version was presented in [29]

332 Srimani et al.

knowledge, we do not consider implementation details of message communication. Our
algorithms are deterministic. We measure time in the actual number of moves.

For symmetry breaking we assume the nodes have identifiers (IDs). We assume there
is a total ordering on the set of IDs, but like other results in the literature, we often actually
only require a total ordering on the IDs in the neighborhood of each node.

We assume the algorithm is executed by a central daemon, but we do not assume the
daemon is fair [17]. This assumption is not restrictive and is made only for the sake of
convenience; the proposed algorithms can be modified to run under a distributive daemon
and read/write atomicity, either directly or using the general results of daemon transform-
ers given in [18, 19].

Several authors have considered self-stabilizing algorithms for graph problems. For
example, matchings are studied in [14, 16], maximal independent sets in [20], and domi-
nation in [21–24]. A more comprehensive list of references to past related works can be
found in those cited works.

Given a node i in a graph, we denote by N(i) its neighborhood, that is, the set of all
nodes adjacent to i (its neighbors). The set is its closed neighborhood.
Given a set D of nodes, we denote by the subset of D of those nodes having an ID
smaller than i. Similarly, is the set of all nodes in D with ID greater than i. Also, note
that we use i interchangeably to denote a node, and the node's ID.

2. Minimal Total Domination

2.1 Algorithm

The algorithm has a similar flavor to the one for minimal domination given in [HnJS03].
In the proposed algorithm, each node i has two variables: a pointer p(i) (which may be
null) and a boolean flag x(i). If p(i) = j then we say that i points to j. We will use i inter-
changeably to denote a node and its ID. At any given time, we will denote with D the cur-
rent set of nodes i with x(i) = true.

Definition 2.1. For a node i, we define m(i) as its neighbor having the smallest ID.

Definition 2.2. We define a pointer expression q(i) for any node i as follows:

Note that the value q(i) can be computed by i using only local information.

Definition 2.3. we define the boolean condition y(i) for a node i to be true if and only if
some neighbor of i points to it.

The algorithm consists of one rule shown in Algorithm 1. Thus, a node i is privileged
if x(i) ≠ y(i) or p(i) ≠ q(i). If it executes, then it sets x(i) = y(i) and p(i) = q(i).

Algorithm 1 Minimal Total Dominating Set
Variables: boolean x(i), pointer p(i)

Rec: ifx(i) ≠ y(i) orp(i) ≠ q(i)
then set x(i) = y(i) and p(i) = q(i)

N i N i i[]= ()∪{}
Di

<

Di
>

q i

m i if N i D

j if N i D j

null if N i D

()

() ()

() { }

| () | .

=
∩ = ∅
∩ =
∩

⎧
⎨
⎪

⎩⎪ ≥2

Self-Stabilizing Global Optimization 333

2.2 Correctness and Convergence

Lemma 2.1. If Algorithm 1 stabilizes, then D is a minimal total dominating set.

Proof. First, we claim that D is a total dominating set. For suppose, that some node i is
not totally dominated (that is, has no neighbor in D). Then . Since the system
is stable, p(i) = q(i) = m(i), and . But this implies y(m(i)) = true and x(m(i)) = false,
and so node m(i) is privileged, a contradiction. Thus D is a total dominating set.

Next, we claim that D is minimal. For suppose there is some j ∈ D for which D − {j}
is a total dominating set. Since j ∈ D, or x(j) = true, there is some node i ∈ N(j) for which
p(i) = j. But since p(i) = q(i), node j must be the unique neighbor of i with membership in
D. Thus the removal of j will leave i undominated, a contradiction.

Note. We say that node i invites node j if at some time t node i has no neighbor in D and
then executes the rule, causing p(i) = m(i) = j. For a node to join D, it must either be
pointed to from an initial erroneous state or be invited.

We now show our algorithm stabilizes. Observe that if D remains the same, then every
node can execute at most once (to correct its pointer). So it suffices to show that D changes at
most a finite number of times. We say a move is an in-move if it causes x(i) to become true.

Lemma 2.2. If during some time-interval there is no in-move by a node bigger than node
i, then during this time-interval node i can make at most two in-moves.

Proof. The first in-move made by i may have been because a neighboring node hap-
pened to initially point to i. The second in-move made by i must be by invitation. So sup-
pose i is invited by node j. Then i is the smallest node in j’s neighborhood, since m(j) = i,
and at the time of invitation, all other nodes in j’s neighborhood are out of D. By our
assumption, their membership status does not change, so j remains pointing to i through-
out, and i remains in D for the remainder of the time-interval.

Theorem 2.1. Algorithm 1 always stabilizes, and finds a minimal total dominating set.

Proof. It suffices to show that every node makes only a finite number of in-moves. By
Lemma 2.2, node n, which has the largest ID, makes at most two in-moves. During each of the
three time-intervals between such moves, using Lemma 2.2 again, node n–1 makes at most two
in-moves. It is easy to show this argument can be repeated, showing that each node can make
only finitely many in-moves during the intervals in which larger nodes are inactive.

2.3 Exponential Running Time

We briefly sketch how the algorithm can make an exponential number of moves. Consider
the subdivision of the complete graph and add a leaf-node incident to each node of large
degree. Assume all the large-degree nodes have the largest IDs. Initially all flags are clear
and all pointers null.

Number the large-degree nodes v1,…,vs in increasing ID. Let wij be the node of degree
two adjacent to vi and vj, and the leaf-node adjacent to vi. Define the sequence i
recursively in decreasing order. Sequence s+1 is empty. Then to get i from i+1 pro-
ceed as follows. Every time a node vj (necessarily j > i) sets its flag, then immediately pre-
cede it with:

Fire uij (so it points to vi) and fire vi so it enters the set.
and immediately succeed with

N i D()∩ =∅
m i D()∉

� i
L

L L L

334 Srimani et al.

Fire wij (so it points to null) and fire vi so it exits the set.
Finally tack onto the end of the sequence that fires inviting vi and vi fires to end

up in the set. The result is a sequence of moves exponential in s (and s is like the square-
root of the number of nodes in the graph).

3. Minimal Extended Domination

We now show how to generalize the basic ideas of the previous section. We also show in
the next section that the same ideas can be used to solve the opposite problem of maximal
packing.

A dominating set is a set D in which, for all i, , and a total dominating
set satisfies . We seek a common generalization.

Definition 3.1. Assume that for each node i, the set (i) represents some fixed subset of
its closed neighborhood [i]. Assume further that each node has a target integer t(i)
(which is at most | (i)|), indicating how many elements of (i) are required to domi-
nate i. Note that in the case of total domination (i) is precisely (i) and t(i) is uni-
formly one. Given these assumptions we seek a minimal set D (called minimal extended
dominating set) in which, for all i,

3.1 Algorithm

For the algorithm, we provide each node with a bag of pointers, denoted P(i), whose cardi-
nality is bounded by t(i). (We allow P(i) to contain i.) Each node also has a boolean flag
x(i). As before, x(i) should be true if and only if some node points to i, and also as before,
D will denote the set of nodes with true flags at any point in time.

At a given time, assume . Then since , there are at least
t(i) − k members in (i) − D. Let Mi denote the (unique) set of those t(i) − k nodes in

(i) − D having smallest IDs. Note that this set depends on the membership of D of the
time.

Definition 3.2. We define a set of pointers Q(i) as follows.

As before, we define the boolean condition y(i) to be true if and only if some neighbor
of i points to it. The algorithm consists of one rule shown in Algorithm 2. Thus, a
node i is privileged if x(i) ≠ y(i) or P(i) ≠ Q(i). If it executes, then it sets x(i) = y(i) and
P(i) = Q(i).

Remark 1. It is easy to see that Algorithm 2 reduces to Algorithm 1 when (i) =
N(i) and t(i) = 1 for all i.

Algorithm 2 Minimal Extended Dominating Set
Variables: bag P(i) of pointers, flag x(i)

Rec: if x(i) ≠ y(i) or P(i) ≠ Q(i)

� i

| [] |N i D∩ ≥ 1
| () |N i D∩ ≥ 1

N
N

N N
N N

| () | ().N i D t i∩ ≥ (1)

| () | ()D i k t i∩ =N ≤ t i i() | ()≤ N
N

N

Q i
D i M if i D k t i

if i D t i
i()

(()) | () | ()

| () | ().
=

∩ ∪ ∩ = ≤
∅ ∩ >

⎧
⎨
⎩

N N

N

N

Self-Stabilizing Global Optimization 335

then set x(i) = y(i) and P(i) = Q(i)

Lemma 3.1. If Algorithm 2 stabilizes, then D is a minimal set satisfying (1).

Proof. Assume Algorithm 2 stabilizes, and suppose that for some i, .
Then Mi ≠ θ, and so there is some neighbor . But y(j) is true and x(j) is false,
a contradiction. We now claim D is minimal as well. For every node j ∈ D, there is some
node i that points to it. Since P(i) = Q(i), and since P(i) ≠ ø, we must have

. Thus, the removal of j from D will leave .
Again, we say that node i invites node j (with j = i allowed) if at some time

, and i executes a move. For a node to join D, it must be
pointed to from an initial state or be invited.

Theorem 3.1. Algorithm 2 always stabilizes, and finds a minimal extended dominating set.

Proof. In light of Lemma 3.1 we need only show stabilization. As before, observe
that if D remains the same, then every node can make at most one move (to correct its
pointers). So it suffices to show that D changes at most a finite number of times. In partic-
ular, it suffices to show that if during some time interval, x(k) remains unchanged for all
nodes k > i, then during this interval node i can make at most two in-moves.

If i is never invited during this interval, then once i leaves D, it cannot rejoin. So sup-
pose that during this interval i is invited by node j, allowing i to make an in-move. Once i
enters D it must remain there if j continues pointing at it. And this is ensured, provided

. Suppose at the time of invitation . Nodes having IDs
larger than i do not move during this interval, but the smaller nodes can. At the time of
invitation, i is among the t(j) − k smallest nodes in . Even if all nodes smaller
than i were to enter D, we would still have . It follows that j will remain
pointing to i throughout and i will remain in D. Hence, x(i) can make at most two in-
moves during this interval.

3.2 Applications

Signed Domination. With this extension, one can, for example, find a minimal weak dom-
inating set: here every node must be dominated by a node with degree at most its own.
(For more details, see [25].) We also observe that Algorithm 2 gives one a self-stabilizing
algorithm for finding a minimal signed dominating functions (For references, see [25]).
An assignment f : V → { − 1, 1} is a signed dominating function if, for every node i, the
sum of the values in N[i] is positive. Equivalently, f is signed dominating if a strict major-
ity of the values in every closed neighborhood are positive. The function f is minimal if the
function f ′ obtained by reducing the value at any positive node, is never signed dominat-
ing. It is easy to see that minimal signed dominating functions correspond to certain mini-
mal extended dominating sets. In particular, f → { − 1, 1} is a minimal signed dominating
function if and only if the set D{i|f(i) = 1} is a minimal extended dominating set in which
for all i,

Packings. The generalized domination algorithm above solves the problem of a maximal
packing. Another way of defining a packing is to say that it is a set such that in any closed

() ()D i t i∩ <N
j P i j D∈ ∉(),

| () | ()N i D k t i∩ = ≤ | () ()D i t i∩ <N

| () | (),D i k t i j Mi∩ = < ∈N

| () | ()D j t j∩ ≤N | () |D j k∩ =N

N ()j D−
| () ()D j t j∩ ≤N

N () () ()
| [] |

.i N i t i
N i

= = ⎡
⎣⎢

⎤
⎦⎥

+and
2

1

336 Srimani et al.

neighborhood there is at most one node of the set. The set that is constructed is the set of
nodes not in the packing. The requirement is that for every closed neighborhood of cardi-
nality N, at least N–1 nodes must be outside the packing. Further, it is easy to see that the
packing is maximal iff the complement is minimal with respect to that property.

One can generalize packing to allow denser sets. We define a {k}-packing as a set S
of nodes such that in every closed neighborhood there are at most k members of S. So a
normal packing is a {1}-packing. Such a packing is maximal if no node can be added to it.
By the same argument as above, the extended domination algorithm solves this problem.

Weighted Extended Domination. The techniques used above can be extended further.
Consider the problem of weighted extended domination. Here each node i has an
allowable range of values {0,1,…, b(i)}. Each node also has a target t(i) for the sum of
the values of the elements in (i). We want a minimal assignment of values that sat-
isfy the constraints.

One way to handle this is simply to think of a node i as having b(i) flags that operate
independently and have unique IDs. However, for efficiency, instead of a flag x(i) a node
could have a value X(i) restricted to the allowed range. The bag of pointers is replaced by
an array of counters, one for each neighbor. The weight that i places in that register is
how much weight it needs from that neighbor. The rule for X(i) for consistency is that
it is the minimum of the weight-needs of its neighbors. We omit the details which are
similar.

4. Maximal k-Packings

We now consider the problem of finding a set such that every pair of nodes are far
apart. Recall that a k-packing is a set such that every pair of nodes are strictly more
than k apart. We present next an algorthm for finding a maximal k-packing. This also
provides a minimal set such that every node is within distance k of the set (called
distance k-domination in the literature). Distributive algorithms for this problem were
given by Kutten and Peleg [26].

4.1 Algorithm

In the algorithm, each node i has a vector Ri (for ruler) of length k (indexed 0,…, k–1)
whose entries are IDs or null. First, We define the set D of despots.

Definition 4.1. D is the set of all nodes i such that Ri contains only the value i (written Ri ≡ i).
The intended meaning of the entry Ri[d] is that it gives the smallest ID of a despot within
distance d of the node.

The algorithm consists of three rules as shown in Algorithm 3. The idea is that a node
becomes a despot if (as far as the node can tell) there is no other despot within distance k,
and retire if (as far as the node can tell) there is a despot with a smaller ID within distance
k. Otherwise the node updates its ruler-vector to have the desired meaning.

Algorithm 3 Maximal Packing
Variables: an array Ri of k pointers
Add: if Rj[k – 1] = null for all j ∈ N(i)

then fill R with i.
Ret: if Ri[0] = i and Rj[k – 1] < i for some j ∈ N(i)

then set Ri[0] = null and call Rule Upd below.

N

Self-Stabilizing Global Optimization 337

Upd: Calculate array S as follows: Set S[0] = null. For d ≥ 1, set S[d] = min{Rj[d – 1]:
j ∈ N(i)}. If Ri � i and Ri ≠ S, then set Ri = S.

4.2 Correctness and Convergence

Lemma 4.1. If Algorithm 3 stabilizes, then for each node i the value Ri[d] does indeed
give the smallest ID of a despot within distance d from i

Proof. Proof by induction on d. True for d = 0: if i is a despot then Ri[0] = i and oth-
erwise Ri[0] = null (any other possibility and the node would be privileged for Rule Upd).
So assume true for indices less than d.

Assume i is not a despot. By Rule Upd, the value of Ri[d] is equal to the minimum of
Rj[d − 1] for some neighbor j. By the induction hypothesis, Rj[d − 1] is the smallest despot
within distance d − 1 of j. In particular, Ri[d] is a despot within distance d. But suppose z is
the smallest despot within distance d. Then z < Ri[d]. But then if u is the neighbor of i on a
shortest i − z path, it holds that Ru[d − 1] ≤ z, a contradiction.

A similar argument holds if i is a despot, except that then if Ri[d] (which equals i) is
not the smallest despot within distance d, them Rj[d − 1] < i for some neighbor j, and so i is
privileged for Rule Ret, a contradiction.

It follows that:

Lemma 4.2. If Algorithm 3 stabilizes, then D is a maximal k-packing

Proof. Suppose two despots i < j are within distance k of each other. Let u be the first
node on a shortest path from j to i (possibly u = i). Then by the above lemma, Ru[k − 1] ≤ i;
but then j is privileged for Rule Ret, a contradiction. So D is a k-packing.

On the other hand, suppose that i can be added to D and it remain a k-packing. Then i
is distance more than k from every despot. So every neighbor of i is distance at least k
from every despot, and by the above lemma has the all-null vector. But this means that i is
privileged for Rule Add, a contradiction.

Lemma 4.3. If the set D does not change over some time-interval, then there can be at
most a finite number of moves

Proof. By assumption, during this time-interval neither Rule Add nor Rule Ret is
ever executed. Thus, while Ri might be corrupt due to erroneous initialization, after one
pseudoround Ri[0] has stabilized for all nodes.

After another pseudoround, Ri[1] has stabilized for all nodes. For, if node i executes
Rule Upd, then Ri[1] is the minimum of Rj[0] over all its neighbors, and these values have
stabilized. Similarly, after another pseudoround, Ri[2] has stabilized. After k pseudor-
ounds, there can be no further move.

Now we define an i-reversal as any move in which the value Rv[d] for some node and
d ≥ 0 changes from being smaller than i to being null or at least v (or vice versa).

Lemma 4.4. If the set does not change, then there are a finite number of i-reversals

Proof. After one pseudoround, there obviously cannot be another reversal of Rv[0]
for any v. Similarly, after another pseudoround, there cannot be another reversal of Rv[1].
For, if Rw[0] < i for some w ∈ N(i), then Rv[1] is fixed to the smallest value of Rv[0] (as
these values never reverse). On the other hand, if Rw[0] is null or at least i for every neigh-
bor, then Rw[1] can never become a value less than i.

Similarly, after k pseudorounds, there can be no further i-reversal.

Di
<

338 Srimani et al.

Theorem 4.1. Algorithm 3 always stabilizes, and finds a maximal k-packing.

Proof. In light of Lemma 4.2 we need only show stabilization. We argue that a node
can enter D at most a finite number of times. The proof is by induction on i.

We first observe that between consecutive entrances of a node i, there must be an
i-reversal. For, when i executes Rule Add, all of its neighbors must have all-null arrays. In
order for it to execute Rule Ret, some neighbor of i must have Rj[k − 1] smaller than i.
That is, there must have been an i-reversal.

For the smallest node i = 1, there can be no 1-reversal. Hence it can enter at most
once. For a general node i, between changes in there is a bounded number of i-reversals,
and hence a bounded number of entrances by i. This shows that D can change at most a
finite number of times.

Putting this together with Lemma 4.3, it follows that the algorithm always terminates.

5. Strong Matching

In our proposed algorithm, each node i maintains only a pointer P(i): the value of P(i) is
either a neighbor of i, or one of two special values: Open or Unav. The idea is that in
general the pointers form the matching. If a node is not currently matched, it will declare
itself open (set its pointer to Open) if it can be matched; and declare itself unavailable (set
its pointer to Unav) if a neighbor is already matched and that match has higher precedence
(see below). If a node’s pointer does not point to Unav, then we say it is available.

The key is to use the total ordering of the nodes to provide an ordering (sometimes
called the lexicographic ordering) on the set of edges (or more precisely on the set of pairs
of nodes).

Definition 5.1

If e and f are pairs of nodes, then iff either min(e) < min(f) or min(e) = min(f) and
max(e) ≤ max(f). That is, if e and f do not have a node in common, then the one with the
smallest node is the smaller; if they share a node, then they are ranked by the other node.
If and e ≠ f then we will write .

For a node i, we define A(i) to be the smallest matched edge incident with one of its
neighbors (as shown by their pointers).

Definition 5.2

For any node i, we define a special edge as

if it exists. (The edges are compared using the ordering given above.)
We further define B(i) as the minimum available neighbor of node i.

Definition 5.3

For any node i, we define a special neighbor as

if it exists.

Di
<

e f≺

e f≺ e f≺

A i j P j j N i P j() min{{ , ()} : () () {= ∈ ∧ ∉ Open, Unav}},

≺

B i j j N i P j() min{ : () ()= ∈ ∧ ≠ Unav}

Self-Stabilizing Global Optimization 339

For example, consider the graph shown in Fig. 1 (where the values inside the nodes give the
nodes’ IDs and the values outside the value of P). For the node 2, A(2) = {1,4} and B(2) = 4.

Definition 5.4

We define the value Q(i) for a node i as follows:

We say that a node i is consistentiff P(i) = Q(i). That is, for a node to be consistent, it must
be unavailable if there is a matched edge incident with a neighbor that is smaller than any
that it could be in; failing which it must point to the smallest available neighbor if there is
one; failing which it must be open.

Note that the value Q(i) can be computed by the node i (i.e., it uses only local
information).

The self-stabilizing algorithm for maximal strong matching consists of one rule as
shown in Algorithm 4. Thus, a node is privileged if P(i) ≠ Q(i). If a node executes, then it
sets P(i) = Q(i).

Algorithm 4 Maximal Strong Matching
Variables: a pointer P(i)

Correct: ifP(i) ≠ Q(i)
then set P(i) = Q(i)

5.1 Correctness at Convergence

Lemma 5.1. If Algorithm 4 stabilizes, then for any node i, if P(i) = j then P(j) = i.

Proof. We claim that if P(j) = Unav or P(j) < i, then i is privileged. For, if P(j) = Unav
then B(i) ≠ j so that P(i) ≠ Q(i); while if P(j) < i then since it follows that
Q(i) = Unav or Q(i) ≤ P(j), so that P(i) ≠ Q(i).

Further, we claim that if P(j) = Open or P(j) > i, then j is privileged. For, since B(j) ≤
i, it follows that Q(i) = Unav or Q(j) ≤ i.

We define a special set of edges as follows.

FIGURE 1 An example graph for illustration.

Q i

iff A i exists and either B i does not exist or A i i B

()

() () () { ,

=
<Unav (()},

() () () { , ()

i

B i iff B i exists and either A i does not exist or i B i ≤ AA i

iff neither A i nor B i exists

()

() () .Open

⎧
⎨
⎪

⎩⎪

A i j P j() { , ()}≺

340 Srimani et al.

Definition 5.5.

Lemma 5.2. If Algorithm 4 stabilizes, then the set M is a maximal strong matching.

Proof. By the above lemma, the set M is a matching.
Suppose adjacent nodes i and j are both in the matching, but the edge between them

is not part of the matching. That is, edges e = {i, P(i)} and f = {j, P(j)} are disjoint.
Without loss of generality, . Then j is privileged, a contradiction. So M is a
strong matching.

Finally, suppose an edge e = {i, j} can be added to M and it still be a strong matching.
Then neither i nor j has a neighbor in M. So neither A(i) nor A(j) exists. This means that
since i and j are consistent, neither is unavailable; but then B(i) and B(j) exist, and hence
both nodes are inconsistent, a contradiction.

5.2 Termination

In this section we show that Algorithm 4 terminates in a finite number of moves when it
starts from an arbitrary initial state.

Definition 5.6. Let X be a totally ordered set. Consider a sequence S of subsets S(t) of X,
t = 1, 2,…, such that each subset is obtained from the previous one by either the addition
or deletion of one element. We say such a sequence is downward if for all elements i, if i is
added at time t and then deleted at time t′, then some element smaller than i is added
between time t and t’. That is, if i ∈ S(τ) for t ≤ τ < t′ but , then there
exists j < i and τ with t < τ < t′ − 1 such that S(τ) = S(τ − 1) ∪ {j}.

Lemma 5.3. If X is finite, then a downward sequence S on X is finite.

Proof. We prove by induction on |X|. Consider the minimum element of X; call it 0.
It might be in or out of S(1). But once added, it cannot be deleted. So define S′ as the
subsequence up to 0's addition, if it exists, and S(as the subsequence after 0's addition.
(If 0 is never added, then set S′ = ø and S(= S.) Then ignore the transition where 0 is
deleted, if this occurs, and restrict both subsequences to the set X − {0}. The result is
two downward sequences on the set X − {0}. Hence, if M(m) denotes the maximum
length of a downward sequence for a set of cardinality m, it follows that M(m) ≤ 2 +
2M(m − 1).

Definition 5.7. For any node k, we define the set of edges

Note that Sk exists for a node k only when {Open, Unav}

Lemma 5.4. Let k be a node, and consider a period when no node less than node k executes.

 (i) Then Sk can change only a finite number of times during that period.
(ii) If node k is at some stage consistent and available, and later declares itself

unavailable, then in-between there was an addition to Sk.

M = ∈ ∧ = ∧ ={{ , } : , () () }.i j i j V P i j P j i

e f≺

i S t S t∉ −(), (’)1

S j P j y j k P j kk = ∧ <{{ , () : () }.≥

P k() ∉

Self-Stabilizing Global Optimization 341

(iii) If k is available throughout the period, and v is some neighbor of k that is at
some stage consistent and available, and later declares itself unavailable, then
in-between there was an addition to Sk

Proof.
 (i) Suppose at some stage P(i) becomes j, with i ≥ k > j. Since the nodes less than k

are stable, it follows that B(i) = j throughout. So for i to change again, it must
happen that A(i) changes to a value smaller than {i, j}.

 (ii) That is, if at some stage {i, j} is added to Sk, then before it is deleted some smaller
edge must be added to Sk. (Note that if at the start P(i) = j′ with j′ < k, then we
assume the change in Sk occurs in two steps: add {i, j} and then delete {i, j}.) Thus,
the sequence of Sk is a downward sequence. By Lemma 5.3, Sk can change only a
finite number of times.

(iii) When node k declares itself unavailable, a better edge must have been created in its
neighborhood since node k was last consistent. Hence there was an addition to Sk.

(iv) At the moment v declares itself unavailable, it must see an edge smaller than {v, k},
which did not exist when it was consistent. Hence there must have been an addi-
tion to Sk.

Lemma 5.5. Let k be a node, and consider a period when no node less than k executes.
Then node k moves a finite number of times.

Proof. There cannot be an infinite cycle of node k doing just the following types of
moves: Unav to Open; Open to a value and/or decrease. So consider each time that k
declares itself unavailable, increases value or changes from a value to being open. The latter
two can only occur if some neighbor declares itself not available. Hence each such move
involves either k or one of its neighbors declaring itself unavailable. By Lemma 5.4, this can
occur only a finite number of times. Hence k can be privileged only a finite number of times.

Theorem 5.1. Starting from an arbitrary initial state, the algorithm terminates in finite time.

Proof. We use induction and Lemma 5.5; it follows that nodes {1,…,k} can be privi-
leged (or make a move) only a finite number of times. Hence the algorithm terminates.

5.3 Complexity Analysis

We note that in our application, the downward sequences have the additional property that
if i is deleted because of j’s addition, then i cannot be re-added until j is deleted. It can
readily be shown that such sequences have length O(|X|2). However, this provides no
improvement in the bound on the running time of the overall algorithm—which is O(nn)
since no state can repeat.

Algorithm 4 does indeed have exponential running time. Consider the following
example. Take any graph G and add three new nodes x3, x2, x1 such that x3 is adjacent to
all nodes, while x1 and x2 are adjacent only to each other and to x3, and such that these
three nodes have the smallest IDs and x3 > x2 > x1. Call the resulting graph G'.

Assume all nodes start as Unav. Then assume the demon proceeds as follows:

(1) fire G until it stabilizes;
(2) fire x1 (so goes to Open) and then x3 (so points to x1);
(3) fire all nodes in G (so go to Unav);
(4) fire x2 (so points to x1) and then x3 (so goes to Unav);
(5) fire G until it stabilizes.

342 Srimani et al.

If M(G) denotes the maximum number of steps on graph G assuming all nodes start as
unavailable, then it follows that M(G') ≥ 2M(G) + 4. By repeating this construction, it fol-
lows that running time can be at least 2n/3.

6. Conclusions

In this paper, we have proposed several self-stabilizing distributed algorithms for total
domination, maximal k-packing and strong matching in large networks. We have assumed
an ID based network to prove the correctness and the convergence of the algorithms. The
underlying concepts are shown to be general and they are useful in symmetry breaking
which is ever so important in designing distributed algorithms to achieve global objectives
based on local knowledge. We did not address the issues of implementation of message
exchanges in the network; this will be needed to be done before the protocols can be use-
ful in real life networks; one possible implementation mechanism can be found in [27].
Also, we have considered only worst case performance analysis of the protocols; experi-
mental investigations of average run-time behavior will be interesting and useful. We
expect the inherent algorithmic power of the self-stabilization paradigm to achieve global
objectives based on localized computations will be useful in designing algorithms for sim-
ilar applications in ad hoc and sensor networks.

It is to be noted that in designing self-stabilizing algorithm, we need to define some
kind of an invariant at each node that depends on the states of the neighboring nodes
(since only the states of the immediate neighbor nodes are available to any node). Most of
the self-stabilizing protocols for various graph theoretic problems follow this approach.
On the other hand, there are problems for which designing a distributed algorithm
becomes easier and more intuitive if distance-two knowledge was available at each node
(this does not necessarily mean that the distributed protocol cannot be designed without
distance-two knowledge). Authors in [28] have proposed a very elegant self-stabilizing
protocol to collect distance-two knowledge at each node (invariant at each node still
depends on strictly local knowledge). The underlying principle of the approach is to utilize
some embedded lock mechanism to make sure the correct values of variables in distance-2
neighborhood are up to date before each node makes a move (which explicitly depends
only on distance-one information). It has also been shown in [28] that any self-stabilizing
algorithm that is designed using distance-2 knowledge can be simulated by their protocol
to run on distance-1 knowledge at nodes with a slowdown factor of O(n2). It’d be interest-
ing to if it is possible to design polynomial time self-stabilizing algorithms for the prob-
lems studied in this paper using the new approach.

References

1. D. Estrin, R. Govindan, J. S. Heidemann, and S. Kumar, “Next century challenges: Scalable coor-
dination in sensor networks,” in Mobile Computing and Networking, 263–270, 1999.

2. E. W. Dijkstra , “Self-stabilizing systems in spite of distributed control,” Communications of the
ACM, 17, 643–644, 1974.

3. L. Lamport, “Solved problems, unsolved problems, and non-problems in concurrency,” in Proceed-
ings of the 3rd Annual ACM Symposium on Principles of Distributed Computing, 1–11, 1984.

4. M. Schneider, “Self-stabilization,” ACM Computing Surveys, 25, 1, 45–67, March, 1993.
5. Herman. T., “A comprehensive bibliograph on self-stabilization, a working paper,” Chicago J.

Theoretical Comput. Sci. http://www.cs.uiowa.edu/ftp/selfstab/bibliography.
6. C. Boulinier, F. Petit, and V. Villain, “When graph theory helps self-stabilization,” in Proceedings

of the Twenty-Third Annual ACM Symposium on Principles of Distributed Computing (PODC
2004, St. John’s), 150–159, 2004.

Self-Stabilizing Global Optimization 343

7. H. Attiya, and J. Welch, Distributed computing: fundamentals, simulations, and advanced top-
ics. Mc Graw Hill, 1998.

8. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of domination in graphs. New
York: Marcel Dekker, 1998.

9. S. Fujita, T. Kameda, and M. Yamashita, “A resource assignment problem on graphs,” Proceed-
ings of the 6th International Symposium on Algorithms and Computation, (Cairns, Australia)
418–427, December, 1995.

10. F. Dai, and J. Wu, “An extended localized algorithm for connected dominating set formation in ad
hoc wireless networks,” IEEE Trans. Parallel Distrib. Syst., 15, 10, 908–920, 2004.

11. D. Peleg, “Distributed data structures: A complexity oriented view,” in Proceedings of the
Fourth International Workshop on Distributed Algorithms, 71–89, 1990.

12. W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani, “A self-stabilizing distributed
algorithm for minimal total domination in an arbitrary system graph,” Proceedings of the
8thIPDPS Workshop on Formal Methods for Parallel Programming, (Nice, France), April, 2003.

13. M. H. Karaata, “Self-stabilizing strong fairness under weak fairness,” IEEE Transactions on
Parallel and Distributed Systems, 12, 4, 337–345, 2001.

14. S. C. Hsu and S. T. Huang, “Analyzing self-stabilization with finite-state machine model,” in Pro-
ceedings of the 12th International Conference on Distributed Computing Systems, 624–631, 1992.

15. S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani, “Maximal matching stabilizes in time o(m),”
Information Processing Letters, 80, 5, 221–223, 2001.

16. W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani, “The b-matching paper,” Preprint.
17. S. Dolev, Self-Stabilization. MIT Press, 2000.
18. J. Beauquier, M. Gradinariu, and C. Johnen, “Cross-over composition — enforcement of fair-

ness under unfair adversary,” in WSS01 Proceedings of the Fifth International Workshop on
Self-Stabilizing Systems, Springer LNCS, 2194, 19–34, 2001.

19. M. Nesterenko, and A. Arora, “Stabilization-preserving atomicity refinement,” Journal of Par-
allel and Distributed Computing, 62, 5, 766–791, 2002.

20. S. K. Shukla, D. J. Rosenkrantz, and S. S. Ravi, “Observations on self-stabilizing graph algo-
rithms for anonymous networks,” in Proceedings of the Second Workshop on Self-Stabilizing
Systems, 7.1–7.15, 1995.

21. J. R. S. Blair and F. Manne, “Efficient self-stabilizing algorithms for tree networks,” in Pro-
ceedings of ICDCS-2003, Island, 2003.

22. S. T. Hedetniemi, D. Pokrass Jacobs, and P. K. Srimani, “Maximal matching stabilizes in time
O(m).” Information Processing Letters, 80, 221–223, 2001.

23. W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani, “Fault tolerant algorithms for
orderings and colorings,” in 18th International Parallel and Distributed Processing Symposium
(IPDPS 2004), 2004.

24. S. M. Hedetniemi, S. T. Hedetniemi, D. P., Jacobs, P. K., Srimani, “Self-stabilizing algorithms
for minimal dominating sets and independent sets,” Computers & Mathematics with Applica-
tions 46, 5–6, 2003.

25. T. W. Haynes, S. T. Hedetniem, P. J. Slater, “Fundamentals of domination in graphs,” Mono-
graphs and Textbooks in Pure and Applied Mathematics, Marcel Dekker: New York, 1998.

26. S. Kutter, and D. Peleg, “Fast distributed construction of small k-dominations sets and applica-
tions,” Journal of Algorithms, 28, 40–66, 1998.

27. S. K. S. Gupta, P. K. Srimani, “Self-stabilizing multicast protocols for ad hoc networks,” Jour-
nal of Parallel and Distributed Computing, 63, 1, 87–96, 2003.

28. M. Gairing, Goddard, W. Hedetniemi, S. T. and P. Kristiansen, “Distance-two information in
self-stabilizing algorithms,” To appear in Parallel Processing Letters, 2005.

29. W. Goddard, T. St. Hedetniemi, D. P. Jacobs, and P. K. Srimani, “Self-stabilizing distributed
algorithm for strong matching in a system graph,” Springer-Verlag Lecture Notes in Computer
Science 2913, December, 2003.

344 Srimani et al.

Wayne Goddard is currently an Associate Professor in the Department of Com-
puter Science having previously taught at the Universities of KwaZulu-Natal and
University of Pennyslvania. His research interests are graph theory, algorithms,
and networks. He received Ph.D.s from both the University of KwaZulu-Natal
and the Massachusetts Institute of Technology. Goddard has published over 100
journal and conference papers in many areas of graph theory as well as in graph
algorithms, self-stabilizing algorithms, game-playing, and ad hoc networks, and is
co-author of a textbook on Research Methodology. He is currently a managing
editor for the journal Utilitas Mathematica.

Stephen T Hedetniemi, Professor in the Dept of Computer Science, is a researcher
in graph theory and algorithms. He has published over 180 journal and conference
papers in many areas of graph theory, especially in domination and colorings of
graphs. He is co-author of the book Fundamentals of Domination in Graphs and co-
editor of a companion book. He is founder and co-organizer of the Clemson mini-
Conference on Discrete Mathematics, now in its 20th year. He served for 17 years
on the ABET Computing Accreditation Commission, and has advised or jointly
advised 11 Ph.D.s. He was educated at the University of Michigan and had taught at
the Universities of Oregon, Virginia, Victoria, and Iowa.

David P Jacobs is currently a professor of computer science at Clemson University.
He was born in Chicago, and received his Ph.D. from this University of Missouri in
1976. He works mostly in the design and analysis of algorithms, but has also pub-
lished papers on decidability, computer algebra, and ring theory. In work funded by
the National Science Foundation, around 1988 he designed the computer algebra
program Albert which has since led to dozens of discoveries in non-associative
algebra. His current research focus is on self-stabilizing algorithms. David enjoys
playing blues harmonica.

Pradip K Srimani is currently a professor and chair of computer science at Clemson
University, South Carolina, USA. His research interests include parallel and distrib-
uted computing, mobile computing, and graph theory applications. His research has
been supported by the National Science Foundation and others. Srimani received
his BTech, MTech and Ph.D. from the University of Calcutta, India. He has pub-
lished over 200 papers in journals, conference proceedings, and books. He co-edited
two books for the Computer Society Press. A Fellow of the IEEE and a member of
the ACM, he has served on editorial boards and as special issue guest editor for a
number of journals.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

