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Sensor network research is still in its infancy. There is a large volume of exploratory research. From
lack of experimental data and sophisticated models derived from such data, many sensor network
publications continue to use data generated from simple models in their algorithm evaluation. It is
commonly agreed that data processing algorithms in sensor networks are sensitive to input data.
However, no previous efforts have been devoted to quantitatively characterize the range of the algo-
rithm performance when evaluated using different data input.

In this paper, we made the first attempt to quantify the algorithm’s sensitivity to data. Our evalua-
tion results demonstrated that different data input could change the algorithm performance by as much as
an order of magnitude or even change the relative performance order of two alternative algorithms. This
pointed out the need to evaluate sensor network systems with data representing a wide range of real-
world scenarios. For each algorithm in our case study, we identified a small set of data characteristics
essential to the algorithm’s performance. This defined a unique feature of our synthetic data generation
[framework and made both synthetic data generation and evaluation scalable. To support systematic algo-
rithm evaluation and robust algorithm design and deployment, our synthetic data generation toolbox can
generate 1. irregular topology data based on empirical models which will maintain important features of
the experimental data; and 2. data corresponding to a wide range of parameter values.

Keywords Scalable Synthetic Data Generation; Systematic Algorithm Evaluation; Robust
Algorithm Design; Search Space Reduction; Data Sensitivity; Sensor Networks

1. Introduction

It is commonly agreed that data processing algorithms in sensor networks are sensitive to input
data. However, no previous efforts have been devoted to quantitatively characterize the range
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of the algorithm performance when evaluated using different data input. Due to lack of experi-
mental data and sophisticated data models, many sensor network publications continue to use
data generated from simple models in their algorithm evaluation. For example, it is common
that data collection and estimation algorithms are evaluated with uniform or Gaussian data
input [11, 31]. Similarly, a random Gaussian field model is typically used in both analytical
and simulation studies to evaluate the compression and source coding algorithms [16].

If various data input generated from different models (ranging from simple models to
complex or empirical models) only produce small perturbations on the algorithm perfor-
mance, simple models are preferred. This is justified by the Akaike Information Criteria
(AIC) [18]. Unfortunately, the type of input data and node topology used in the evaluation
often significantly influence the evaluation results.

In this paper, we quantified the extent of this data sensitivity problem through statisti-
cal performance analysis and evaluation. Using case studies of two concrete sensor net-
work algorithms, we demonstrated that different data input could change the algorithm
performance by an order of magnitude, or even change the relative performance order of
two alternative algorithms.

We would like to clarify that the objective of our case studies was not meant to criti-
cize any particular algorithms. Rather our objective was to demonstrate potential problems
in the evaluation methodology followed by many sensor network researchers, i.e., evaluat-
ing algorithms only based on data generated from simple models. As a result, we recom-
mend evaluating sensor network algorithms with data representing real-world scenarios or
data corresponding to a wide range of conditions. Generating data satisfying the above
requirements presented several challenges:

Scalability Issues The parameter space is huge in fully characterizing a physical phenom-
enon. The following back-of-the-envelop calculation demonstrated that the search
space in the synthetic data generation is at least exponential. A spatial data set with m
possible sensor readings each at n locations has m" possibilities in the synthetic data
output. Further, sensor data input is often 8 or 16 bits, in which case, m = 28 orm =
2!®. Thus, systematic algorithm evaluation by exhaustive search is not practical.

Reality Check Ideally, algorithm evaluation using our synthetic data will provide insight
on system performance in future field deployments; therefore, the synthetic data is
desirable to represent real world scenarios. We wanted to avoid the pathological sce-
narios in which the synthetic data misguides the simulation.

Unavailability of Ideal Experimental Data Most existing experimental data are col-
lected from a regular grid; however, sensor networks are usually deployed in an ad-
hoc manner. Evaluating algorithms with irregular topology data versus regular grid
data could lead to completely different results [40]. Therefore, existing experimental
data cannot be directly used to evaluate sensor network algorithms.

To address the above challenges, we proposed two strategies: First, through concrete
case studies, we identified a small number of parameters essential to algorithm performance.
This will significantly reduce the search space in synthetic data generation. Second, we used
empirical models derived from experimental data to guide simulation towards those portions
of the space that represent real world scenarios. Guided by these two strategies, we adopted
two complementary techniques to generate synthetic data of an arbitrary irregular topology:
trace based and analytical model based approach. In the trace based approach, we used
empirical models to guide synthetic data generation towards those portions of the parameter
space that represented real world scenarios. The synthetic data generated from this approach
will have similar characteristics as the experimental data trace. When the available experi-
mental data is scarce, we used analytical models with adjustable parameters to generate
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synthetic traces exhibiting a wide range of data characteristics over the parameter of interest
to applications. The second approach also allowed us to investigate how a single parameter
affects the algorithm performance while the other parameters remain fixed.

From the conceptual point of view, our main contributions fall into the following
categories:

e Systematic evaluation methodology to quantify the algorithm’s sensitivity to data
and deduce a small number of essential parameters to a given algorithm. This is
illustrated through two case studies.

1. When the algorithm performance can be attributed to a single parameter, we used
non-parametric statistical tools and experimental data to examine how the algo-
rithm performance varies with the changing parameter value.

2. When the algorithm performance depends on multiple parameters, we used syn-
thetically generated scenarios to investigate changes in performance with each
parameter. In the synthetically generated scenarios, we have the flexibility to vary
the phenomena along a single dimension while keeping other parameters fixed.

e Search space reduction in synthetic data generation. Systematic algorithm evalua-
tion also helped to identify a small set of data characteristics essential to algorithm
performance. Identifying a small set of essential data features allowed us to focus
on the important features in the synthetic data generation, thus reducing the search
space significantly from exponential to a manageable number.

In general a fair understanding of the algorithm under evaluation and some preliminary algo-
rithm evaluations helped to identify the relevant set of data features. The systematic perfor-
mance evaluation techniques introduced in Sections 2 and 3 are used to verify whether there
is a strong correlation between the identified data feature and the algorithm performance.

Organization of the Paper

We start the paper with two case studies: 1. percentile estimation of the field data, and
field estimation. 2. In percentile estimation, the algorithm performance can be attributed
to a single parameter (see evaluation results in Section 2).

For field estimation, there has been extensive research in sampling and reconstruction of a
physical field [32, 37, 5, 26] in recent sensor network literature. We investigated Fidelity
Driven Sampling in Section 3. Fidelity Driven Sampling represented a fairly complex algo-
rithm, its performance depended on multiple parameters. These case studies served two-fold
purposes: First, these algorithms served as examples of systematically studying the depen-
dency of algorithm performance on data. Second, for each case study, we identified a small set
of parameters essential to the algorithm performance. Identifying a small number of essential
parameters helped to achieve scalability in both synthetic data generation and evaluation.

Section 4 contains the implications of these case studies to a scalable synthetic data
generation framework and our synthetic data generation techniques. We review related
work in Section 6. Section 7 discusses the general applicability of our proposed evaluation
methodology and how it can be applied in evaluating a new algorithm.

2. Statistics Estimation Applications

We considered a type of algorithm in which we are able to identify a single parameter that
determines the algorithm performance. In particular we presented results on percentile
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estimation algorithms. We studied two types of percentile computation algorithms [21,
28], and identified a single parameter, p-percentile bin size, essential to the algorithm
performance. In the case of percentile estimation by uniform sampling, we proved that
p-percentile bin size is sufficient to determine the algorithm performance. This sufficiency
proof significantly reduced the search space in synthetic data generation.

2.1 Sensitivity of Algorithm Performance on Data and Identification
of Essential Data Characteristics

2.1.1 Median Computation by Uniform Sampling. For simplicity of illustration, we con-
sidered an instantiation of random process Z(u) as deterministic. Given a snapshot of sen-
sor readings at each node (z(i), i=1,..., n), in an ascending or descending order, the real

median M(Z) is defined as Z(n+1} if n is odd; or (Z(%)+Z(§+l))/2 if n is
2

even. The estimated median is written as M(Z).

Random Sampling provides a simple aggregation technique for in-network processing.
There are variations of median estimation by uniform sampling. Without loss of generality, we
considered a specific median computation by a uniform sampling algorithm as follows:

1. a single sink in the deployed sensor network and each sensor node has the same
probability (e.g., 1%) of sending its reading back to the sink.

2. the sensor value is forwarded along the shortest path tree from the sensor source to
the sink. Further, an intermediate node on the shortest path tree simply relays these
packets back to the sink.

3. p samples are transmitted back to the sink, s(1),..., s(p); The real median M(Z) is
estimated by the median M(S) of s(1),..., s(p).

By using statistical tools we systematically investigated the algorithms performance
across a wide range of data distributions. Our statistical analysis consisted of three key steps.

First, we defined our performance metric to be normalized estimation error—the dif-
ference between the estimated median, M(Z), and the real median, M(Z), normalized by
the range of the entire set of sample values. Normalization is introduced to make compar-
ing results across different data sets meaningful. Often, the median is used as a robust esti-
mator instead of mean. Therefore, we defined the error metric in terms of value, as
opposed to position.!

Second, we identified the relevant data characteristic to be normalized median bin
size. We bin the entire set of samples into a fixed number (e.g., 10) of equally spaced con-
tainers. Median bin is defined as the container that includes the median. Let n denote the
total number of samples, and m denote the number of samples in the median bin, then the
normalized median bin size is defined as m/n.

Last, we quantified the range of algorithm performance with data input of various
parameter values. We evaluated the algorithm using two types of data: data simulated
from Gaussian, Exponential, and Weibull distributions; and 259 snapshots of S-Pol radar

UIf the estimation error metric is defined in terms of order (i.e., let p denote the real position of
the estimated median M(Z)in the original data set, n/2 is the position of the real median, the estima-
tion error is then defined as p—n/2). We prove ([39]) that median computation by uniform sampling
is not sensitive to data distribution. Intuitively, uniform sampling is applied in the spatial dimension.
When the error metric is defined in the same dimension, i.e., position in an ordered list or space, the
estimation error will not be sensitive to the underlying data distribution.
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data.” The S-Pol radar data recorded the intensity of reflectivity in dBZ, where Z is pro-
portional to the returned power for a particular radar and a particular range. We selected
259 time snapshots across 2 days in May 2002 in our study. Each snapshot is a 60 x 60
spatial grid data with 1 km spacing.

Note that data generated from simple models have been widely used in sensor net-
work publications. We varied the parameters in the above models across a wide range:
Gaussian distribution—fixed mean and varied standard deviation from 1 to 100; Weibull
distribution—fixed scale parameter and varied shape parameter from 1 to 100; Exponen-
tial distribution—varied exponential changing rate A from 0.1 to 10.

Figure 1 shows the scatter plot of the normalized estimated median error vs. the nor-
malized median bin size. Each point in the graph corresponded to results averaged from
100 runs of the algorithm on a single data set. The x-axis is the normalized median bin size
of the data, and the y-axis is the normalized estimation error.

For both experimental and parametric distribution generated data, Fig. 1 shows the
algorithms performance (i.e., the normalized median error) is strongly correlated with our
defined data characteristic, the normalized median bin size. With increasing normalized
median bin sizes, the estimation error decreases. Intuitively, under uniform sampling with
increasing normalized median bin size, more samples from the median bin will appear in
the final sample set at the sink. When compared to other bins, samples from the median
bin will have a higher chance of being selected as the estimated median. Statistically, sam-
ples from the same bin are close in value; thus, the estimated median will be close to the
real median in value.

The Pearson’s correlation coefficient (p) and t-statistics test on p are used to quantify
the correlation between the normalized estimation error and the normalized median bin
size. t-statistics is a standard approach in hypothesis testing the significance of the correla-
tion [33]. Note that when the correlation is not linear, the correlation coefficient computed
above may under-estimate the correlation between two variables. However, the Pearson’s
correlation coefficient will not over-estimate the correlation between two variables.

p is —0.8239 and —0.7818 for data in Fig. 1(a) and 1(b) respectively. The absolute
value of the correlation coefficients being close to 1 indicated a strong correlation between
them.

Our t-statistics test results further confirmed the existence of this correlation. In our t-
statistics testing, the null hypothesis is H: p = 0; the alternative hypothesis is H;: p # 0.
We used two-tail #-test. We set the significance level, o, to be 0.01, and its corresponding
critical ¢ value is 2.575 (which can be found from a simple table lookup [33]). The test sta-
tistics can be computed from:

_
1,2 ()

n—2

We omitted the details but summarized the #-statistics test results. From Equation 1,
for data used in Fig. 1(a), t = 23.3069; for data used in Fig. 1(b), t = 25.0176. In both
cases, the computed 7 value is larger than the critial # value 2.575; therefore, there is signif-
icant evidence to reject the null hypothesis that “there is no significant linear correlation.”

2S-Pol (S band polar metric radar) data were collected during the International H20 Project
(IHOP; Principal Investigators: D. Parsons, T. Weckwerth, et al.). S-Pol is fielded by the Atmo-
spheric Technology Division of the National Center for Atmospheric Research. We acknowledge
NCAR and its sponsor, the National Science Foundation, for provision of the S-Pol data set.
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In addition to #-statistics, we also computed the confidence interval on the correlation
coefficient according to [33] and [13].? For data used in Fig. 1(a), with 99% of the confi-
dence interval, p is within [-0.843, —0.793]. Corresponding to Fig. 1(b), its 99% of confi-
dence interval is [-0.824, —0.726].

Finally, we would like to point out another interesting observation from Fig. 1.
The experimental data covered a wide range of data characteristics not covered by any
single distribution. More precisely, as far as the normalized median bin size is con-
cerned, experimental data encompassed a super set of all four families of data distri-
butions. This may suggest that data generated from simple parametric distributions
alone is not sufficient to cover a wide range of data characteristics required in our
algorithm evaluation. We believe this result strongly suggests the importance of real-
istic data in algorithm evaluations.

Our study on the /st- and 3rd-quartile estimation obtained similar results as in Fig. 1.
We leave out the details here due to space limitation.

2.1.2 PCCOS: An Order-Statistics Estimation Algorithm not Based on Random
Sampling. In the above case study, we demonstrated three key steps to systematically
quantify the algorithm’s sensitivity to different data input. In the performance evaluation,
standard statistical tools are used to identify the correlation between the performance met-
ric and data characteristics in the study.

The proposed systematic performance evaluation technique may not be applicable
to all statistical estimation algorithms. However, to demonstrate that it is applicable to
the scope beyond the percentile estimation by uniform sampling algorithm, we studied
the Power-Conserving Computation of Order-Statistics proposed in [21]. In evaluat-
ing PCCOS, we used the same problem definition, performance metric, and data char-
acteristics as defined in Section 2.1.1 and the same set of S-Pol radar data. Similar to
median computation by uniform sampling, we observed a strong correlation between
the estimation accuracy and the normalized median bin size (Fig. 2). It is evident that
the mean and variance of estimation error is larger when the normalized median bin
size is small, i.e., in the range between 0.1 and 0.3. Using the same procedure as in
Section 2.1.1, we computed the correlation coefficient p=—0.58, and the test statistics
t=11.415, which again is larger than the critical ¢ value (2.575) corresponding to the
significance level of .=0.01. Therefore, there is significant evidence to reject the null
hypothesis that “there is no significant linear correlation.” The 99% of confidence
interval for p is [-0.675, —0.462].

3Briefly, [13] devised a method to transform p to a quantity z:

‘= %[ln(l ) —in(l-p)] @

z is distributed almost normally, independent of the sample size, with standard error approxi-

mately c,= . The confidence interval for p can be derived from the confidence interval of
n-3

a normally distributed z and Equation 2.
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FIGURE 2 Median computation results from PCCOS algorithm on radar data: scatter
plot of estimation error vs. normalized median bin size indicates a strong correlation
between them; Correlation coefficient=—0.58.

2.2 Parameter Space Reduction: Identifying a Small Set of Characteristics Sufficient
to the Algorithm Performance

Above we have demonstrated that the corresponding p-percentile bin size is an essential
parameter to the algorithm performance. Our ideal goal is to demonstrate that a small
number of data characteristics are sufficient to determine the algorithm performance. This
will effectively reduce the exponential search space in synthetic data generation to a trac-
table number. Thus our synthetic data generation can vary safely the parameter value only
in a few dimensions sufficient to determine the algorithm performance.

In the case of the median computation by uniform sampling, we were able to prove
that the estimation accuracy depends on a single parameter, the normalized median bin
size. The proof is as follows:

Assume that the original sample population is of size n, we take / samples out of n.
Let x, denote the median from these / samples and m denote the real median from the orig-
inal population. P( | X,~m | =€ R)=P((x,-m)=€R) + P((m-x,)=€ R) where € is the normal-
ized estimation error and R is the range of the entire samples.

P((xp—m)=e R)=P (there exists i samples s, satisfying s;> (m+€ *R))
Let Y, denote a random variable and Y,=1 if sample s;2m+e *R

Thus, P(Y, =1)= 1 _s. where 5 number of samples s;,s; € [m,m+ € *R)
i==2"0p =
R total number of samples

PY,=0)=1/2+6,
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The event “there exists isamples s; satisfying s;=(m+€ *R)” is a bernoulli trial. Thus

we have

P(there existsésamples s;, satisfying s; =2 (m+ € * R)) =

(e i)

3)

Similarly.

1 S (1 ("é)
P((m—xp):e*R):[lZ]*(z—éLJ *(5_‘&) )
2

number of samples s;,s; € [m— € *R,m]

where & .=

total number of samples

P(x, -ml=e R)=[ZJ*(%_§R)2 *GMR)(I;)
+U(%"5J(%”)()

Note that Equation 5 only depends on the number of samples /, §; and 8. If [m—€ *R,
m+€ *R] is considered to be the bin that contains the median, then §, + &y can be consid-
ered as the normalized median bin size.

Equation 5 demonstrated that the probability of the normalized estimation error
depends only on the sample density (relative to the entire population) surrounding the
median. This normalized sample density is measured by the normalized median bin size.
The estimation error distribution does not depend on the distribution of data in other por-
tions of the sample space. As a simple illustration, Fig. 3 shows two different data distri-
butions, as represented by their histograms. The normalized median bin size is the same in
both distributions. Our simulation results confirmed that statistically they achieved similar
estimation accuracy in median computation with the same number of samples. The above

6)

proof can be generalized to p-percentile estimation by replacing E with p.

3. Field Estimation Applications

For Median Computation by Random Sampling, we identified a single parameter essential
to algorithm performance. In general, the algorithm performance can be affected by multi-
ple data characteristics. In this section we used the Fidelity Driven Sampling [4] as an
example to demonstrate the evaluation of data sensitivity and the identification of essen-
tial parameters in the context of a fairly sophisticated algorithm. In Section 3.1, we dem-
onstrated that compared to data simulated from simple models, evaluating the Fidelity
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Driven Sampling using experimental data changed its relative performance compared to
Raster Scan. This may suggest that algorithm evaluation using data derived from simple
models may be misleading, and we need to evaluate algorithms using realistic data corre-
sponding to a wide range of data features. Based on insights gained from the performance
evaluation results in Section 3.1 and we identified total mean curvature as a quantitative
metric important to the algorithm performance in Section 3.2.

3.1 Evaluating Fidelity Driven Sampling with Simulated and Experimental Data

The objective of field estimation is to reconstruct a map of the environmental field at
the sink. The Fidelity Driven Sampling (proposed in [4, 32]) exploits mobile sampling
to first stratify the environment into regions requiring varying degrees of sample den-
sity and then samples in these regions. The Fidelity Driven Sampling (FDS) main-
tained an estimate of the field being observed. Using this estimate, the Fidelity Driven
Sampling identified regions or strata exhibiting a high degree of misfit. At each step
in the sampling process, the Fidelity Driven Sampling added points to that stratum
with the largest error. In the evaluation study reported in this paper, the algorithm
continued to add points to poor fitting strata until an overall sample budget is
exhausted. A simple alternative to the Fidelity Driven Sampling is to Raster Scan the
field with a fixed resolution.

Following the Fidelity Driven Sampling operation (or raster scanning data acquisi-
tion), the returned set of samples are supplied to a local polynomial interpolation algo-
rithm and returned a reconstruction of the environmental field. A performance
evaluation metric is defined as the Mean Squared Error (MSE) between this recon-
structed field map and the ground truth. We evaluated the algorithm using data simu-
lated from simple models and data collected from a lab environment. We plotted the
Mean Squared Error achieved in the Fidelity Driven Sampling or the Raster Scan
against the total number of samples used in the field estimation (Figs. 4 and 5). The
MSE represents the quality of the reconstructed field map. The number of samples is
proportional to the cost or delay to achieve this reconstruction. The lower the curve,
the more desirable the performance.

In practice, in order to save energy, we sampled below the Nyquist rate in both the
Fidelity Driven Sampling and the Raster Scan. In theory the Raster Scan samples are at the
highest Nyquist rate in the entire region. In contrast the Fidelity Driven Sampling treats
phenomena in each small region with its unique Nyquist rate, and samples accordingly in
each small region. If the FDS can accurately estimate the Nyquist rate in each small region
(as simulated using data generated from simple models) and sample accordingly, the FDS
will perform more effectively than the Raster Scan; otherwise, the FDS may not demon-
strate benefits over the Raster Scan (as demonstrated in Section 3.1.2 when evaluated
using experimental data).

3.1.1 Evaluation Results on the Simulated Data. Initially, the Fidelity Driven Sampling
algorithm is evaluated using data simulated from linear, quadratic, and cubic models [32].
As shown in Fig. 4 when evaluated with data simulated from simple models, both the
Fidelity Driven Sampling and the Raster Scan delivered a very small MSE. Further, note
that the y-axis in Fig. 4(b) and Fig. 4(c) is in log scale which shows that the MSE gener-
ated from the Fidelity Driven Sampling is several orders of magnitudes smaller than that
from the Raster Scan. However, this conclusion does not hold when evaluated with exper-
imental data collected from a lab environment.
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FIGURE 4 Comparison of the Fidelity Driven Sampling vs. the Raster Scan evaluated
with data generated from linear, quadratic, and cubic models. Both the Fidelity Driven
Sampling and the Raster Scan deliver very small MSE. Further, the MSE generated from
the Fidelity Driven Sampling is several orders of magnitudes smaller than that from the
Raster Scan given the same number of samples.

3.1.2 Evaluation Results on the Experimental Data. As discussed in [4], the Fidelity
Driven Sampling is evaluated by subjecting the algorithm to environmental variable
fields having two extremes in their “curvature” characteristics. For one limit the envi-
ronmental variable field is created by placing many obstacles in the illumination field
(Fig. 5(b)). This emulated the most complex patterns observed in the natural environ-
ment. In addition, we created a low curvature field by casting a diffused shadow on
the transect (Fig. 5(a)). This latter case is characteristically similar to the least com-
plex fields observed under a clear forest canopy structure. In both cases, the ground
truth was obtained by measurements from exhaustively moving the node at its highest
resolution through the variable field. In contrast to the results from Section 3.1.1,
when evaluated with the experimental data (Fig. 5), the MSE obtained from the Fidel-
ity Driven Sampling is closer to or higher than the MSE obtained from the Raster
Scan.
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FIGURE 5 Comparison of the Fidelity Driven Sampling vs. the Raster Scan when evalu-
ated using data collected from a lab environment. The MSE achieved by Fidelity Driven
Sampling is comparable to or higher than the Raster Scan.

The significant performance change caused by different data inputs may not be
unique to the Fidelity Driven Sampling algorithm. For example, the Backcasting algo-
rithm proposed in [37] shared a similar idea with the Fidelity Driven Sampling because
both algorithms adjust their sampling densities based on an initial coarse model of the
field map. Therefore, the Backcasting algorithm might be subject to the same problem,
i.e., sensitivity to the environmental field. In [37] the algorithm was evaluated using a sim-
ulated piecewise smooth field with a single edge. However, evaluating algorithms using
realistic data corresponding to a wide range of features (e.g., Fig. 5(a) and 5(b)) may help
in identifying the regime of the parameter space where the algorithm performs well com-
pared to other alternatives.

3.2 Identifying Parameters Important to Fidelity Driven Sampling Algorithm

When evaluated with data simulated from simple models vs. experimental data, the rela-
tive performance order between the Fidelity Driven Sampling and the Raster Scan
changed. In this section, we identified data features that may contribute to this perfor-
mance order change. We conjecture that the smoothness and the geometrical shape of the
phenomena are two important data features. We provide intuition on the importance of
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smoothness and the geometrical shape of the phenomena to the Fidelity Driven Sampling
and a quantitative metric (fotal mean curvature of a surface) to characterize these data
features.

The estimation algorithm used by the Fidelity Driven Sampling may contribute to
the performance degradation when the phenomena under evaluation has sharp edges
(e.g., the results shown in Fig. 5(d)). The Fidelity Driven Sampling used the locfit [1]
function in R [15] for its estimation. The locfit function has a side effect of local
smoothing. Therefore, the Fidelity Driven Sampling may perform better when the phe-
nomena is mostly smooth. As for the geometric shape of the phenomenon, the Fidelity
Driven Sampling used a quad tree and rectangular regions in its models of the physical
phenomena. We conjectured that when the spatial structure of the physical phenomenon
matches a rectangular shape, the Fidelity Driven Sampling will perform well; otherwise
its performance may degrade.

In searching for a quantitative metric that incorporates both the smoothness and
the geometrical shape of the phenomena, we defined the total mean curvature for a
regular surface S. Four metrics have been conventionally proposed to measure the cur-
vature at a point p on a surface S: normal curvature, principal curvature, Gaussian
curvature, and mean curvature. We used mean curvature in our definition of the rotal
mean curvature of a surface. Before providing a definition for the total mean curva-
ture, we first define normal curvature, principal curvature, and mean curvature. Our
definitions of normal curvature, principal curvature, and mean curvature are bor-
rowed from [8].

Definition 1 (Normal curvature). Let C be a regular curve in surface S passing through p
€ S, k is the curvature of C at p, and cos 6=< n,N >, where n is the normal vector to C
and N is the normal vector to S at p. k,=k cos 0 is then called the normal curvature of
CcSatp.

Definition 2 (Principal curvature). The maximum normal curvature k; and minimum nor-
mal curvature k, are called the principal curvatures at p.

Definition 3 (Mean curvature). Let p € S and let dN,: T,(S) = T,(S) be the differential of
the Gauss map. The negative of half of the trace of dN,, is called the mean curvature H
of S at p. In terms of principal curvatures k; and k,, H can be written as

ky +k,
2
Definition 4 (Total mean curvature). For a Monge patch S with z=f(x, y), where (x,y)
is the sensor location and z is the sensor value at location (x,y), let H(x,y) denotes
its mean curvature at (x,y). The total mean curvature of S is defined as:

] wy.0)e sHA(x,y).

The Total mean curvature of a surface is an integral of the mean curvature over all the
points on a surface. To compute the mean curvature of a point on a Monge patch
defined by a discrete data set {z(x,y)}, we used a discrete version of the formula pro-
vided in [20]:

H =

(14 h)hy, =20 hhy + 1+ 1))y, 6)

200+ +hy)"?

H(x,y)=

Next we used synthetically generated data input to test whether there is a strong corre-
lation between the algorithm performance and the fotal mean curvature metric. In the syn-
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thetically generated scenarios, we have the flexibility to vary the phenomena along a

single dimension while keeping other parameters fixed.
In our simulations, we used data generated from bivariate Gaussian pdf:

1
Pxy)=————"—""F—
27(o 1051 —,02

(x—/ll ]2_Zﬂ(x—m)(y—#z)_'_(y—#z)z @
€xXp| — - o =
2(1-0%)

In Equation 7, we fixed the mean and correlation coefficient, and used variance to adjust
the smoothness (consequently, the curvature metric) in the data. Specifically, we fixed 1,
and y, to be 50, correlation coefficient p to be 0.2; and we varied the variance parameter o,
and o, in the range from 1 to 50. We computed the total mean curvature for each data set.
As demonstrated in Fig. 7(a), the total mean curvature value is smaller for a larger o, and
0,, which corresponded to smoother data. Figure 6 shows two example data sets generated
from the above bivariate Gaussian pdf model (with variance 7 and 37) which represent
data with high curvature and relatively smooth data respectively.

Figure 7(b) shows the average MSE achieved by the Fidelity Driven Sampling vs.
total mean curvature of the data; both are in log scale. Each point in Fig. 7(b) corresponds
to evaluating the Fidelity Driven Sampling using a data set generated by a certain variance
value. Given more samples, the Fidelity Driven Sampling tended to produce more accu-
rate predictions. For example, in Figs. 5(c) and 5(d), the MSE decreased with an increas-
ing number of samples. To acquire a single quantitative metric, the mean squared errors
are averaged over different numbers of samples. We plotted the averaged MSE vs. the
total mean curvature of the phenomenon. Furthermore, to make comparisons between data
sets with different value ranges meaningful, we normalized MSE by the average signal
magnitude of each data set. Figure 7(b) clearly indicates that the Fidelity Driven Sampling
performed better with smooth phenomena than with high curvatured data. It demonstrated
the wide range of performance for data input with different curvatures.

The above evaluation results from the simulated Gaussian model. Next we revisit the
previous experimental evaluation results discussed in Section 3.1.2 and compute the fotal
mean curvature metric for each data set. Visually the data in Fig. 5(a) is smoother than the
data in Fig. 5(b). The computed total mean curvature metrics (3638.2 and 19923 respec-
tively) are consistent with this result. When evaluating the Fidelity Driven Sampling using
smooth data in Fig. 5, the MSE from the Fidelity Driven Sampling is comparable or
slightly smaller than that from the Raster Scan (Fig. 5(c)); whereas for data with rough
features, the MSE from the Fidelity Driven Sampling is slightly higher than that from the
Raster Scan (Fig. 5(d)). The evaluation results using real data further confirmed our con-
jecture that the Fidelity Driven Sampling performed better with smooth phenomena than
with high curvatured data.

The total mean curvature is intended to incorporate both the smoothness and the geo-
metrical structure of the data. However, partial information is lost when integrating the
curvature information at each point to a single scalar metric. Given the algorithm complexity,
it is unlikely that a single quantitative metric will determine the algorithm performance.
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FIGURE 7 FDS demonstrates a wide range of algorithm performance when evaluated
using data with different curvatures and a strong correlation between the average MSE
and the Total Mean Curvature.

In the following example, the total mean curvature alone does not provide an accurate
indication on the algorithm performance; the geometrical shape of the phenomenon plays
an important role in the algorithm performance.

For data with rectangular edges (Fig. 8(a)) and data with circular edges (Fig. 8(b)),
their total mean curvature are 3.57*€ +6 and 1.27*€ + 6 respectively. If solely based on
this curvature metric, the MSE generated from evaluating the Fidelity Driven Sampling
using data in Fig. 8(a) should be higher than using data in Fig. 8(b). However, we
observed the opposite results in Fig. 8(c) and 8(d). When evaluated using data with rectan-
gular edges (Fig. 8(a)) the MSE achieved by the Fidelity Driven Sampling (Fig. 8(c)) is
comparable to that achieved by the Raster Scan. In contrast, when evaluated using phe-
nomena with circular edges (Fig. 8(b)), the MSE achieved by the Fidelity Driven Sam-
pling (Fig. 8(d)) is higher than that achieved by the Raster Scan.

The above results confirmed our conjecture that the total mean curvature and the spa-
tial structure of a physical phenomenon could affect the algorithm performance signifi-
cantly. Furthermore, the contrast between the algorithm evaluation using simulated data
and experimental data pointed out the need to evaluate algorithms using data correspond-
ing to a wide range of realistic deployment scenarios. However, both the curvature and the
spatial structure of a real physical phenomenon could potentially take on many different
values; therefore, it is impractical to represent all possible data input using only parametric
models. As a solution, we propose to generate synthetic data to guide simulation efforts to
the portions of the space that represent real world scenarios.

4. Scalable Synthetic Data Generation

In this section, we will discuss techniques to generate data input that can represent real-
world scenarios or data corresponding to a wide range of parameter values.

Accurately describing a physical phenomenon often requires a large number of
parameters. This huge parameter space of data input makes exhaustive exploration of
parametric models impractical. Fortunately, the above systematic evaluation case studies
provided two insights in addressing this dimension explosion problem. First, it is impor-
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FIGURE 8 In contrast to what is indicated by the total mean curvature metric, the MSE achieved
by the FDS is comparable to that by the RS when the edge is in rectangular shape; whereas, the
MSE achieved by the FDS is larger than that by the RS when the edge is in circular shape.

tant to evaluate algorithms using data that represent real deployment scenarios. Second,
identifying a small number of essential data characteristics significantly reduce the search
space in synthetic data generation. Thus, our simulation efforts can focus on the portions
of the space that are important to the algorithm under study.

Based on the above guidelines, the experimental data corresponding to a wide range
of parameter values along the identified important dimensions (features) are the ideal
input to our algorithm evaluation. Unfortunately, the ideal experimental data are often not
available; collecting new experimental data is expensive, and often presents technical
challenges in itself. Thus, it is an advantage to develop methods to generate synthetic data
based on models derived from previously collected data.

Leveraging the previously collected data presented the following challenges. First,
existing experimental data is often collected from regular grids whereas real deployments
may have an irregular topology. Second, the available experimental data may be scarce.
To address these challenges, we developed techniques to generate:

1. irregular topology data from empirical models and
2. data corresponding to a wide range of parameter values along a dimension of inter-
est to the algorithm.
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4.1 Generating Irregular Topology Data from Empirical Models

In this approach, we assumed that the initial experimental data are collected from rel-
evant fields. For example, if the target deployment scenario is some environmental
monitoring application, the S-Pol radar data introduced in Section 2.1.1 can be used as
the initial seed data. The proposed irregular data generation procedure consists of two
steps:

1. generate ultra fine-grained synthetic data from modeling the experimental data;
2. derive synthetic data of the specified topology by applying the nearest neighbor re-
sampling method to the fine-grained data obtained from the first step.

4.1.1 Generating Fine-Grained Synthetic Data. Our proposed synthetic data genera-
tion includes both spatial and spatio-temporal data types. We briefly describe our spa-
tial data generation techniques below but refer readers to [39] for joint space-time
modeling.

Spatial Data Generation. To generate spatial data, we started with an experimental
data set. Assuming that the data is a realization of an ergodic and local stationary random
process, we used spatial interpolation techniques to generate synthetic data at unmonitored
locations.

The spatial interpolation problem has been extensively studied. In general, the spatial
interpolation problem can be formulated as: Given a set of observations {z(k,), z(k,), ...,
2(k,)} at known locations k;, i=1, ..., n, spatial interpolation is used to generate prediction
at an unknown location u. Both stochastic and non-stochastic spatial interpolation tech-
niques exist, depending on whether we assume the observations are generated from a sto-
chastic random process. In our synthetic data generation toolbox, we adopted one
stochastic interpolator (Kriging) and seven non-stochastic spatial interpolation algorithms,
including: Nearest neighbor interpolation, Delau-nay triangulation interpolation, Inverse-
distance-squared weighted average interpolation, BiLinear interpolation, BiCubic interpo-
lation, Spline interpolation, and Edge directed interpolation [12].

Due to space limitation, we omitted the mechanisms of most interpolation algo-
rithms, but briefly describe Kriging which is not listed in the standard computer sci-
ence textbooks. Kriging [19] refers to a range of least-squares based estimation
techniques. It has both linear and non-linear forms. Ordinary Kriging which is a linear
estimator, has provided good results in our study. Assuming that the underlying ran-
dom process is locally stationary, Kriging uses a variogram to model the spatial corre-
lation in the data.

A variogram [22] is used to characterize the spatial correlation in the data. The vario-
gram (also called semivariance) of a pair of points x; and x; is defined as

1
7(5,x) = HZ(x) = 2P ®)

The variogram can also be defined as a function of lag, & (i.e., the separation between
two points can be either separation distance or a vector with components of distance and
direction, both of which can occur in two and three dimensions):

1
+(h) = 5E[{Z(x)—Z(x+ h)}z] 9)



374 Y. Yuetal

For a set of samples, z(x;), i=1, 2, ..., Y(h) can be estimated by

1 m(h) 5
Y(h) = W g{ {z(x;)—z(x; +h)} (10)

where m(h) is the number of samples separated by the lag distance 4.

Data in high dimensions might add complexity in modeling variograms. If data lie in
a high dimensional space, variograms are computed first in different directions separately.
If variograms in different directions turn out to be more or less the same, the data under
study can be assumed to be isotropic, then sample variograms are averaged together. Oth-
erwise, data in different directions need to be modeled separately.

In Ordinary Kriging at unmonitored locations, the data is estimated as a weighted
average of the neighboring samples,

N
Z(xg) = Y Mz(x;) (11

i=1

where ¥V 5 _ .
i=1""1
There are various ways to determine the weights used in different spatial interpolation
algorithms. In Kriging, the weights are determined by minimizing the estimation variance
which is written as a function of the variogram,

- — N Wi (12)
var [Z(xo)] = E[Z(xo)— Z(xy) ]: 2Y v x0) =Y, A V(X x)

i=1 i=1 j=1

where y(x;, x;) is the variogram value of Z between the sample points x; and x;, and y(x;, x,)
is the variogram value of Z between the sample point x; and the target data point x;,.
Minimizing the estimation variance (i.e., Equation 12) under the constraint that

N A =1, (which is a necessary condition for an unbiased estimator) is a constrained
i=l

optimization problem. It can be converted to an unconstrained optimization problem using
the method of Lagrange multiplier. Specifically, a Lagrange parameter can be added to
the Equation 12:

var [Z(xo) = E[Z(xy) - Z(x,)? ]

N N N N
= Zz,kiy(xi’xo)_sziij(xi’xj)_2“(27“1‘ _1]
i=1

i=1 j=1 i=l1

(13)

The unconstrained minimization problem expressed in Equation 13 can be
solved by setting its partial derivative with respect to each A; and [ to be 0. It is a
system of N + 1 of linear equations involving N — 1 unknowns and can be solved by
methods for solving systems of linear equations, e.g., Gaussian Elimination or
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matrix inversions. The above linear equations can be rewritten in the matrix format
as: AL=b, where

[ (x,x)  A(xx) o (agay) 1
AWxg,x1)  Axg,x5) oo Aag,xy) 1
A= : : : : (14)
7(xNax1) 7(xNax2) 7(xN’xN) 1
| 1 1 1 0
[ (¥, %) |
7(x2,%)
b= : 15)
7(stxO)
- 1 =
- A A
/\2
A= (16)
AN
L # ]
The weights and the Lagrange parameter can be obtained from
A=A a7

Different interpolation techniques will generate multiple data sets from one single
experimental data set. Which one is most desirable depended on the specific application
and algorithm under study. For example, when we evaluate a wavelet compression algo-
rithm [40], spatial correlation is identified as an essential data characteristic. We selected
the synthetic data set that can best match the original experimental data in terms of its spatial
correlation. Identifying a small set of parameters essential to the algorithm performance pro-
vided quantitative metrics that allowed us to directly evaluate the synthetic data sets.

Rather than suggesting one or optimizing one single interpolation algorithm for a sin-
gle metric or specific type of data, we provided a suite of spatial interpolation algorithm
implementations. A new spatial interpolation or synthetic data generation algorithm, e.g.,
the data generation technique proposed in [23], can be easily integrated into our scalable
synthetic data generation framework.

4.1.2 Evaluation of synthetic data generation

Data Set Description and Spatial Interpolation Algorithms Implementation.
We used the same set of S-Pol radar data (introduced in Section 2.1.1) in our evaluation.

We applied the afore-mentioned eight interpolation algorithms to the selected spatial
radar data sets. We used the spatial package in R [2] to achieve Kriging. Nearest Neighbor,
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Bilinear, Bicubic, Spline interpolation results were obtained from the interp2() function in
Matlab. Since Bilinear and Bicubic interpolation functions in Matlab provided no predic-
tion for edge points, we used results from Nearest Neighbor interpolation for edge points
in bilinear or bicubic interpolation results. Edge directed interpolation is from [12].
Inverse-distance-squared weighted average interpolation and Delaunay triangulation inter-
polation were implemented in Matlab following the interface of interp2().

Evaluation Metrics. The synthetic data is desired to closely approximate the experi-
mental data. This can be examined in an indirect or direct manner. Comparing the algo-
rithm performance using the experimental data and using the synthetic data was an
indirect evaluation which will be discussed in Section 5. A visual comparison after plot-
ting both synthetic data and experimental data is a direct evaluation. In this section, we
focused on direct evaluation through quantitative metrics.

For our synthetic data generation, it is desirable that the synthetic data can closely
capture the essential statistical features of the original data. The set of statistical features
selected as evaluation metrics should be the important parameters that directly affect the
algorithm performance. It is difficult to define a statistical feature set that is generally
applicable to most algorithms and data sets. Instead, the evaluation metrics should be
selected based on the application and algorithm under study. For example, a large per-
centage of existing data compression algorithms (including joint entropy coding and
wavelet compression which is used in the DIMENSIONS system [17]) are sensitive to
the spatial correlations in the data. In general, sensor networks are envisioned to be
deployed in the physical environment and deal with data from the geometric world; we
believe that many sensor network algorithms will exploit spatial correlation in the data.
Therefore, we used spatial correlation of the synthetic data versus original data to assess
the applicability of a synthetic data generation technique to the sensor network algo-
rithm being evaluated.

In general, if a quantitative metric is defined for the identified data characteristics, the
difference between this quantitative metric of the synthetic data and the original data is
used as the evaluation metric for our synthetic data generation. In this section, we used
variogram values to measure the spatial correlation in the data, and defined the evaluation
metric for the synthetic data as follows: two data sets A and B (e.g., a synthetic data set and

an experimental data set); their variogram values are denoted as {7(:)) and (, ()}
7 1

respectively where £, is sample separation distance between two observations; i=1, ..., m.
The Mean Squared Difference of variogram values of two data sets is defined as:

S i) =7 () I m

Interpolation Resolution. We studied two extremes of interpolation resolutions:

1. Coarse grained interpolation: increase the interpolation resolution by 4. The coarse
grained interpolation is used to evaluate how closely the synthetic data generated
by different interpolation algorithms approximate the spatial correlation of the
experimental data.

2. Fine grained interpolation. Starting with a radar data set with 1km spacing, we
increased the resolution by 10 times in each dimension—resulting in a 590x590
grid with 100m spacing. Fine grained interpolation is an essential step in generat-
ing irregular topology data.

Evaluation Results. First, we visually presented the spatial correlation (i.e., vario-
gram values) of the synthetic data in the case of coarse-grained interpolation. For the spa-
tial dataset shown in Fig. 9, Fig. 10 shows the variogram plot of several synthetic data sets
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(generated from various interpolation algorithms) vs. the original data set. It demonstrated
that the variogram curves of most synthetic data (except the one from Inverse-distance-
squared weighted average interpolation) closely approximate the original one. At the long
lag distances, the synthetic data may appear slightly under-estimating the long-range
dependency in the original data. The source of this under-estimate may be caused by the
smoothing effect of the interpolation algorithms.

Further, we used the Mean Squared Difference between the variogram values of the
original data and the synthetic data as a quantitative measure of how closely the synthetic
data approximates the spatial correlation of the original data. Table 1 lists the Mean
Squared Difference results averaged over 100 snapshots of radar data in increasing order.
For the S-Pol radar data set (in both coarse grained interpolation and fine-grained interpo-
lation), the Nearest Neighbor Interpolation matched best with the original variogram. In
general most interpolation algorithms rank differently (relative to each other) in the case
of fine-grained interpolation and coarse grained interpolation. We observed the same
inconsistency with another precipitation data set [36]. In the case of fine-grained interpo-
lation, we verified whether the spatial correlation in the synthetic data matched the exper-
imental data at the extent of coarse granularity. At the scale of fine granularity, we do not
have ground truth data.

Based on these results, we do not recommend one single interpolation algorithm over
others. We proposed to use spatial correlation as the evaluation metric for our synthetic
data generation purpose and provided a suite of interpolation algorithms. Given a new
synthetic data generation task, we would test with different interpolation algorithms
selecting one that can best suit the algorithm and experimental data set under study.

10 20 30 40 50 60

FIGURE 9 Spatial modeling example: original data map. (60x60)
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FIGURE 10 MSD of variogram values: Coarse grained interpolation results on a snap-
shot of radar data.

TABLE 1 Mean Squared Difference of variogram values for different interpolation algo-
rithms in the increasing order of MSD for coarse-grained interpolation

Name of method MSD for coarse-grained interpolation
Nearest neighbor 8.354218e+01 (1.836358e+01)

Edge directed 1.970850e+02 (2.129320e+01)
Cubic 2.000790e+02 (1.694163e+01)
Delaunay triangulation 3.406270e+02 (4.795614e+01)
Linear 3.941510e+02 (2.876476e+01)
Spline 7.148526e+02 (5.5949¢+01)

Kriging 1.469954e+03 (1.913371e+04)
Inverse-dist.-squared-weighted avg. 1.682726e+03 (3.617214e+02)

Here we use median from 100 snapshots instead of mean to get rid of outliers, and list 95% confi-
dence interval in the brackets.

Although the Nearest Neighbor Interpolation appeared to be the best matching with the
original variogram model, it is not appropriate in the case of ultra-fine grained interpola-
tion; it assigns all nodes in a local neighborhood the same value from the nearby sample.
Most physical phenomena have some degree of variation even in a small local neighbor-
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hood; therefore, we would not expect all sensors deployed in a local neighborhood report
the same sensor readings as in the case of the nearest neighbor interpolation.

Summary. As shown above, most interpolation algorithms can approximate the origi-
nal variogram models. However, it can only be used to interpolate at unsampled locations,
not unsampled time. Furthermore, spatial interpolation algorithms, including Kriging, are
not able to characterize the correlation between the spatial domain and temporal domain
of the data such as variation of the time trend at each location and spatial correlation
changes as time progresses. We wish to use the joint space-time model to address the lim-
itations of the spatial interpolation techniques alone.

To generate synthetic spatio-temporal data, we started with an experimental data set
which includes multiple snapshots recorded at various times. Inspired by a joint space-
time model in [27], we modeled our data as a joint realization of a collection of space
indexed time series, one for each spatial location. The coefficients of a time series model
were space-dependent; we further spatially modeled them to capture these space-time
interactions. Synthetic data are generated at both unmonitored time and location. This
allowed us to generate synthetic data at arbitrary spatial and temporal configurations.
Compared to applying spatial interpolation techniques to each snapshot of data separately,
joint space-time modeling techniques allowed us to model the joint space-time depen-
dency and variation in the data. In [40], we described this joint spatio-temporal model and
presented our results on applying this model to the S-Pol radar data. In [40], we also dis-
cussed the trade-off between spatial interpolation and the joint space-time model. Even
though the joint space-time model can capture the correlation between the temporal trend
and spatial variation, it comes at a cost. When we compare the prediction accuracy of spa-
tial interpolation to the joint space-time model at the same time instant, a spatial interpola-
tion technique usually can capture data closer to the original than data from a joint space-
time model.

4.1.3 Generating Synthetic Data in an Arbitrary Topology. In Section 4.1.1, we created a
grid topology at a much finer granularity than our target topology. To generate a data set
in an arbitrary topology, we overlayed the target topology on the ultra fine-grained grid
data. Each node in the target topology is assigned a value from the nearest grid data. One
could use interpolation techniques to directly generate synthetic data at an arbitrary loca-
tion and time. However, providing an ultra fine-grained data set allows algorithm evalua-
tions over the same underlying data correlation model but different topology settings.

4.2 Generating Synthetic Data Corresponding to a Wide Range of Parameters

When the experimental data covers a wide range of parameter values, it is sufficient to
apply the techniques introduced above to generate synthetic data that can capture the orig-
inal data features. However, if the existing experimental data from the relevant fields is
scarce, the synthetic data generated from empirical models will have the same limited
range as the experimental data. Thus, to address insufficient experimental data scenarios we
designed algorithms to generate data sets corresponding to a wide range of parameter values.

For quantitative data metrics (e.g., data distribution, spatial correlation), we provided
knobs to directly adjust these parameters. While for features that are difficult to character-
ize quantitatively, e.g., the spatial structure of the phenomena or the spatial distribution of
data values, we provided test data suites that can cover a good percentage of parameter
space.

As mentioned in Section 4.1.3, spatial correlation is an essential parameter to many
sensor network algorithms. In [39], we proposed a synthetic data generation algorithm to
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directly adjust parameters in the spatial correlation model. The core idea of this data gen-
eration method is as follows. In the Kriging spatial interpolation process, the variogram
values required in matrix 14 and 16 are derived directly from modeling the sample data
sets. Alternatively, assigning Y(x;,x;) and Y(x;,x,) to a different value will generate synthetic
data with a different spatial correlation feature from the experimental data. By varying the
variogram values in Equations 14 and 16 across a wide range or using a different vario-
gram model, we will be able to generate synthetic data with a broad range of spatial corre-
lations. We refer readers to [39] for algorithm details. In [39], we demonstrated that by
adjusting the variogram models based on a single experimental spatial data set we
obtained synthetic data with a wide range of spatial correlations. This allowed algorithm
evaluation against data corresponding to a wide range of spatial correlations.

As demonstrated in Section 2, data distribution is an essential characteristic to many
statistics estimation problems. In [39], we proposed using stochastic simulation to gener-
ate data sets with adjustable data distribution characteristics. Due to space limitation, we
leave out algorithm details here.

5. Algorithm Evaluation using our Synthetic Data

Our synthetic data generation toolbox can generate data in an arbitrary topology. A useful
metric for these synthetic data is whether the synthetic data can capture important features
of the experimental data or whether the synthetic data cover a wide range of parameter
values in the dimension of interest to algorithms.

In Section 4.1.2, the synthetic data was evaluated directly in terms of the identified
important parameters. Specifically, spatial correlation is identified as a feature essential to
many sensor network algorithms. The Mean Squared Difference between the spatial corre-
lation of the synthetic data and the experimental data is used as a quantitative metric for
synthetic data evaluation. In this section, we evaluated the utility of the synthetic data
through algorithm evaluation. The evaluation results confirmed the utilities of our syn-
thetic data in the aspects of realistic data features and data spanning across a wide range of
parameter values.

Algorithm Evaluation using Synthetic Data Across a Wide Range of Parameters:
Median Computation by Random Sampling

As stated above, we recommend evaluating algorithms with data corresponding to a wide
range of parameter values in order to identify the regimes in which the algorithm performs ade-
quately. The parameter of interest could be data distribution, spatial correlation, or other data
characteristics. The synthetic data generation techniques discussed in Section 4.2 can be used
to generate realistic data sets corresponding to a wide range of parameter values.

We evaluated the median computation by uniform sampling algorithm discussed in Sec-
tion 2.1.1 using synthetic data generated from the empirical models of the S-Pol radar data.
Figure 11 (a) verifies that the median computation algorithm evaluated with our synthetic data
exhibits similar behavior as that evaluated with the experimental data (Fig. 1(a)):

1. a strong correlation between the estimation accuracy and the corresponding p-per-
centile bin size in the data and
2. the algorithm performance demonstrated a wide range under various data input.

In addition, our synthetic data covered a similar range of data distribution as that of the
experimental data.
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Algorithm Evaluation using Synthetic Data with Realistic Data Features: Fidelity
Driven Sampling

We also applied the same synthetic data used above to the Fidelity Driven Sampling
algorithm. The evaluation results (Fig. 11(b)) provided similar insights as the evalua-
tion using data collected from a lab environment (Fig. 5(d)). The results indicated that
the MSE achieved by the Fidelity Driven Sampling is slightly higher than the Raster
Scan; when evaluated with data simulated from simple models (Fig. 4), the MSE
achieved by the Fidelity Driven Sampling is several orders of magnitudes smaller than
the Raster Scan.

6. Related Work

Data Modeling Techniques in Environmental Science

In environmental science or geophysics, various data analysis techniques have been
applied to extract interesting statistical features from the data or estimate sensor val-
ues at un-sampled or missing data points. To generate synthetic data that can capture
interesting features of the experimental data, we borrowed heavily from geostatistics
and spatial interpolation techniques. In particular, we explored Kriging and several
non-stochastical interpolation techniques. The joint space-time model used in our data
analysis is inspired by and simplified from a joint space-time model proposed by
Kyriakidis et al. [27].

Data Modeling in Database and Data Mining

Theodoridis et al. [34] proposed to generate spatio-temporal datasets according to para-
metric models and user-defined parameters. Since the parameter space is huge, it is impos-
sible to exhaustively search the entire parameter space. Instead, we propose to start with
an experimental data set and generate synthetic data that share similar statistics with the
experimental data. DuMouchel et al. [35] proposed data squashing techniques to shrink a
large data set to a manageable size. Although sharing the same objective of deriving syn-
thetic data from modeling existing data, they considered non-spatio-temporal data. They
assumed that a data set is the result of N independent draws from the same probability
model. Often spatial and temporal stationarity do not hold for an arbitrary physical ran-
dom process. As a result, the spatio-temporal data cannot be assumed to be drawn from
the same probability model as assumed by [35].

TCP Traffic Modeling in the Internet

In the context of the Internet, researchers have studied TCP traffic modeling. For example,
Caceres et al. [7] characterized and built empirical models of wide area network applica-
tions. The specific data modeling technique in their study [7] may not be able to capture a
highly dynamical physical environment in which sensor networks are deployed, due to the
following:

a. Sensor networks are closely coupled with the physical world; therefore, data mod-
eling in sensor networks needs to capture the spatial and temporal correlation in a
highly dynamic physical environment;

b. the characteristics of wide area TCP traffic are potentially very different from the
workload or traffic in sensor networks.
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Internet TCP traffic is the superposition of many TCP connections. However, sensor net-
works tend to be specially designed and used for one or a few applications. Sensor net-
work traffic is triggered often by physical phenomena and the deployed signal processing
algorithm.

System Components Modeling in Wireless Ad-hoc and Sensor Networks

Previous research has been carried out on modeling system components in wireless ad-hoc
and sensor networks; however, most existing research focused on modeling communica-
tion channels ([25, 9, 42, 38]) and mobility models ([6, 10, 24]).

Ns-2[3] and GloMoSim [41] provided flexibility in simulating various layers of
wired networks or wireless ad-hoc networks. However, they do not capture many
important aspects of sensor networks such as sensor models or channel models. In con-
trast, Sensorsim [29, 30] directly targeted sensor networks. They introduced the notion
of a sensor stack and sensing channel. Their work mainly focused on point source sen-
sor models and exponential channel loss models. These models may capture point
source phenomena, such as contaminant transport monitoring; however, it is not appli-
cable to environmental phenomena in general. Our work could be used as a new model
in Sensorsim.

Proposal on Better Input Models in the Context of the Internet

In the context of Internet research, Floyd et al. [14] illustrated the problems caused by
inappropriate models. Although proposed in a different context, they shared similarity to
our work in that both identified the significant influence that input models have on the
algorithm performance; both proposed to use empirical models to guide the simulation to
focus on scenarios representative of real world situations. Our work differed from theirs in
the following two aspects: First, we modeled different subjects: they proposed to model
topology and traffic mix patterns in an Internet application; we modeled sensor data input
in a sensor network system. Consequently, their modeling techniques will not apply to
sensor network contexts. Second, identifying a small number of parameters essential to
the algorithm performance defined a unique feature of our system: a scalable synthetic
data generation framework.

Synthetic Data Generation in Sensor Networks

The work in [23] proposed a mathematical model to capture the spatial correlation in sensor
network data and to generate large synthetic traces from a small experimental trace. This syn-
thetic data generation technique can be incorporated into our proposed synthetic data genera-
tion framework. However, as pointed out in [40], we lack ground truth data to verify that the
large synthetic data traces match the statistics of the experimental data at fine scales. We do not
recommend using models derived from a few sensor nodes to generate a large trace of fine
granularity unless the phenomena is known to be smooth at small scales.

7. Discussion on Usage Models and Conclusion

In summary our proposed systematic evaluation methodology will help to identify the data
features (i.e., parameters) that are important to an algorithm. Our synthetic data generation
toolbox will provide data that can either capture the important features of the experimental
data, or cover a wide range of parameter values in the dimension of interest to an algorithm.
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Since data from different application domains or different sensing modalities may
dramatically differ from each other, we need to address whether our proposed synthetic
data generation framework is applicable to a different type of application or dataset. Even
though a particular synthetic data set or a synthetic data generation algorithm may not
apply to all sensor network algorithms, our proposed synthetic data generation framework
is generally applicable. In some cases, certain synthetic data generation algorithms and the
corresponding synthetic data generated therefrom may apply to multiple algorithms in the
same application category. This occurs where those algorithms often share the same goal
and exploit similar data characteristics for efficient communication.

In deploying sensor network systems, the functioning of these systems relies on that
data characteristics assumed by the algorithm match the experimental data characteristics.
To avoid an unpleasant surprise from simulation to deployments and ensure a robust algo-
rithm design, the following guidelines in evaluating a new sensor network algorithm are
recommended.

First, we evaluated the algorithm with some existing data. The initial data could be
collected from remote sensing or other in-situ instrumentation. Employing the systematic
performance evaluation techniques introduced in Sections 2 and 3, we identified the set of
data characteristics essential to the algorithm performance. The challenge of the system-
atic evaluation is to identify the set of data characteristics that best defines the data depen-
dency for a given algorithm. For example, these important characteristics could be data
distribution or spatial correlation in the data. In general, identifying the relevant set of data
characteristics will require a fair understanding of the algorithm under evaluation. The sta-
tistical analysis techniques are used to verify whether there is a strong correlation between
the identified data feature and the algorithm performance.

Next, based on those identified essential data features, our synthetic data generation
toolbox will generate data that can capture important features of real world phenomena
and can accommodate flexible topology configurations. If the available experimental data
is scarce, synthetic data can be generated corresponding to a wide range of parameter val-
ues along a dimension important to the algorithm. Evaluating algorithms using realistic
data will help to validate that the range of parameter values in which the algorithm per-
formed well matches real data characteristics in the deployment. In the case where the data
characteristics assumed by an algorithm do not match the real data characteristics, the sys-
tematic evaluation recommended above will help identify the problem early and improve
the algorithm design before deployments. Even with reliable remote code updating tech-
niques available, in many cases, the events that the sensor networks are deployed to cap-
ture are not repeatable; therefore, it is important to ensure that an algorithm will work well
before deployment.
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