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This paper solves the problem of estimation of the parameters of a hyperexponential density and
presents a practical application of the solution in sensor networks. Two novel algorithms for esti-
mating the parameters of the density are formulated. In the first algorithm, an objective function is
constructed as a function of the unknown component means and an estimate of the cumulative distri-
bution function (cdf) of the hyperexponential density. The component means are obtained by mini-
mizing this objective function, using quasi-Newtonian techniques. The mixing probabilities are then
computed using these known means and linear least squares analysis. In the second algorithm, an
objective function of the unknown component means, mixing probabilities, and an estimate of the cdf
is constructed. All the 2M parameters are computed by minimizing this objective function, using
quasi-Newtonian techniques. The developed algorithms are also compared to the basic EM algo-
rithm, and their relative advantages over the EM algorithm are discussed. The algorithms developed
are computationally efficient and easily implemented, and hence, are suitable for low-power and
sensor nodes with limited storage and computational capacity. In particular, we demonstrate how
the structure of these algorithms may be exploited to be effectively utilized in practical situations,
and are hence ideal for sensor networks.
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1. Introduction

The advent of sensor networks has spurred research to develop new methods for distributed
data collection and processing. Estimation of parameters of physical quantities from data
collected over a geographic area is one such task. Mixture density is a powerful family of
probability density functions and is useful in representing some physical quantities for
such an application. The vast majority of the literature on the subject of mixture densities
pertains to Gaussian mixture models (GMM). By comparison, mixtures of exponentials
have received far less attention. Notwithstanding, mixtures of exponentials have signifi-
cant applicability in a number of fields, including computer networks, biology, engineer-
ing, and medicine. The class of general mixtures of exponential distributions has
relevance in linear systems theory and differential equations (Chauveau [1]). Cao et al [2]
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discuss modeling of rainfall and contract valuation with hyperexponential densities. Spe-
cifically, in the paper by Cao et al [2], the amount of rainfall in an area is modeled using a
mixture of two exponential densities. A further exposition of generalized hyperexponen-
tial distribution functions may also be found in Botta et al [3]. The focus of this paper is
on a subset of exponential probability densities, which will be henceforth referred to as
hyperexponential densities. We develop two algorithms for estimating the parameters of
hyperexponential densities. The strength of these algorithms lies in the fact that the meth-
ods presented require little computational power and that the computations can be decom-
posed efficiently. These features enable an effective solution that is appropriate for sensor
networks as outlined in section I-A.

The probability distribution function (pdf) of an M-component hyperexponential
density is

where the mixing proportions are given by p = [p1, . . ., pM]T, and the means of each

component are . Given N independent, identically distributed (iid) samples of

data, the problem dealt with here is to estimate the parameters l = [l1 . . . lM]T and p of the
hyperexponential density. In the following subsection, sensor networks are introduced and
we demonstrate the applications of hyperexponential densities in a sensor network envi-
ronment.

1.1. Sensor Networks

We now introduce applications in a sensor network environment, which can be modeled
accurately by hyperexponential densities. Sensor networks (Akyildiz et al [4] and Rentala
et al [5]) consist of many sensor nodes arranged in either an ordered or random fashion.
Figure 1 shows such a sensor network. Data is transmitted via a multi-hop approach from
the sensor nodes to special nodes called base stations. Sensor nodes are ideal for sensing
environmental changes, especially in hostile or remote locations or over large geographi-
cal areas. One important category of environmental observation is rainfall observation in
forestry and agriculture. The relevance of the statistical properties of rainfall is expounded
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in Hansen and Ines [6]. In particular, the quantity of rainfall in an area is decidedly impor-
tant due to its effect on processes in nature, such as, solute leaching, soil erosion, and crop
water stress response. Long-tailed distributions as discussed in the previous sections are
useful for modeling the amount of rainfall in an area. Moreover, the amount of rainfall is
commonly modeled as a two-component hyperexponential density with pdf

where a, b1 and b2 are estimated parameters ([2] and [6]).
Sensor nodes fitted with soil moisture sensors are ideal for measuring rainfall and col-

lecting data that would allow for statistical modeling of rainfall. In large, remote, forested
areas or large agricultural fields or both, sensor networks would be valuable for collecting
rainfall data. Typically, many sensor nodes are scattered or positioned over a large area
and these nodes function until their batteries are expended. Due to the limited battery sup-
ply in each sensor node, transmissions by sensor nodes should be kept to a minimum. Fur-
thermore, each sensor node has a relatively meager amount of memory (usually about 4K)
and processing ability. Therefore, it is also desirable to reduce the complexity of calcula-
tions performed by a sensor node.

In the following sections, we develop algorithms for estimating the parameters of a
hyperexponential density, which can also be used to obtain the parameters of equation 2 in
our rainfall example. The algorithms are also designed so as to work well in a sensor net-
work environment with energy and computational power constraints. That is to say, the
data communication and computational power requirements of the sensor nodes are very
minimal. In the following subsection, additional motivation for studying hyperexponential
densities is presented, as we look at applications in modeling long-tailed distributions.

1.2. Long-tailed Distributions

In recent years, the volume of traffic on large-scaled networks and across the Internet has
increased tremendously, necessitating serviceable statistical models for traffic flow and
analysis. Statistical models are required for the design of underlying IP-based transport
layer protocols, efficient data gathering and evaluation, and statistical analysis of corre-
sponding random processes and variables (Markovitch and Krieger [7]). The work of
Leland et al [8] demonstrates that both LANs and WANs exhibit long range dependencies,
and hence, classical Poisson-based methods are insufficient for such large-scale networks.
Typical Poisson methods predict early fluctuations in network traffic and hinge on the
assumption that these anomalies will smooth out over a long period of time. In reality,
these fluctuations occur over a wide range of time scales generating high variability and
self-similar behavior (Schwefel [9]). The notion of self-similarity and fractal geometry
was introduced by Mandelbrot [10] to describe naturally occurring processes using mathe-
matical formulae. Self-similar processes are structurally similar over many different time
scales. This phenomenon leads to long range dependencies in network traffic. Indeed, the
concept of self-similarity and long range dependencies go hand-in-hand.

Ostensibly, an alternative to classical Poisson methods is sought. To this end, long-
tailed distributions have shown much success. A distribution is a long-tailed distribution
(also referred to as a heavy-tailed distribution) if its complementary cumulative distribu-
tion function (ccdf), Fc, decays slower than exponentially, i.e. if

f x e e

x x

( ) ,= +
−− −a

b
a
b

b b

1 2

1 2
1 (2)



314 L. N. Singh and G. R. Dattatreya

for all a > 0 (Feldmann and Whitt [11]). The ccdf is defined as the complement of the
cumulative distribution function (cdf), as follows

where F(x) is the cdf. Conversely, a distribution is a short-tailed distribution if its ccdf
decays exponentially, i.e. if

for some a > 0. Of note is a special case of long-tailed distributions called the power-tail
distribution. A distribution is said to be power-tail distribution if

where a and b are positive constants and the operator ∼ is defined such that f(x) ∼ g(x)
implies that

Two common examples of long-tailed distributions that are used widely in network per-
formance analysis are the Pareto and Weibull distributions. In addition, the Pareto distri-
bution is a power-tailed distribution; however, the Weibull distribution is not.

Recent studies have demonstrated that long-tailed distributions model many network
characteristics aptly. For example, long-tailed distributions have been valuable in model-
ing World Wide Web (WWW) traffic, since the said traffic often originates from hetero-
geneous sources [7]. Long-tailed distributions have also been shown to be successful in
modeling file transfer protocol (FTP) connections and intervals between connection
requests [11]. As effective as the long-tailed distribution has been in capturing the statisti-
cal characteristics of large scale networks, there are some deficiencies of this model. Most
notably, long-tailed distributions are generally very difficult to analyze. An example is the
task of analyzing the performance figures of the basic M/G/1 queue which becomes quite
involved if the service-time distribution is Pareto. Furthermore, unlike many short-tailed
distributions, expressions for the Laplace transforms of long-tailed distributions are quite
complex. Laplace transforms are generally useful for analyzing the distributions by
numerical transform inversion. Standard non-parametric estimators such as the histogram,
projections, and kernel estimators are not suitable for long-tailed distributions and often
exhibit poor estimates or “spikes” in the tail region. It is well-known that kernel estimators
suffer from spurious noise appearing in the tail of the estimator [12]. Markovitch and
Krieger [7] have explored some non-parametric procedures for estimating and approxi-
mating long-tailed distributions. Two of these procedures include transformation func-
tions that map a long-tailed density into a pdf with compact support, and polygrams.
Polygrams are histograms with variable bin widths.
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The aforementioned problems associated with long-tailed distributions do not appear in
short-tailed distributions. Accordingly, a natural proposal for alleviating the problems of long-
tailed distributions is to approximate the said long-tailed distributions with corresponding
short-tailed distributions. This is justifiable by the fact that although long-tailed distributions do
not have compact support, for practical purposes there is only a finite interval for which the dis-
tribution in question takes on meaningful values. Therefore, one approach for approximating
long-tailed distributions is to effectively truncate the long-tailed distribution, confining it to a
finite interval. Intuitively, this method encompasses the essential features of the long-tailed dis-
tribution. In spite of this, the truncation approach may not be a suitable technique since the
resulting function has discontinuities for values in the real, positive domain. An alternative to
approximating the long-tailed distributions by truncating is to use hyperexponential densities.
Hyperexponential densities have exhibited much success in approximating long-tailed distribu-
tions and for constructing network performance models ([11] and [7]). Moreover, the analysis
of hyperexponential densities is tractable and the Laplace transforms are simple expressions.

1.3. Organization

Two computationally efficient, tractable, and easily implemented algorithm for estimating
the parameters of a hyperexponential density are developed and tested. The first algorithm
— hereafter, referred to as Algorithm I — is a two-step procedure. The first step involves
estimating the component rates λ of the hyperexponential distribution. The approach here
is to develop equations that express π in terms of λ. These expressions are then substituted
into an objective function which is a function of λ and an estimate for the cdf of the hyper-
exponential distribution. Minimizing this objective function yields the required estimates
of λ. The second step estimates the steady state probabilities π given that the component
means are known by making use of linear least squares analysis. The second algorithm —
Algorithm 2 — estimates π and λ in one phase by minimizing an objective function that is
a function of π, λ and an estimate for the cdf of the hyperexponential distribution. The
relative merits of each algorithm are also compared and discussed.

Our algorithms are also compared to maximum-likelihood techniques and the expec-
tation-maximization (EM) algorithm (Dempster et al [13]), in particular. Finally, we dem-
onstrate how our algorithms are adapted to work well in a sensor network environment.

2. Algorithm 1

Most ML techniques for computing the parameters of hyperexponential densities intrinsi-
cally require estimation of 2M parameters. Likewise, any optimization procedure that uses
or evaluates the hyperexponential density directly, also involves the estimation of 2M
parameters. In this section, equations expressing π in terms of λ and functions of the sam-
ples of data are derived, thus reducing the number of unknown parameters to M. Making
use of these equations, an objective function is formulated and the values of λ are calcu-
lated by minimizing this objective function. It is assumed that each mixing proportion is
strictly positive, ensuring that each component plays a role in influencing the resulting
pdf. Algorithm 1 essentially reduces the number of unknown parameters by incorporating
additional information from the structure of the mixture pdf and from samples of data.

2.1. Expressions for π

Nonlinear transforms are employed in order to reduce the number of unknown parame-
ters. Specifically, the Laplace transform of the exponential density is exploited. Define
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a = [a1 . . . . . aM]T where each ai is a distinct, real, positive value. The Laplace transform
of the pdf in equation (1) scaled by a factor of  is

Let A be the matrix with elements  at row i and column j. Also, let a = [a1. . . . ,

aM]T be the vector of expectations where . Therefore, in matrix notation,

equation (9) is

provided that A is nonsingular. Matrix A is a Cauchy matrix and hence, has certain nice
properties (Boras [14]). For instance, the inverse of a Cauchy matrix can be represented as
an explicit expression (Knuth [15]) and thus, B = A−1 is an M × M matrix with elements

at row i and column j and where λ1 ≠ λ2 ≠ . . . ≠ λM ≠ 0 and a1 ≠ a2≠ . . . ≠ aM. Clearly,
each λi is distinct by the assumption that the mixing proportions for each component are
all non-zero, and each ai is distinct by assumption. Hence, A is clearly invertible. From
equations (11) and (12) the steady state probabilities may be expressed as

This gives a means of computing π if the component means and expectations in equa-
tion (9) are provided.
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2.2. Determination of l

The expressions for the mixing probabilities developed in the previous section afford a
means of reducing the number of unknown variables to just M. In this section, an algo-
rithm to obtain this M component mean vector is formulated by fitting a candidate cdf to
the given exact cdf. The approach iteratively attempts to improve the fit of a real or esti-
mated cdf to that of a cdf constructed from successive approximations of the parameter
set. The cdf of a hyperexponential density is

Let  and  be the current approximations for λ
and π, respectively. Hence, an approximate or candidate cdf is given as

Notice that the only unknown in this candidate cdf is . The error of the fit of this candi-
date cdf at a single point x is defined to be

This result can be extended over the entire domain of x — i.e. the set of all real numbers
greater than or equal to zero (R+) — to give the total error by integrating equation (16) for
all x ∈ R+. Unfortunately, this integral does not furnish a simple, tractable expression for
the total error. Thus in practice, the integral would have to be numerically evaluated which
is a somewhat expensive task. Realize that for practical purposes, the entire domain of R+

need not be considered. A viable approximation of the total error may be obtained by com-
puting the error at a finite number of arbitrary points, [x1, . . ., xm] over the region of inter-
est and summing up the error as follows

Observe that  for all  and 1 ≤ i ≤ M. Therefore,  is bounded from below
and has a global minimizer (Borwein and Lewis [16]). Moreover, this minimum is known
to be zero and for an ideal candidate cdf, . Obviously a better approximation of
the total error is obtained if m is made large. The component means are obtained by mini-
mizing (17) with respect to . However, the objective function in question is not a convex
function of  in general. Therefore, the Newtonian methods for minimization cannot be
directly applied. Nonetheless, the problem of finding  is posed as a constrained nonlinear
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optimization problem. The first set of constraints ensure that λk > 0 for all 1 ≤ k ≤ M. The
second set are as a result of ensuring that π are valid, non-zero probabilities, i.e.

2.3. Estimation of λ from Statistical Data

In order to minimize the objective function developed, there are several quantities that
need to be estimated from the samples of data. In this section, estimators for these quanti-
ties are devised. Given n samples of data w = {w1. . . . ,wn}, and assumed distinct constants
ai, an estimator for ai is

Define â to be the estimate of a from the samples of data.
The equations derived previously implicitly assume that the cdf F(x) is exact and

available. Of course this is not the case, and an estimate for the cdf must be obtained from
the samples of data. The cdf is a good choice for function-fitting and estimation in general
for the hyperexponential density for a number of reasons. First, the cdf is a smooth, mono-
tonically increasing function. Second, the cdf can be estimated easily and accurately from
a finite number of samples of data. Third, given the chosen implementation for the cdf, a
lookup for a value runs in O(log n) time which is quite fast. A piecewise continuous esti-
mate of the cdf is obtained as follows. Sort the observations of data {w1, . . . ,wn} to pro-
duce the values {y1, . . ., yn} such that y1 ≤ y2 ≤ . . . ≤ yn and {y1, . . ., yn} is a permutation
of {x1, . . ., xn}. Hence, the estimate of the cdf is defined as,

Define  as the estimates of l and substitute equation (21) into (17) giving the new objec-
tive function

Minimizing this objective function produces the estimates .
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2.4. Minimization Procedure

The current minimization problem involves finding the minimum of a nonlinear objective
function subject to nonlinear constraints, and so the problem is a nonlinear programming
task. Sequential quadratic programming methods are generally accepted as being the best
nonlinear programming techniques (Palambros and Wilde [17]) and thus, are our chosen
methods for minimizing (22). An abridged overview of sequential quadratic programming
(SQP) methods is presented here. A further account on the details of SQP procedures and
their derivations may be found in [17], Nocedal and Wright [18] and Fletcher [19]. Let
{x1, x2, . . .} be a sequence of iterates of the minimization procedure which approach a
solution x* that is a minimum. SQP algorithms function by approximating each iterate xk
by a quadratic programming subproblem. The next iterate is computed by minimizing this
subproblem. Quadratic programming involves minimizing objective functions that are
quadratic multivariate functions with linear constraints. Inequality constraints posed as
nonlinear functions need to be linearized and approximated. The main difficulty is to for-
mulate the quadratic subproblems in such a manner that good steps are made for each iter-
ate and the overall SQP algorithm has good convergence properties and is efficient.

For the process of finding stationary points of a multivariate objective function subject
to one or more constraints, it is common to use Lagrange multipliers [20]. Denote the vector
of Lagrange multipliers as x. For convenience, the stationarity conditions are usually
expressed in terms of the Lagrangian function which is defined in the most general case, as

where g(x) represents the constraints. The Lagrangian function contains the first-order and
second-order conditions for a point to be a local minimizer of the objective function
subject to the given constraints. In our chosen implementation of an SQP algorithm, the
Hessian of the Lagrangian function needs to be updated with each iteration. The chosen
method for doing so is the BFGS update method. The next major step involves solving the
quadratic problem for each iteration. To do so, an active set strategy [17] is employed. An
active set strategy activates and deactivates constraints during each iteration as the algo-
rithm progresses towards the minimum. The third and final major step is to form a new
iterate

where sk is the search direction vector. The step size bk is chosen by minimizing an appro-
priate function called the merit function. The merit function measures how appropriate
and feasible each xk and xk are, and the function should have a local minimum at the
solution. In our chosen implementation for minimization, we have chosen to enforce
constraints for the probabilities in the second phase of computing the probabilities by the
linear least squares analysis. In the first stage,  are determined by unconstrained
minimization.

2.5. Estimation of π from Statistical Data

In the preceding section, a method was developed for determining estimates of l given an
estimate for the cdf. A naive approach to attaining values for π is to exploit equation (13).

L( , ) ( ) ( ).Tx f x g xx x= + (23)

x x sk k k k+1 .= + b (24)
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However, due to the nature of the hyperexponential density and the equations involved,
the values for the vector a cannot be estimated accurately enough from data for computing
π. The values attained for π from equation (13) are very sensitive to the values derived for

. This means that small inaccuracies in  translate into large errors in π. This is mainly
due to the inability of â to estimate a with sufficient accuracy. In contrast, the estimate for
the cdf (x) from data provides a very accurate representation of the exact cdf. This is yet
another advantage of using the estimate of the cdf for function-fitting.

The cdf of the hyperexponential density is linear in π. In addition, the estimated cdf
can be expressed in terms of the estimates for  and the unknown parameters π as follows,

for all 0 < x < ∞. Let z = {z1, . . ., zS} be an arbitrary set of positive, real constants such
that

Define  and  Let  be the S × M matrix

with  being the element at the ith row and jth column. From these definitions,
equation (25) can be written using matrix notation as

leading to the following theorem.

Theorem 1. Equation (28) has a unique solution for the mixing proportions, given that the
component means are known.

Proof. Equation (28) can be solved using linear least squares regression analysis, and
is also a convex function (Boyd [21]). Therefore, this function has a global minimizer and
has a unique solution for π.

From this theorem,  is obtained by solving equation (28) using linear least squares
regression analysis.

2.6. Summary of Algorithm 1

The following presents a summary of Algorithm 1, for obtaining estimates of the parame-
ters for the hyperexponential density, given n samples of data.

1. Choose values for a such that each ai is distinct and positive.
2. Obtain an initial estimate for .
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3. Compute â using a and the samples of data.
4. Minimize  to obtain a new estimate for .
5. Using the new estimate of , compute C and using linear least squares regression,

obtain an estimate for π.

3. Algorithm 2

The second algorithm developed is similar to Algorithm 1 of the previous section. The
essential difference in Algorithm 2 is that 2M parameters are estimated from the devel-
oped objective function. In the following subsection, the required objective function is
developed.

3.1. Development of the Objective Function

As in the previous section, an approximate cdf is constructed as follows

Notice that this cdf has three arguments as opposed to two, and that  is no longer
described as a function of . Following the procedure of the previous section, the error of
fit of this candidate function is expressed as

Similarly, the approximate total error of the fit is denoted by

where m ≥ M. The function  has similar properties as , in that  for
all  and 1 ≤ i ≤ M. Hence,  is also bounded from below and has a global
minimizer.

The required parameters are obtained by minimizing the objective function in equa-
tion (31). As in the previous section, this is a constrained nonlinear optimization problem.
The constraints are the same, i.e. that the component means are positive and that the mix-
ing proportions are valid probabilities. The latter constraint can, however, be relaxed by
introducing the softmax function (Bishop [20]). Let g = {g1, . . ., gM} be a vector of real
constants, and hence,

for all 1 ≤ i ≤ M. Fix one of g, gM (say) to be 0, which ensures that the transformation is one-
to-one. Using this definition for pi ensures that the constraints of the mixing proportions are
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met. Thus, the only applicable constraint is that λi > 0, for all 1 ≤ i ≤ M. However, since the
hyperexponential cdf is strictly monotonic, this constraint can effectively be disregarded,
reducing the problem to a nonlinear unconstrained optimization problem. Let  be the
estimates of γ and introduce the new objective function defined as

It is worth noticing that (33) is not a convex function of  and , so the Newtonian
method for optimization cannot be applied. Instead, the minimization should be performed
using either quasi-Newtonian methods with the BFGS update method and inexact line
searches, or using the Levenberg-Marquardt method for nonlinear regression analysis.

For Algorithm 2, the only quantity that needs to be estimated is the cdf. The approach
for estimating the cdf is the same in both algorithms 1 and 2. In the next subsection, a
summary of the algorithm is presented.

3.2. Summary of Algorithm 2

The following presents a summary of of Algorithm 2. Estimates of the parameters of the
hyperexponential density are obtained, given n samples of data.

1. Obtain an initial estimate for  and .
2. Minimize  to obtain new estimates for  and .

4. Discussion

In this section, we discuss the expediency of the algorithms developed to sensor networks.
An account of the simulation experiments executed to demonstrate the algorithms is also
presented, along with a discussion of the results of these experiments.

4.1. Applicability of Algorithms to Sensor Networks

The primary strength of Algorithms 1 and 2 is that they are well-suited to sensor networks.
In order to illustrate how these algorithms are applicable to sensor networks, we return to
the rainfall example in section I-A. Each sensor node collects rainfall data from its imme-
diate environment. Hansen and lnes [6] discuss the difficulties in measuring rainfall. Tak-
ing soil moisture measurements, for example, is one suggested approach for determining
the amount of rainfall. However, the exact details of measuring rainfall with sensor net-
works are beyond the scope of this paper. The individual sensor nodes do not possess the
computing power to perform the complete parameter estimation procedure. In addition,
transmission of all the data values collected at all sensor nodes to the base station is
impractical, as the large number of transmissions needed would quickly drain the batteries
of the sensor nodes. Therefore, an algorithm such as the EM algorithm which requires all
the data values would not be applicable in this scenario. Nowak [22] introduces a distri-
bued EM algorithm approach for performing density estimation in sensor networks. In
[22], it is assumed that the local processing is much less expensive than communication.
We do not compare explicitly our algorithms with those in [22], since Nowak performs the
density estimation of Gaussian mixtures. However, the following observations are made.
In our algorithms, there is very little processing to be done at individual sensor nodes, and
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the number of communications for each sensor node is on par with that presented in [22].
Hence, it is expected that our algorithms will use less battery power than that of [22].

Recall that in both Algorithms 1 and 2, an estimate of the cdf of the hyperexponential
density, (x) is required. However, the domain of (x) is a set of fixed, pre-determined
values of x. Computing an estimate of (x) as in equation (21) would require each node to
store all data points collected, which is infeasible. Instead, the estimate of the cdf is calcu-
lated as follows. Given n observations of data {wl . . . .wn}, the empirical cdf is defined as

where

and u is the unit step function defined as

Only the values of Fn (x) for a fixed domain of x are required, so let the required values of
x be {x1, . . ., xm}. Hence, the necessary values that need to be recorded and updated by
each sensor node are n and S(xj) for each 1 ≤ j ≤ m. For a specific sensor node k, denote Sk
to be the value of S for node k, and similarly nk denotes the value of n for node k. Each
sensor node k collects data and increments its own value of nk while updating Sk. At pre-
defined epochs, for instance when nk goes beyond a certain threshold value, the recorded
values of Sk are transmitted to the base station. With this approach, each sensor node is
required to record at most m+1 values. Updating and recording these values require very
little computational power.

Upon transmitting the values of Sk(xj) to the base station, the sensor node resets the
values of Sk(xj) for all j to zero and resets nk to zero. Each sensor node transmits m values
of Sk(xj), but some values of Sk(xj) may change more often and by greater amounts than
others. For instance, after a period of collecting rainfall observations we might find that
Sk(x1) is large while Sk(x2) and Sk(x3) are still zero. Sending the values of just Sk(x1) would
reduce the size of the transmission for node k significantly. Therefore, we propose a format
for the transmission packet as in Fig. 2. The bit vector at the head of the packet identifies
which of the values of x are being sent in the packet. For instance, if bits number 1, 2, and
5 are set in the bit vector in the transmission from sensor node k, and all other bits are
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FIGURE 2 Data packet format for transmission from sensor nodes.
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unset, then there are 3 data values to follow in the packet. The data values are in consecu-
tive order and are correspondingly Sk(x1), Sk(x2) and Sk(x5). The proposed approach
ensures that only values that are non-zero will be transmitted, thus minimizing the size of
the transmissions.

The values of Sk(xj) for each sensor node k and all 1 ≤ j ≤ m, are transmitted to the
base station along with the corresponding values of nk. Let new(xj) and old(xj) be the
new and current estimates of the cdf, respectively. Similarly, let nnew and nold be the new
and current values of n. Assuming that the base station receives values from r sensor
nodes the estimate of the cdf is updated as follows,

and where

If a value of Sk(xj) is not received from a sensor node, assume that it has a value of zero in
equation (37).

Equation (37) is used instead of equation (21) and thus, provides the necessary esti-
mate of the cdf in the objective functions of Algorithms 1 and 2. Once an estimate of the
cdf is obtained, the base station then performs the appropriate minimization procedure to
estimate the parameters of the hyperexponential density. The problem presented here of
estimating the amount of rainfall in an area is ideal for sensor networks, and the approach
to solving this problem is well-suited to sensor networks. Each sensor node requires only a
small amount of computational power and memory, while keeping the number of network
transmissions to a minimum.

4.2. Error Analysis of Empirical cdf

The empirical cdf is commonly used as an estimator for the cdf in many applications
including bootstrapping techniques and various EDF statistics such as the Cramer-von
Mises and Anderson-Darling tests [23]. The virtues of the empirical cdf as an estimator
stem from the fact that the empirical cdf converges uniformly to the actual cdf by the
Gilvenko-Cantelli theorem [24]. Further properties of the empirical cdf are discussed
extensively in [23] and [24]. The accuracy of the empirical cdf hinges on obtaining data
points that range between the tails of the cdf. Extreme values which fall in the tails of the
cdf will not produce good results as is the case with other estimators.

The sensor network implementation of our estimator requires the data to be dis-
cretized into several bins. The number of bins can be increased for increased accuracy.
However, the final bin represents all data falling in the range [xmax, ∞). We can derive an
upper bound for xmax to ensure that the probability of a random sample falling in [xmax, ∞)
is below a threshold, say 1% or 0.01. Let bmax be the largest mean of all the exponential
components of the mixture density. The highest probability of samples having a very large
value is obtained when all other exponential components of the mixture occur with zero
mixing probabilities. Therefore, we have
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If we prefer this probability to be less than 0.01, we have

or, equivalently, xmax ≥ 4.7bmax. Therefore, a good guideline is that the largest threshold in
the specification of intervals for the sensor network implementation, should be about 5
times the largest anticipated mean value of the exponential probability density compo-
nents of the mixture.

The Gilvenko-Cantelli theorem states that if the data samples are truly iid and the size
of the data sample is sufficiently large, a good estimate of the cdf will be obtained. Since
the empirical cdf is not a point estimator, deriving the standard error of the estimate is not
trivial. The question of how large a sample is required for a good estimate can be
answered by the Dvoretzky, Kiefer, Wolfowitz inequality [23], which is stated as follows.
If X1, . . ., Xn are iid real-valued random variables with cdf F, and Fn is the empirical cdf,
then for any d > 0 and any positive integer n.

where dK is the well-known Kolmogorov-Smirnov statistic, and C is a universal constant.
It can be shown that C = 2 is a good choice [23]. For illustrative purposes, if we restricted
the probability of having a discrepancy of no more than 0.01 at a single point between Fn
and F to be less than or equal to 0.01, then we would require approximately 200 data sam-
ples or more.

4.3. Summary of Simulation Experiments and Results

The algorithms discussed in the previous section were implemented and tested through
simulation using different values for M, l, and p. A subset of the simulation trials is dis-
cussed here. Both algorithms were tested on hyperexponential density using synthetically
generated iid mixture samples. In addition, the results of both algorithms were compared
to the basic implementation of the EM algorithm. Evaluation of the objective function

 was performed by evaluating the approximate total error for equally spaced points
over a meaningful domain. In Algorithm 1, the first phase of estimating  is accomplished
through the use of quasi-Newtonian methods with the BFGS method for the Hessian
update and a safeguarded mixed quadratic and cubic polynomial interpolation and extra-
polation method for line scarches. The implementation chosen is the fminunc MATLAB
function [25]. For the second phase of Algorithm 1, constrained linear regression was per-
formed using SQP methods and specifically the lsqlin MATLAB function. Algorithm 2
was implemented using quasi-Newtonian methods with the BFGS update formula, and a
safeguarded mixed quadratic and cubic polynomial interpolation and extrapolation
method for line searches. Once again, the fminunc MATLAB function [25] was employed.
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The following is an outline of the simulation strategy utilized. In the first class of
experiments, 50 experiments were performed using simulation data generated from a four
component hyperexponential density having the following characteristics: l = [1.0, 2.0,
3.0, 4.0] and P = [0.28, 0.14, 0.38, 0.2]. Also, for each of the 50 experiments, the same
data samples were applied, but each experiment was executed using a random initial guess
for l from the range (0.5, 4.5). A total of 100 data samples was chosen for each experi-
ment and each of the three algorithms was executed on these data samples for each

experiment. The initial values for P were chosen to be , where applicable. For the sec-

ond class of experiments, 50 experiments were performed repeating all the steps and char-
acteristics of the first class of experiments, except that for each of the 50 experiments
different synthetic data was generated. Once again, the values for l were chosen randomly
from the range (0, 10). Finally, for the fourth and the final class of experiments, the same
steps were followed as in the third class, however, this time for a six component hyperex-
ponential density. The values for each of the six rates were chosen randomly in the range
(0, 10). A total of 200 experiments were performed for the simulation exercise.

Sample results of the three algorithms are given in Figs. 3, 4, and 5. Each figure com-
pares the generated pdf of the corresponding algorithm to the actual pdf. Each of the algo-
rithms terminated in 1–10 iterations. From the simulation results, all of the three
algorithms appear to produce similar results. In most cases, Algorithm 1 and the EM algo-
rithm give similar results, and Algorithm 2 gives slightly better results in some cases.
There is no simulation evidence to suggest that there are operating regions in which one
algorithm is superior to the other, given the current approaches taken for optimization.
Extensive simulation evidence indicates that Algorithm 2 gives the best results. in terms of
accuracy of results, amongst the three algorithms compared.
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M

FIGURE 3 Sample plot of pdf generated from Algorithm 1 using 100 samples of data.
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FIGURE 4 Sample plot of pdf generated from Algorithm 2 using 100 samples of data.
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FIGURE 5 Sample plot of pdf generated from the EM algorithm using 100 samples of
data.

0

0.5

1

f(
x)

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3 3.5 4
x

actual pdf
estimated pdf



328 L. N. Singh and G. R. Dattatreya

In terms of computation speed. Algorithms 1 and 2 offer significant advantages over
the EM algorithm. The EM algorithm involves computations that include all N data sam-
ples per iteration. As a consequence, as the number of data samples increases, the compu-
tation time increases dramatically. Compare this to Algorithms 1 and 2, in which the
computation time of each iteration increases as a function of the number of unknown
parameters only. For Algorithms 1 and 2, the values obtained from the estimated cdf func-
tion are at predefined points, and need only be looked up once, and not for every iteration.
This lookup is very cheap as well, since a binary search of running time O(log N) is all that
is required. For these reasons, the computation times for both Algorithms 1 and 2 are
significantly improved versus the EM algorithm, particularly when N is large and the
algorithms converage slowly.

The EM algorithm is generally regarded as the standard technique for estimating the
parameters of mixtures of probability densities. Ruhe [26], Hasselblad [27], and Jewell
[28] present solutions for finding the parameters of positive sums of exponentials, by max-
imum-likelihood techniques. Gruet et al [29] present a technique for estimation of mix-
tures of exponentials based on MCMC methods. It is well-known that the EM algorithm
has a slow rate of convergence and may converge to values on the boundary of the param-
eter space. Moreover, the EM algorithm is not well-suited to an application in sensor net-
works, as the algorithm would require a high amount of network traffic to transfer all the
data.

5. Conclusion

The major contributions presented here are algorithms for computing the parameters of a
hyperexponential density. Our algorithms are easily implemented yet computationally
very efficient. There are numerous potential applications of this algorithm particularly in
the areas of network traffic modeling and queuing theory; however, the algorithms pre-
sented here are particularly applicable in sensor network situations. In particular, due to
the formulation of Algorithms 1 and 2, accurate estimates of the hyperexponential pdf are
obtained while keeping computation and network transmissions at the sensor nodes to a
minimum. The two developed algorithms as well as the EM algorithm all give very good
estimates of the hyperexponential pdf. However, extensive simulation evidence demon-
strates that Algorithm 2 gives the best numerical results of the three algorithms compared,
in terms of the quality of the estimate of the hyperexponential pdf produced, which is what
our goal is. In addition, evidence is presented to suggest that the algorithms developed are
superior to the EM algorithm in terms of computation speed in cases where a large number
of data samples are present or if the convergence speed of the algorithm declines. Both
algorithms developed are efficient and easily implemented using standard tools of numer-
ical optimization.
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