
International Journal of Distributed Sensor Networks, 4: 223–246, 2008

Copyright � Taylor & Francis Group, LLC

ISSN: 1550-1329 print / 1550-1477 online

DOI: 10.1080/15501320701260063

A Flexible Stochastic Automaton-Based Algorithm
for Network Self-Partitioning

YAN WAN1, SANDIP ROY1, ALI SABERI1,
and BERNARD LESIEUTRE2

1The first three authors are with the Washington State University, Pullman, WA
2The fourth author is with the Lawrence Berkeley National Laboratory,

Berkeley, CA

This article proposes a flexible and distributed stochastic automaton-based network
partitioning algorithm that is capable of finding the optimal k-way partition with respect
to a broad range of cost functions, and given various constraints, in directed and
weighted graphs. Specifically, we motivate the distributed partitioning (self-partitioning)
problem, introduce the stochastic automaton-based partitioning algorithm, and show that
the algorithm finds the optimal partition with probability 1 for a large class of partitioning
tasks. Also, a discussion of why the algorithm can be expected to find good partitions
quickly is included, and its performance is further illustrated through examples. Finally,
applications to mobile/sensor classification in ad hoc networks, fault-isolation in electric
power systems, and control of autonomous vehicle teams are pursued in detail.

Keywords Partitioning; Distributed Partitioning; Islanding; Stochastic Automata

1. Introduction

Networks of communicating agents, including sensor networks and autonomous-vehicle

teams, require distributed algorithms for a variety of tasks, including data communication/

routing, estimation/agreement, and pattern-formation control, among others (see [1] and [2]

for interesting overviews). In this article, we put forth the perspective that algorithms for

network self-partitioning or self-classification, i.e. algorithms using which of the network’s

nodes can form groups so as to minimize cost while communicating in a distributed

manner, are needed. We further contend that partitioning algorithms for these communicat-

ing-agent networks, whether distributed or centralized, must be flexible, in the sense that

the algorithms should permit the minimization of complex and varied cost measures. With

these motivations in mind, we develop a flexible algorithm for network partitioning and

self-partitioning using a stochastic automaton known as the influence model [3].

Distributed algorithms for self-partitioning may be valuable for various sensor

networking and autonomous vehicle control applications. Consider the following:

� A group of autonomous vehicles in the field may need to self-assemble into multi-

ple teams, in order to simultaneously complete multiple control tasks, e.g. search-

and-destroy tasks (see e.g. [4,5] for formation-control algorithms for autonomous

vehicles). The vehicles should be grouped (partitioned) in such a manner that the

Address correspondence to Sandip Roy, School of EECS, Washington State University,
P.O. Box 642752, Pullman, WA, 99164–2752. E-mail: sroy@eecs.wsu.edu

223

self-assembly takes little time, and the robots in each group can easily communicate

with each other.

� Sensors in an ad hoc network must choose one of several base stations for

communication, so as to minimize the power required for multicasting as well as

the latency of transmission from the sensors back to the base (see [10] for an

overview of multicasting in ad hoc networks). Further, the sensors may need to

classify themselves in such a manner that all the sensors associated with a

particular base station can communicate among themselves, and further the net-

work can tolerate any single failure in a communication link.

� Weakly-connected subnetworks within a computer network may need to be iden-

tified, so as to isolate a spreading computer virus.

In each of these tasks, the nodes in a network must be partitioned so as to minimize the

cost. Further, for a variety of reasons (including security concerns, need for low-power

and hence localized communication, and possibly for topological changes that are not

known by a central authority), we may require a distributed algorithm for these partitioning

tasks.

While there is a wide literature on graph partitioning (which derives primarily from

parallel-processing applications, see [6] for an overview), the partitioning tasks for the

communicating-agent networks described above are novel in several respects:

1) As motivated above, the algorithms used often must be distributed, e.g. because of the

high power cost of communicating with a central agent or the need for security. For

the same reasons, sparsity of communication in use of the algorithm is also often a

must. Further, algorithms that are scalable, i.e. ones in which the computational cost

for each agent grows in a reasonable manner with the network size, are needed;

distributed algorithms can permit scalability.

2) The cost to be minimized is often a complex or multivariate one (e.g., for sensor

network applications, delay, power dissipation, and reliability may each play a role in

the cost), and varies from one application to another. Thus, we require algorithms that

are flexible with respect to the cost minimized. This contrasts with the bulk of the

literature on partitioning [7, 8, 9], in which algorithms are designed for a particular

cost, typically a min-cut cost or a min-cut cost with partition-size constraints1.

3) Communicating-agent networks are commonly subject to topological changes, for

instance due to the addition of an agent or the failure of a particular communication

link. Thus, partitions of the network may need to be adapted rapidly and frequently,

ideally with minimal communication.

These novel features have motivated us to develop a distributed and flexible algorithm

for network partitioning/classification.

Specifically, we introduce an algorithm for network self-partitioning (i.e., distributed

partitioning) that is based on a stochastic automaton known as the influence model. The

influence model can be viewed as a network of discrete-time, finite-state Markov chains,

which interact in the sense that the current status (state) of each site (chain) probabil-

istically influences the future statuses of its neighboring sites [3]. The basic premise for

using the influence model (specifically the copying influence model for partitioning

graphs is that groups of sites in the model that are separated by weak influences tend

to have a different statuses, while sites interconnected by strong influences tend to form a

1Bisection, in which the minimum cut that breaks the network into multiple equal-sized
partitions is found, is of particular interest in the partitioning community [6].

224 Y. Wan et al.

cluster with a common status. Therefore, by associating influences with edge weights in a

graph, allowing the influence model to run for some time, and then examining the

statuses, we can identify a good partition quickly with respect to many typical cost

functions. At the same time, the algorithm randomly searches through many potential

partitions, and hence holds promise for minimizing multi-objective and complex cost

functions. The technique is distributed in that each site only needs to communicate with

graphical neighbors to determine its own partition.

This algorithm for network partitioning builds on our earlier work on a control-

theoretic approach to distributed decision-making or agreement [11] (see also [12, 13] for

other control-theoretic approaches to agreement and [14] for a study of sensor fusion that

addresses/motivates distributed detection/decision-making). In the context of decision-

making, we used the influence model to reach consensus among nodes in a manner that

reflected their initial divergent opinions about a topic of interest; here, the influence

model does not generate one opinion, but instead finds low cost cuts as boundaries

between multiple opinions or statuses. Also of interest to us, stochastic automata have

been used as tools for routing in sensor networks (e.g. [15]), and have been used as gossip

protocols for information dissemination in ad hoc networks [16]. There is also a much

broader literature on the analysis of stochastic automata, and their application to model-

ing and computational tasks. This literature is outside the scope of this paper; see [17, 18]

for general introductions.

While our primary motivation is self-partitioning, our studies suggest that the

influence model-based algorithm is also valuable for centralized partitioning problems

in which multiple complicated costs must be minimized, or in which costs are implicitly

found through a simulation. For instance, motivated by fault-tolerance and fault-isolation

applications (e.g. [19]), we have applied the algorithm to partition an electric power

system so as to minimize both a line-weight and a power-imbalance cost in isolating two

generators from each other. We shall briefly explore this centralized application in the

article.

The remainder of this article is organized as follows. Section 2 poses the graph

partitioning problem in quite a general way, in the process overviewing commonly-

studied partitioning problems and standard algorithms for solving them. Section 3 briefly

reviews the influence model, on which our partitioning algorithm is based. Section 4

describes the influence model-based distributed partitioning algorithm, in particular

describing the mapping from the graph to the influence model, the distributed recursion

used for partitioning, and centralized/distributed means for stopping the algorithm. In

Section 5, we prove that the algorithm finds the optimal partition with certainty given

certain weak graph-structural assumptions, and also discuss the performance of the

algorithm. In Section 6, we pursue applications and give several illustrative examples,

to better motivate our approach to partitioning and to further evaluate its performance.

2. Problem Statement

Since one of the features of our influence model-based partitioning algorithm is its

flexibility, we begin by describing the partitioning (classification) problem in quite a

general manner, but taking care to highlight sub-problems of particular interest. In the

process, we give a brief review of the research on partitioning that is relevant to our

development. We refer the reader to [6, 23] for thorough reviews of the partitioning

literature.

Flexible Stochastic Automaton-Based Algorithm 225

Broadly, a k-way partitioning algorithm is concerned with classifying the vertices of

a graph into k disjoint subsets. Specifically, let us consider a graph with (finite) vertex-set

V that has cardinality n. We associate a positive mass mu with each vertex (node) u E V.

In addition to the vertices, our graph also comprises a set of positively-weighted,

directed edges. That is, for each ordered pair of distinct vertices vi, vj, we associate a

weight wij � 0, where wij = 0 indicates that a directed edge is not present while wij > 0

indicates a weighted edge.

The partitioning problem that we consider is to classify the n vertices into k disjoint,

non-empty subsets so as to minimize a cost function, while possibly enforcing one or

more constraints. The cost function and constraints are phrased in terms of the total

masses of the subsets and the edge weights on cuts.

Formally, we define a k-way partition of a graph as a subdivision of the nodes of the

graph into k disjoint, non-empty subsets (components) S1, . . ., Sk. We are interested in

identifying a partition that minimizes a cost function

f ðMðS1Þ; . . . ;MðSkÞ;WðS1; S2Þ; . . . ;WðSk; Sk�1ÞÞ;

where MðSiÞ ¼�
P
i2Si

mi is the mass of subset i, and WðS1; SmÞ ¼
P
i2Si

P
j2Sm

wij is the size

of the cut between subsets i and j. We seek to minimize the cost function over the class of

partitions that, in general, satisfy a number of constraints of the following types:

� Algebraic constraints. These are of the form gðMðS1Þ; . . . ;MðSkÞ;WðS1; S2Þ; . . . ;
WðSk; Sk�1ÞÞ ¼ 0:

� Set inclusion constraints. These have the form vi E Sj, i.e. particular vertices are

constrained to lie in particular subsets. We often refer to a vertex that is con-

strained to lie in Sj as a reference vertex for subset j.

We use the notation S�i ; . . . ; S�k for a partition that minimizes the cost subject to the

constraints, and refer to this partition as an optimal solution of the partitioning problem2.

Our aim is to solve the partitioning problem in a distributed manner, i.e. so that only

communications along the edges of the graph are needed in finding the optimal partition.

A variety of partitioning problems considered in the literature are examples of the

problem described above. It is worth our while to briefly discuss these problems and

associated literature, focusing in particular on Partitioning with Reference Nodes (Item 4

below) because of its relevance to our applications. Commonly-considered partitioning

problems include the following:

1) The Min-cut Problem is a k-way partitioning problem in which the subsets are chosen

to minimize the total strength of the cuts between the components, with no algebraic

or set inclusion constraints enforced. That is, the components are chosen to minimize

the unconstrained cost function f ¼
Pk
i¼1

Pk
j¼1
j 6¼i

WðSi; SjÞ. The min-cut problem is well-

known to admit a polynomial-time solution, and several search algorithms have been

developed (see e.g. [24]). Spectral methods ([27, 28, 26]) and stochastic algorithms

2We can in fact allow a far more general cost function, e.g. one that depends on dynamics
defined on the graph. We adopt this form here for clarity in our explanation of why our algorithm is
expected to work well.

226 Y. Wan et al.

based on coalescing strongly-connected nodes [25] have also long been used to find

min-cuts.

2) The Bisection Problem is a 2-way partitioning problem, in which the subsets are chosen

to minimize the strength of the cut between them, subject to the constraint that the

masses of each subset are equal. That is, the cost function f = W(S1, S2) + W(S2, S1) is

minimized, subject to the algebraic constraint g(M(S1), M(S2)) = M(S2) – M(S1) = 0.

Very often, the masses of the vertices are assumed to be all unity, so that the constraint

reduces to enforcing that subsets have equal cardinality. The bisection problem finds its

major application in parallel computing [6], where equally distributed workloads are

desired. Bisection is a difficult (NP–hard) problem and has a wide literature. Specifi-

cally, classical bisection algorithms fall into four categories:

1) geometric partitioning algorithms based on coordinate information [29, 30]

2) greedy search algorithms like the Kernighan-Lin algorithm [8]

3) spectral methods (methods based on eigenvalue/eigenvector structure of

matrices associated with the network graph) [7, 31], and

4) stochastic algorithms including genetic algorithms [32, 33] and simulated anneal-

ing [9, 34].

3) In some applications, the exact mass constraint of bisection is not needed, yet it is

useful to have subsets of roughtly equal or mass size. For such applications, a mass-

weighted min-cut problem is often solved. In particular, a cost function

f ¼

P
i

P
j 6¼i

WðSi;SjÞ

MðS1Þ...MðSkÞ is minimized, assuming no algebraic constraints. The form of this

cost function has been studied in [36] and is deeply connected to the convergence rate

of the linear dynamics defined on the graph. We note that the term ratio cut has

sometimes been used in the literature for these weighted problems.

4) Sometimes, an application dictates that one of the above problems (or another k-way

partitioning problem with a different cost) must be solved, subject to set-inclusion con-

straints, i.e. subject to constraints that certain reference nodes are contained in each

component. We refer to such problems as k-way partitioning problems with reference

nodes. Partitioning with reference nodes is of interest to us for several reasons:

1) problems in several distributed applications—for instance, the problem of group-

ing sensor nodes with base stations for multicasting—have this form

2) these problems are known to be NP-hard for k � 3 and hence still require

development of good algorithms [22], and

3) our algorithm is naturally designed to address this problem and hence gives

fast solutions to the problem.

There is a wide literature on algorithms for solving these partitioning problems (see,

e.g., the review articles [6, 23, 29]). A thorough review of this literature is far beyond the

scope of this article, but lets us attempt to briefly summarize this work with the aim of

delineating our approach from that in the literature. Most of the current partitioning

algorithms are aimed at solving a particular problem (perhaps most commonly the

bisection problem) in a centralized manner. For example, spectral methods have been

used for min-cut and bisection problems, while SA, GA, and K-L are designed specifi-

cally for bisection [32, 9, 8]. In constrast to these methods, our applications motivate us to

seek an algorithm that can find the optimal partition for a range of cost functions, even if

perhaps at slightly higher computational complexity.

Flexible Stochastic Automaton-Based Algorithm 227

The algorithms in the literature that are stochastic (e.g., GA and SA) are of interest to

us [6], since our algorithm is also stochastic. Very broadly, our algorithm is similar to

these in that it searches randomly through plausible partitions, using the uncertain

generation to seek more optimal partitions. However, our algorithm is significantly

different from those in the literature, in that it does not react to the cost of the current

partition: instead, its update is based solely on the graph topology. This topological

approach has the advantage of permitting flexibility in the optimized cost, and (as we

shall show) of allowing identification of the minimum-cost solution with probability 1.

Perhaps most significantly, we contribute to this broad literature by developing an

algorithm for distributed or self-partitioning, i.e. an algorithm in which agents associated

with graph vertices can decide their optimal partitions based solely on communication

with neighboring agents. To the best of our knowledge, there have been no other

algorithms developed that achieve partitioning without any global perspective at all in

the graph.

3. The Copying Influence Model: A Brief Review

Our algorithm for partitioning is based on evolving a stochastic automaton model.

Specifically, we map a graph to a dynamic stochastic network model—a model in

which values or statuses associated with network nodes are updated based on interactions

with neighboring nodes. The statuses associated with the nodes form patterns as they

evolve with time; these patterns turn out to identify good partitions of the graph. Since the

automaton is updated only through interactions of nodes with graphical neighbors, it

permits partitioning in a decentralized manner. The automaton that we use for partition-

ing is an instance of the Influence model [3], a stochastic network automaton with a

special quasi-linear structure. In this section, we very briefly review the influence model.

We refer the reader to [3] for a much more detailed development.

An influence model is a network of n nodes or vertices or sites, each of which takes

one of a finite number of possible statuses at each discrete time-step. We use the notation

si[k] for the status of site i at time k. We refer to a snapshot of the statuses all the sites at

time k as the state of the model at time k. The model is updated at each time-step

according to the following two stages:

1) Each site i picks a site j as its determining site with probability dij.

2) Site i’s next-status is then determined probabilistically based on the current status of

the determining site j. That is, the next status is generated according to a probability

vector, which is parameterized by the current status of the determining site.

We shall only be concerned with a special case of the influence model called the

copying influence model, in which each site takes on the same number k of statuses (labeled

1,. . ., k w.l.o.g.), and furthermore each site simply copy’s the status of its determining site at

each time step. To reiterate, at each time-step in the copying influence model, each site i

picks a neighbor j with probability dij and copy’s the current status of that neighbor.

The influence model and copying influence model are compelling as modeling and

algorithmic tools because they have a special quasi-linear structure. In general, for

stochastic network models such as the influence model, we note that the statuses of all

sites together are updated in a Markovian fashion, and hence the joint status of all sites

are governed by a very large ‘‘master’’ Markov chain with kn states. However, for the

influence model, the status probabilities of individual sites and small groups of sites can

in fact be found using low-order recursions. For instance, the probability of site i taking

228 Y. Wan et al.

status m at time k + 1 in the copying influence model can be tracked using the following

low-order recursion:

P si½k þ 1� ¼ mð Þ ¼
X

j

P sj½k� ¼ m
� �

dij (1)

Furthermore, the special structure of the influence model permits us to identify qualitative

features of the master Markov chain based on the low-order recursions. These special

tractabilities of the influence model make it possible to characterize the performance of

algorithms built using the model, such as the algorithm developed here.

4. Algorithm Description

We can use the copying influence model as a tool for solving the partitioning problem

described in Section 2 under rather broad conditions. Furthermore, since the influence

model update only requires interaction among graphical neighbors (in a sense that will be

made precise shortly), the algorithm is essentially decentralized (though a bit further

effort is needed to stop the algorithm in a decentralized manner). The combination of

flexibility and decentralization makes the influence model-based algorithm applicable to

a range of partitioning tasks, including those discussed in the introduction. In this section,

we describe the influence model-based partitioning algorithm. In the next section, we

prove that the algorithm works (finds the optimal solution with certainty) under broad

conditions. Here, we first outline the algorithm, and then fill in the details.

1) Mapping. We map the graph to a copying influence model, by associating large

influences with strong interconnections in the graph, and weak influences with weak

interconnections. We note that we can permit asymmetric interconnection strengths.

2) Initialization and Recursion. We choose the initial state for the copying influence

model. Here, the status of each site identifies the subset of the corresponding node in

the graph. The statuses of the sites are updated recursively according to the developed

copying influence model, and hence a sequence of possible partitions of the graph are

generated. We note that this is a distributed computation, in that each site updates its

status using only local information (i.e. information from graphical neighbors). Thus,

in cases where a group of nodes in a real distributed system must self-partition, the

influence model recursion can be implemented using localized communications

between agents in the network. In presenting and analyzing the recursion, we find it

convenient to first consider the case of partitioning with reference nodes3, and then

address the partitioning problems without reference nodes.

3) Stopping. The recursion is terminated based on cost evaluations for a centralized

algorithm and by decreasing influence model probabilities in the decentralized case.

The statuses of the influence model at the stopping time specify the chosen partition.

4.1. Mapping

We map the graph to a copying influence model with k possible statuses, with the motivation

that we can identify a sequence of partitions of the graph by updating the influence model.

3For notational convenience, we focus on the case where there is one reference node per
component, but our development can straightforwardly be generalized to cases where the number of
partitions is different from the number of references.

Flexible Stochastic Automaton-Based Algorithm 229

That is, our algorithm classifies (partitions) the vertices in the graph according to the statuses

of the corresponding influence model sites at each time-step of the recursion. The first step

toward building this partitioning algorithm is to map the graph to a copying influence model,

in such a manner that the copying probabilities in the influence model reflect the branch

weights. In particular, we associate an influence model site with each vertex in the graph. We

then choose the copying probabilities (influences) as

dij ¼
�wji

mi
;

1��
P

l

wli

mi
;

i 6¼ j;
i ¼ j;

(
(2)

where D is chosen such that � � 1

max
i

P
j

wji
mi

. Thus, large weights are associated with large

influences, and small weights are associated with small influences; moreover, a large mass

(inertia) mi incurs small influence from other sites on site i (and large influence from itself),

and a small mass mi incurs large influence from other sites on site i.

In addition to the above direct interpretation, we can also give a linear systems-based

interpretation for the mapping. In particular, we can show that the status-probability

recursion (Equation 1) of the developed influence model is a discretized version of a

certain linear differential equation defined on the graph. This linear system viewpoint is

valuable because it indicates the close connection of our algorithm with some typical

network dynamics, and because it can potentially permit an analytical connection of our

algorithm with spectral partitioning algorithms. From the linear system viewpoint, the

parameter D can be interpreted as the discretization step. More generally, D should be

chosen large enough to achieve a fast convergence rate. We have specified the upper

bound to guarantee that all the influence model parameters are valid.

In many decentralized and centralized applications, we envision this mapping stage as

being done a priori by a centralized authority, even when the partitioning itself must be done

in a decentralized manner. For instance, when new sensors are added to an existing network,

the network designer can perhaps pre-program information about the communication topol-

ogy and strengths of interactions between the sensors. However, it is worth noting that the

mapping to the mapping to the influence model is in fact inherently decentralized (i.e., an

agent associated with vertex i in the graph can compute the weights dij from the vertex’s mass

and the weights of edges to neighbors) except in one sense: the scaling parameterD is a global

one. Noticing that the maximum allowed value forD depends on the total weights of edges out

of nodes and node masses, we note thatD can often be selected a priori based on some generic

knowledge of the graph topology (for instance, knowledge of the maximum connectivity of

any single node), when decentralized mapping is also required.

4.2. Initialization and Recursion

Let us first develop an algorithm for k-way partitioning with reference nodes (specifi-

cally, with one reference node per partition). For the problem of k-way partitioning with

reference nodes, we fix the k reference sites (the sites in the influence model correspond-

ing to the reference nodes) with distinct statuses from 0 to k � 1, and choose the initial

statuses of other sites arbitrarily. Here, in order to fix the statuses of the reference sites,

we need to make a slight modification to the influence model developed in Equation 2

such that reference site i always chooses itself as the determining site:

230 Y. Wan et al.

dij ¼
�

0; i 6¼ j;
1; i ¼ j;

: (3)

(In a distributed context, notice that we only require that the reference nodes know

their own identities to implement this initialization).

To generate a good partition, we then update the copying influence model. The state

at each time-step of the recursion identifies a partition of the graph: that is, we classify the

nodes whose associated sites are in status i in subset Si. We note that the partition

identified at each time-step automatically satisfies the set inclusion constraints for k-

way partitioning with reference nodes. We shall show that this recursion, which generates

a random sequence of partitions, eventually finds (passes through) the optimal solution

with probability 1 under broad assumptions, after sufficient time has passed. We note that

the recursion is completely distributed, in the sense that each node can decide its own

subset at each time-step solely from its graphical neighbors.

In practice, we must develop a methodology for stopping the algorithm. Below, we

discuss distributed and centralized approaches for stopping. The stopping methodologies

seek to select low-cost partitions, while checking possible algebraic constraints. We shall

show that appropriate stopping criteria permit identification of the optimal solution under

broad assumptions, with probability 1.

Conceptually, one might expect this partitioning algorithm to rapidly identify low-

cost partitions, because strongly-connected sites in the influence model (sites that

strongly influence each other) tend to adopt the same status through the influence

model recursion4, while weakly-connected sites do not influence each other and hence

maintain different statuses. Recalling that the influence strengths reflect edge weights and

node masses, we thus see that the partitions identified by the model typically have

strongly-connected subsets with weak cuts between them. For many typical cost func-

tions, the optimal partition comprises strongly-connected subsets with weak links, and

hence we might expect the algorithm to find good cuts quickly.

For k-way partitioning (without reference nodes), we can find the optimum by

solving the partitioning problem with reference nodes for all sets of distinct reference

node selections, and optimizing over these. (Notice that we can actually keep one

reference fixed, and search through possible placements of the other references.) This

search is impractical when a large number of partitions are desired; we shall briefly

consider alternatives in discussing future work. Most applications of interest to us have

natural reference vertices, so we do not focus on the case without references.

A few further notes about the recursion are worthwhile:

� For simplicity of presentation, we have considered a discrete-time update, and

hence a distributed implementation of the recursion in a network nominally

requires a common clock for the agents in the network. However, we can equiva-

lently use an update in which each site updates its status at random times

(specifically, according to a Poisson arrival process); the recursion in this case is

amenable to the same analyses as the recursion described here, and hence can be

shown to achieve optimal partitioning.

� Regarding scalability in a distributed setting, we note that each agent in a network

only needs to randomly select a neighbor and poll that neighbor at each time-step

4We refer the reader to our earlier work on agreement for further discussion about the
dynamics of strongly-influencing sites[11].

Flexible Stochastic Automaton-Based Algorithm 231

to implement the recursion, so the processing/communication per time step does

not increase with the size of the network. The total processing/communication cost

thus scales with the duration of the recursion. In the next section, we give an

argument that the scaling of the algorithm’s duration with the size of the network

is good compared to other partitioning algorithms in many cases.

� In some applications, we may already have one partition of a graph, and may wish

to improve on this partition (with respect to a cost of interest) or to adapt the

partition to changes in the graph. In such cases, we can speed up the recursion by

initializing the influence model according to the original partition.

4.3. Stopping

Again, consider the k-way partitioning problem with reference nodes. (The adaptation to

the general k-way problem is trivial.) For centralized problems, the global partition is

known to a central agency at each recursion stage (time-step) and hence the cost can be

evaluated and constraints can be checked. The minimum cost partition found by the

algorithm can be stored. In this case, we propose to stop the updating after a waiting time,

i.e. when the minimum-cost partition has not changed for a certain number of algorithm

stages. This waiting time depends on the network structure and should be pre-calculated

before the updating process. Generally speaking, the larger the size of the network, and

the smaller the influences, the bigger the waiting time should be. We will show that a

sufficiently long waiting time guarantees that the optimal solution is identified.

For distributed problems, it is unrealistic that a single agency can evaluate the global

cost of a partition as in the centralized case, since each node only has available local

information. A simple strategy in the distributed case is the blind one: the algorithm can

be stopped after a finite number of time-steps, where this number is based on the

convergence properties of influence models. A more complex strategy is to distributedly

compute the cost at each stage using an agreement protocol (see, e.g. [12]).

Another clever strategy for distributed stopping is to use an influence model with

state-dependent parameters. In particular, we progressively isolate (reduce the influ-

ence) between sites with different statuses after each update (and increase the self-

influence correspondingly), until the influence model is disconnected (partitioned).

More specifically, for each update, the (time-varying) influence dij[k] is modified as

follows:

� If si[k] 6¼ sj[k] and dij[k] � d, then dij[k + 1] = dij[k] – d (i 6¼ j) and

dii[k + 1] = dii[k] + d;

� If si[k] 6¼ sj[k] and dij[k] < d, then dii[k + 1] = dii[k] + dij[k] and dij[k + 1] = 0 (i 6¼ j);

� If si[k] = sj[k], then dij[k + 1] remains the same.

When this time-varying algorithm is used, we note that the statuses of sites converge

asymptotically (see Fig. 1). This is because the influence model becomes disconnected,

so that each partitioned component has only one injecting site and is guaranteed to

reach consensus. Thus, a partition is found asymptotically. Furthermore, it is reasonable

that this algorithm finds a good partition, since weak edges in the original graph tend

to have different statuses at their ends in the influence model, and hence these edges are

removed by the algorithm. We refer to this strategy as partitioning with adaptive

stopping.

232 Y. Wan et al.

5. Algorithm Analysis

In this section, we prove that the influence model-based partitioning algorithm finds the

optimal solution when either centralized or decentralized stopping is used. Specifically,

we show that the influence model algorithm identifies the optimal solution with prob-

ability 1, given that the optimal solution satisfies certain broad connectivity conditions

(which, as we show, is automatic for several common partitioning problems). The

(quite-weak) connectivity conditions required of the optimal solution are based on the

requirement that the influence model must be able to distribute a single status to all sites

corresponding to a particular subset, from a particular source site (which in the case of

partitioning with reference nodes is the reference).

Before presenting results on the algorithm’s ability to find optimal partitions, let us

begin by formally defining source vertices, so that we can formalize the connectivity

conditions required of the optimal:

Definition 5.1. Consider a particular partition of a graph, and a vertex v within a

particular subset. For this partition, the vertex v is a source vertex, if we can find a

path from v to each other vertex in the subset that remains within the subset (i.e., never

enters a vertex in another subset).

We are now ready to present the main result on the algorithm’s ability to obtain the

optimal solution. We assume throughout this development that the partitioning problem of

interest to us has at least one feasible solution. We first give conditions under which the

algorithm can reach the optimal solution for a partitioning problem with reference nodes.

Theorem 5.1. Consider the general k-way partitioning problem with reference nodes, as

described in Section 2. An optimal solution is identified by the influence model algorithm

with probability 1 (i.e., the algorithm passes through an optimal solution), if there is an

optimal solution such that each reference vertex is a source vertex.

Proof. In order to show that the optimal solution is identified with probability 1, let

us consider the master Markov chain for the influence model. We only need to show that

the optimal state (the influence model state associated with the optimal solution) can be

reached with positive probability from any other state (i.e. there is a sequence of

Figure 1. This diagram illustrates how a network partitions itself (based on the update of the

time-varying copying influence model) in a totally distributed manner.

Flexible Stochastic Automaton-Based Algorithm 233

influence model updates that leads from an arbitrary state to the optimal state) [38]. The

optimal state has the property that all the sites in each partition have the same status,

while sites in different partitions have different statuses.

In showing that the optimal state can be reached, let us limit ourselves to updates in which

sites determine their statuses from other sites in the same partition in the optimal solution—

only such updates are needed. Now consider a single subset in the optimal solution. Let us call

the reference vertex in the subset vs. Since vs is a source vertex, there is a path from vs to every

other vertex in the subset that remains in the subset. Let us suppose that the longest path from

vs to another vertex in the subset is m. Then we note that there is a positive probability that all

influence model sites corresponding to that subset take a status of the reference site (the site

corresponding to the reference vertex) after m time-steps. This can be proved simply by

recursion: assume there is a positive probability that all sites within a distance of i from the

reference take on the initial status of the reference site at each time step i; since there is a

positive probability that each site within a distance of i + 1 is influenced by a site within

a distance of i from the reference, there is also a positive probability that all sites within a

distance of i + 1 from the reference site take on the reference status at time i + 1. Using this

argument, we also find that there is non-zero probability that all sites take on the reference

status, at any time k�m. Thus considering the influence model as a whole, we see that there is

a positive probability that all partitions are found after a finite number of time-steps, and so the

theorem is proved. &
We note that this proof is closely related with the proof characterizing the asympto-

tics of a binary influence model in [3].

We have thus shown that the algorithm can solve the partitioning problem for a wide

variety of cost functions, specifically ones in which the optimal solution has the described

connectivity condition. We stress that the connectivity condition—namely, the existence

of paths from each reference vertex to the other vertices in its subset—is quite weak:

connectedness of the subsets in the (directed) graph is sufficient but not necessary for the

connectivity condition to hold. In fact, for a range of distributed applications (for

instance, for multicasting in mobile networks or tracking using autonomous-vehicle

teams), such connectivity may automatically be required or desired since we need

agents/nodes in each identified subset to subsequently communicate among themselves.

Let us next formalize that the algorithm can be used to find optimal solutions for the

k-way partitioning problem without reference nodes.

Theorem 5.2. Consider the general k-way partitioning problem. An optimal solution is

identified by the influence model algorithm with probability 1, if each subset of some

optimal solution has a source vertex.

Proof. Since we solve partitioning problems without reference nodes by searching

through distinct reference node placements, this result follows directly from Theorem 5.1.

We have noted that Theorems 5.1 and 5.2 require the optimal solution to have a

particular weakly-connected structure to guarantee its identification. Of course, the

optimal partition is not known a priori, so it is helpful to identify classes of partitioning

problems for which this connectivity condition is necessarily true. The following corol-

lary identifies two such classes.

Corollary 5.3. Consider the min-cut problem and mass-weighted min-cut problem with/

without reference nodes. An optimal solution is identified by the influence model with

probability 1, if the graph has the following structure: all the edges are bi-directional.

234 Y. Wan et al.

Proof. It is easy to check that optimal partitions for these problems constitute

connected subgraphs. Thus, together with the bi-directionality assumption, we see that

Theorems 5.1 and 5.2 can be applied.

Theorems 5.1, 5.2, and Corollary 5.3 show that an optimal solution is identified with

probability 1 (i.e. the influence model passes through an optimal solution), given that this

solutions satisfies the appropriate connectivity conditions. However, we have not yet

shown that the algorithm will stop at the optimal solution with certainty. The following

two theorems show that our partitioning scheme is successful when the centralized and

distributed stopping criteria are used, respectively.

Theorem 5.4. Consider the general k-way partitioning problem with (without) reference

vertices, and assume that each reference vertex is a source vertex (respectively, each

subset has a source vertex) in the optimal solution. Then the probability that the influence

model algorithm with centralized stopping chooses the optimal solution approaches 1, in

the limit of long waiting times.

Proof. This result follows directly from the standard analysis of Markov chains (see

e.g. [38]). Specifically, as the waiting time is increased, the probability that a better

solution, if one exists, is not found while waiting can be seen to decrease to 0.

Partitioning with distributed stopping (in particular, partitioning with adaptive stop-

ping) is quite a bit more complicated to analyze than the centralized algorithms, because

the parameters of the influence model are changing in reaction to the site statuses. Here,

we formalize that the partitioning-with-adaptive-stopping algorithm is able to solve the

min-cut k-way partitioning problem with reference nodes, in the case where the edges

between subsets are weak (of order E in weight) compared to edges in the partition.

Although our formal result is in such a limiting case, the proof in fact makes clear that the

minimum cut is found whenever the influence model associated with the original graph is

more likely to have status differences over the minimum cut than over any other cut. The

influence model has this property for a large (albeit somewhat hard to delineate) class of

graphs, not only ones with weak minimum cuts; this is sensible, since after all the

influence model update is structured to find minimum cuts (not only order- E cuts)

more commonly than other cuts. Our examples bear out that the distributed-stopping

algorithm is practical for typical distributed applications.

Here is the formal result, with proof:

Theorem 5.5. Consider the min-cut partitioning problem with reference nodes. Assume

that the graph has bi-directional edges, and further that the optimal cut is small (of order

E) compared to any other cut. Then the probability that the influence model algorithm

with distributed stopping chooses the optimal cut approaches 1, in the limit of small d.

Proof. First notice that if we can show that all the weights of edges in the optimal

cutset (the cutset associated with the optimal solution) go to 0 before any other one does

in the average sense, we are done since as d approaches 0, the probability for a particular

run to be deviated from the average run approaches 0. Let E1[0], E2[0],. . .En[0] denote the

weights of edges in the optimal cutset of an influence network I at time-step 0. Without

loss of generality, we arbitrarily pick an edge with weight l[0] other than the edges in the

optimal cutset and show that all the n Ei[k]’s approach 0 before l[k] approaches

l0 ¼ l½0� �
Pn

i¼1 2i ½0� in the average sense at some time-step k. With the assumption

that the edges in the optimal cutset are sufficiently weak, we have l0 > 0, then we are

done.

Flexible Stochastic Automaton-Based Algorithm 235

To do so, we construct a new influence network I 0, whose only difference with I

resides in that the weight l[k] is replaced by l0, and each Ei[k] is replaced by Ei[0]. The

reason to come up with I 0 is that the original I is a very complex network with varying

weights. By proving for I 0 whose weights never change, that the conclusion holds first,

and reducing the problem for I to the one for I 0, we can simplify the proof.

Considering I 0 with fixed weights, it is easy to check that in the average sense, Ei[k]

reaches 0, before l[k] reaches l[0] – Ei[0]; consequently, both Ei[k] and Ej[k] reach 0 before

l[k] reaches l[0] – Ei[0] – Ej[0]; and finally, all Ei[k] reach 0 before l[k] reaches l 0, where

l[k] and Ei[k] are weakened with time. This is because with the existence of a sufficiently

small optimal cut, the probability for each site in an optimal partition to take the reference

site’s status is very high, and thus the joint probability for a pair of sites in an optimal

partition to take different statuses are very small. In contrast, the probability for a pair of

sites across the optimal cut to have different statues are very high. Therefore, the edges in

the optimal cutset are weakened faster than weight l[k] does in the average sense.

Now that we know for I 0 with fixed weights, all Ei[k] reach 0 before l[k] reaches l0 in

average, we need to show that it implies for I with varying weights, the same conclusion also

holds. With the assumption that l[k] is greater than l0, l[k] in I approaches l0 slower than

l[k] in I 0 does, and every Ei[k] in I approaches 0 no slower than than Ei[k] in I 0 does, since

Ei[k] may be weakened in I. The above assumption is true since before l[k] decreases to l0, all

the edges in the optimal cutset are already broken. Hence we prove that all the edges in the

optimal cutset approach 0 before other edge does in the average sense. The proof is complete.

We have thus shown that our algorithm can find the optimal partition in both a

centralized and a distributed manner, under broad conditions. Next, it is natural to

characterize or test the performance of the algorithm: of course, any algorithm that

searches through all possible partitions can find the optimal one, so an algorithm such

as ours is useful only if it can find the optimal solution quickly compared to a combina-

torial search. Although we leave a full analytical treatment of the algorithm’s perfor-

mance for future work, we give here a conceptual discussion of why the algorithm is fast,

and also evaluate the performance of the algorithm in examples in the next section.

The No Free Lunch theorems [39] provide an interesting conceptual framework for the

performance evaluation of our algorithm. These negative results state that, over the class of all

possible cost functions, there are no algorithms that always perform well; in fact, all algo-

rithms are equally costly (i.e., take equally long) on average. Thus, an algorithm must be

tailored for the particular cost function of interest. From this perspective, our algorithm works

well because typical optimal costs correspond to weak cuts in the graph and strongly-

connected partitions, and hence good algorithms should search through these weak-cut

partitions first. Our algorithm is tailored to quickly find these weak-cut solutions (since the

strongly-connected sites in the copying influence model tend to adopt the same status while

weakly connected ones differ), while also searching through other solutions less frequently.

We have recently obtained an analytical justification for the performance of the

algorithm. Specifically, we can show that, on average, the algorithm solves the k-way

min-cut problem with reference nodes in polynomial time, given that the minimum cut is

sufficiently weak compared to other cuts in the graph. Since the k-way partitioning

problem with reference nodes is NP-hard, a polynomial-time algorithm for a class of

graphs is a worthwhile result, and gives some indication of the performance of the

algorithm. This performance analysis also has the benefit of explicitly connecting the

performance with spectral properties of the linear recursion for influence model site

statuses, and hence potentially permitting comparison of the algorithm with spectral

partitioning methods (e.g. [26, 27, 28]). This analysis of performance unfortunately

236 Y. Wan et al.

requires rather extensive review of the influence-model’s analysis, so we omit the details

of the result from this expository article.

6. Applications and Examples

In this section, we briefly introduce several potential applications of our algorithm, and also

present canonical examples that illustrate or enrich aspects of our analytical development. The

applications and examples together are meant to further motivate the described algorithm.

6.1. Application 1: Classification for Multicasting in Ad Hoc Networks

Distributed partitioning holds promise as a tool for classification in distributed sensor

networks and mobile ad hoc networks, e.g. for the purpose of multicasting or of

transmitting information from the sensors/mobiles back to ‘‘leader nodes’’ or base

stations or central authorities.

There is a wide literature on routing in ad hoc networks when the absolute positions

of the sensors/mobiles are known (see [40] for a survey of methods). Recently, distributed

algorithms (specifically local-averaging methods) have been used to infer location infor-

mation in the case where absolute positions are unknown except at peripheral locations

(see e.g. [41]), and hence permit the development of routing algorithms for these net-

works. Beyond routing, the classification of sensors/mobiles with base stations is an

important task, for the purpose of multicasting (transmitting information to many destina-

tions from multiple sources) or so that subsequently data can be routed to and from

appropriate base stations to the sensors/mobiles.

Several recent articles have addressed multi-hop multicasting in ad hoc networks (see

e.g. [10]). In multicasting applications as well as other settings where data may be transmitted

to/from several sources or base stations, classification of mobiles/sensors with the base

stations is important. We contend that the influence model-based partitioning tool can

advance the state-of-the-art on classification in ad hoc networks, for several reasons:

� As made clear by the comparison of location-known and location-unknown algo-

rithms for routing, decentralized algorithms for classification may be needed in

cases where there is no central authority with full knowledge of the network. Even

if the classification is done in a centralized manner, only partial information may

be known about the network. For instance, the distances between sensors/mobiles

or at least the connection topology may be known, but the exact locations of each

sensor/mobile may not. Conversely, the exact locations may be known, but the

connection topology may be unknown. The mapping from the graph to the

influence model, and the influence model update itself, are based on local infor-

mation and hence our partitioning method is suited for this setting.

� We may need to optimize the classification with respect to several (possibly complex)

cost criteria (including for example minimum (or average) hops to each base station,

average delay cost, and various reliability criteria). In fact, the costs may depend on the

specifics of the decentralized algorithm used for routing/multicasting. The influence

model-based algorithm permits us to consider multiple and complex cost criteria.

� Often, the topologies of sensor networks and mobile ad hoc networks change with

time, and hence it is beneficial to use an algorithm that can update the optimum

with little effort (in either a distributed or centralized case). The influence model-

based algorithm has this advantage.

Flexible Stochastic Automaton-Based Algorithm 237

For illustration of this application, we have used the influence model-based algorithm for

sensor classification in a small example (one with 3 base stations and 27 sensor nodes). The

example was generated by placing the 30 sensors in a uniform i.i.d. manner within the unit

square, allowing communication between sensors within 0.3 units of each other, and choosing

three sensors (Sensors 3, 14, and 20) to also serve as base stations. We associate a weighted

undirected graph with the sensor network in which the 30 vertices correspond to the 30

sensors, and the branches indicate communication between sensors. Each branch weight is

chosen to be inversely proportional to the distance between the pair of sensors, with the

motivation that longer communication links are more apt to failure and delay and hence are

more weakly connected. We consider 3-way partitioning of this graph with reference vertices

3, 14, and 20 using the influence model algorithm.

We consider partitioning with centralized stopping, with respect to two cost functions:

� First, we partition the graph so as to maximize the minimum of the positive

eigenvalues of the Laplacian matrices associated with the three subsets (parti-

tions)5. The minimum non-zero eigenvalue of the Laplacian associated with each

subset is well-known to indicate the connectivity of that subset, and can be used to

bound several relevant graph-theoretic properties such as the graph diameter (see

[42] for a full development). By maximizing the minimum among the non-zero

eigenvalues, we thus find a partition with strongly-connected subsets and weak

links between them. The optimal partition with respect to this minimum-subgraph-

eigenvalue cost measure is shown in Fig. 2.

� Our second cost measure is motivated by consideration of low-cost and low-

overhead distributed routing for ad hoc and sensor networks. A simple greedy

algorithm for routing when location information is available is to send the message

to the node (sensor) closest to the destination during each transmission (see e.g.

[40]). Assuming such a greedy routing algorithm is used, our aim is to classify the

sensors with base stations so that the maximum number of hops to a sensor from

its base station is minimized. (The average number of hops could be used instead.)

Thus, we partition the graph using this maximum number of hops when greedy

routing is used. The optimal partition when this greedy-routing cost measure is

shown in Fig. 2. We note that, as expected, the optimal partition has subsets which

are more balanced in size but contain weaker links, as compared to optimum for

the minimum-subgraph-eigenvalue measure. This example highlights an interest-

ing advantage of the influence model: the greedy-routing cost function does not

admit an analytical form but can be computed for a given partition, but never-

theless the optimal partition can be found.

We have also considered min-cut partitioning with distributed (adaptive) stopping for

this example. The result is shown in Fig. 2. We note that such a distributed algorithm

could be implemented in the sensor network itself, and would only require individual

sensors to have local parameters (in particular, distances to neighbors). Such a distributed

algorithm might be especially useful in cases where the topology is subject to change, so

that the sensors must re-classify themselves periodically.

As further illustration, we also show a 4-way partition with reference nodes of a 100-

sensor network in Fig. 2.

5We notice a maximization problem can routinely be converted to a minimization by choosing
a cost that is the negative of the original cost.

238 Y. Wan et al.

6.2. Application 2: Flexible Partitioning for Electric Power Systems

We believe that our algorithm potentially has significant application in power system

analysis, because of its flexibility. One potential application is for islanding, i.e. the

isolation of a portion of the power network to prevent disturbance propagation. We note

that a good algorithm for islanding may need to take into account several requirements,

including small generation-load imbalance within the isolated component, feasibility of

making the desired cut, and disturbance-propagation dynamics. Our algorithm is a natural

tool for such partitioning problems, in that we can minimize and keep track of multiple

costs while identifying plausible islands (partitions). We have applied the influence

model algorithm to identify plausible islands in a very small (14�bus) example (see

Fig. 3). Specifically, we have used the influence model algorithm to track and minimize

two cost metrics—the cut susceptance and the total absolute generator-load imbalance

over the partitions. Our optimization shows the use of a partitioning algorithm that can

track multiple costs: two different optimal solutions are identified quickly based on the

two cost metrics, and both costs are computed for a family of plausible partitions (Fig. 3).

Interestingly, the optimal partition with respect to the minimum susceptance cost is

typically found more quickly than the optimal partition with respect to the generator-

load imbalance cost. The better performance in finding the minimum susceptance cost is

not surprising, in that the susceptances are directly mapped to influence probabilities.

a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1

2

3

4

5

6

7

8

910
11

12

13

14

15

16

17

18

19

20
21

22

23

24

25

26

27
28

29

30

b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1

2

3

4

5

6

7

8

910
11

12

13

14

15

16

17

18

19

20
21

22

23

24

25

26

27
28

29

30

c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1

2

3

4

5

6

7

8

910
11

12

13

14

15

16

17

18

19

20
21

22

23

24

25

26

27
28

29

30

d)

0 0.2 0.4 0.6 0.8 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5

10

15
20

25

30

35

40

45

50

55

60

65

70

75

80

85 90

95

100

Figure 2. Partitioning a 30-sensor network with reference nodes a) based on a minimum-

subgraph-eigenvalue cost, b) based on a greedy-routing cost, and c) with distributed stopping.

We also partition a 100-sensor network based on a minimum-subgraph-eigenvalue cost (d).

Flexible Stochastic Automaton-Based Algorithm 239

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

C
os

ts

Cut susceptance
Generator−load imbalance

Figure 3. We consider partitioning the Standard 14-Bus IEEE Test System, for the purpose of

isolating a disturbance at Bus 6 from the slack bus 1. The upper figure shows the cut susceptance

and generator-load imbalance for a sequence of 250 partitions generated by our influence model

algorithm. The lower figure highlights that the minimum-cost partitions according to these two

criteria are different. In the lower figure, the solid line indicates the minimum susceptance cut while

the the dashed line indicates minimum generator-load imbalance.

240 Y. Wan et al.

Because our algorithm can track multiple costs, we believe that it can potentially

enhance the recent approach to islanding suggested in [19], which is slow-coherency

(equivalently, spectrally) based. More generally, we believe that the flexibility offered by

our partitioning algorithm may be valuable for various model-reduction tasks in power

system analysis, as well as other network-centric tasks such as the identification of line

trips of minimal cardinality that make infeasible the power flow solution.

6.3. Application 3: Self-Classification for Autonomous Vehicles

Our distributed partitioning algorithm provides a means for networked autonomous

vehicles to classify themselves. For instance, say that a network of communicating

autonomous vehicles seeks to form two teams, each of which must congregate at a

convenient location in space. Our self-partitioning algorithm can be used to identify

groups of autonomous vehicles that are close to each other, and so to form the teams, in a

completely distributed manner. We note that using partitioning in this context permits

task dynamics in autonomous-vehicle applications, for which the role played by each

agent actually depends on its initial position (state). In the interest of space, we do not

pursue this application in detail here.

6.4. Canonical Example 1: Performance Simulations

We explore the performance of our algorithm by pursuing min-cut partitioning with

reference nodes on a seven-node circuit. Figure 4 illustrates the mapping between the

circuit’s conductance graph and an influence model. It is worth noting that the mapping

has a meaningful dynamic interpretation in this case: the expected dynamics of the

influence model is a discretization of the dynamics of a circuit with the specified

conductances and unit capacitors from each node to electrical ground.

Our algorithm is guaranteed to find the optimal cut. Table 1 shows the performance

of our algorithm, in terms of the average number of time-steps needed to reach this cut,

for several values of the cut strength and discretization time-step. We note that the

expected number of time-steps needed to reach the optimal cut is dependent on the

strength of the optimal cut: the weaker the cut, the faster the algorithm.

We have compared our algorithm with spectral methods for this circuit example. When

the weak cut is between nodes 2 and 3 and nodes 4 and 5, both the spectral method and our

algorithm find the min-cut partition for all 0 � E <1. We notice that our algorithm requires

5 random number generations and 5 copying actions (communications in a decentralized

setting) per time-step, and requires between 5 and 10 time-steps for a good choice of D and

0 � E �1. In comparison, a simple implementation of the spectral method requires on the

order of 73 additions and multiplications. We notice that the expected computational cost of

our algorithm depends on the strength of the cut, in contrast to the spectral algorithm.

Interestingly, if the size-E cuts are placed between node 1 and nodes 2 and 3 instead, the

spectral method only finds the weak cut for E � 0.26, while our algorithm obtains the

optimal solution for all E (albeit at higher computational cost).

6.5. Canonical Example 2: Convergence of Distributed Stopping

Recall that distributed stopping of our algorithm is achieved through reduction of

influences. In this case, the algorithm’s ability to obtain the minimum cut is predicated

on choosing a sufficiently small influence reduction size. In this example (see Fig. 5), we

have characterized the percent of time that the correct partition is found, for several cut

Flexible Stochastic Automaton-Based Algorithm 241

strengths and influence reduction sizes. In each case, we have also determined the

expected number of iterations until the algorithm stops (see Table 2 for the results).

The simulation results indeed show that the optimal cut is found with certainty, when the

influence reduction size is chosen sufficiently small. We note that the time required to

find the optimal partition increases as the influence reduction size is decreased.

1

4

5 6

7

2 3

1

−(2 + ε)Δ + 1

−(2 + ε)Δ + 1

1

Δ

−3Δ + 1

ΔΔ

Δ
Δ

Δ
Δ

Δ
ΔΔ

−(2 + ε)Δ + 1

εΔ
εΔ

εΔεΔ

−(3 + ε)Δ + 1
Δ

Δ

Figure 4. Seven-node circuit and its influence model: Conductance values of R4 and R5 are E, and

all the other conductances are 1; all the capacitances are 1; D stands for the discretization step.

Table 1

The Average Steps to First Reach the Partition State with Respect

to D and e Based on 1000 Sample Runs

e

D 0.1 0.2 0.5 1

0.05 26.2 27.6 31.8 37.8

0.1 13.2 13.8 16.3 19.6

0.2 6.9 7.0 8.6 10.8

0.25 5.5 5.7 7.1 9.6

0.3 4.7 4.9 NA NA

242 Y. Wan et al.

7. Future Work

Several directions of future work are worth discussing:

� Complexity Analysis and Comparison. A careful analysis of the complexity of

our algorithm is required. Roughly, the computation required at each time-step

scales with the number of edges in the graph. However, we have not determined

the scaling of the number of time-steps required to find the optimal solution with

the size of the graph, expect in the case where the optimal cut is sufficiently weak

compared to the others. We reiterate that, in contrast to e.g. spectral algorithms,

the time taken by our algorithm depends on the structure of the graph and the cost

being minimized, and hence much remains to be done in connecting the number of

time-steps with graph properties. We believe that our earlier study of the settling

rates of influence model-based agreement protocols (see [11]) may permit analysis

of the settling rate of our partitioning algorithm. A complexity analysis of our

model will also permit further comparison of our algorithm’s performance with

those of other algorithms.

� Anti-Copying Algorithm for Bisection. Bisection and recursive bisection are of

significant interest in the parallel processing community, and remain hard for

some graph structures [35]. In its current form, our algorithm is not well-suited

for bisection problems: the constraint of equal-mass components is rarely satisfied

by the partition generated at each time-step, so the algorithm is likely to take many

time-steps to identify the optimal solution. Further, the bisection solution need not

have connected components (even in the symmetric case), and hence the optimal

solution may not be found at all. However, we believe that a simple modification

Table 2

Simulation Result for Example 2 Based on 1000 Sample Runs: Steps Represents

the Average Steps the Algorithm Takes to Distributedly Stop, and Percent Represents

the Percentage of Correct Partitions the Algorithm Finds.

E d D Steps Percent

1 0.1 0.02 0.47 6.2 99.6

2 0.1 0.01 0.47 8.3 100

3 0.5 0.01 0.39 30.759 99.7

4 0.5 0.005 0.39 56.672 100

5 1 0.001 0.33 122.49 86.8

1

4

3

2

5

7

6

1 1

1 1 1

1

1

Figure 5. Example for distributed partitioning.

Flexible Stochastic Automaton-Based Algorithm 243

of the influence model algorithm can permit bisection. To conceptualize this

algorithm, we note that the bisection problem can be rephrased as an unweighted

max-cut problem for a certain dual graph [37], and hence that we can seek an

algorithm for identifying max-cuts to solve the bisection problem. An interesting

approach for finding maximum cuts is to use a two-status influence model in

which each site copies the opposite of its determining neighbor’s status. This

model favors configurations in which nearby neighbors’ statuses are different

from each other, and so has a tendency to find large cuts. This may turn out to

be a computationally effective technique for finding maximum cuts and hence

solving bisection problems.

� Reference-Free Partitioning. The sequential selection of reference vertex sets

required in our algorithm is undesirable when a large number of partitions are

needed. We are exploring variants of the influence model-based algorithm that do

not require selection of reference generators. One interesting strategy is to initi-

alize the sites in the influence model with different statuses, and then update the

model until the desired number of partitions is identified. This solution can

possibly be selected as the partition, or it can be used as a pre-partition based on

which reference generators are selected influence-model algorithm is applied.

Acknowledgements

The second author thanks Professor George C. Verghese of the Massachusetts Institute of

Technology for several illuminating conversations on influence model-based partitioning.

The second and third authors were partially supported by the National Science Founda-

tion under Grant ECS-0528882 (Sensors), and the third author was also partially sup-

ported by the Office of Naval Research under Grant N000140310848.

About the Authors

Yan Wan received her B.S. Degree in Electrical Engineering from Nanjing University of

Aeronautics and Astronautics, Nanjing, China in 2001, and her M.S. Degree from

University of Alabama, Tuscaloosa, Alabama in 2004. She is currently working toward

her Ph.D. Degree in the School of Electrical Engineering and Computer Science at

Washington State University, Pullman, Washington.

Sandip Roy received a B.S. in Electrical Engineering from the University of Illinois

at Urbana-Champaign in 1998, and a M.S. and Ph.D. in Electrical Engineering from the

Massachusetts Institute of Technology in 2000 and 2003, respectively. Since 2003, he has

worked as an assistant professor in the School of Electrical Engineering and Computer

Science at Washington State University. He has also held summer research appointments

at the University of Wisconsin at Madison, the National Aeronautics and Space Admin-

istration, and the Lawrence Berkeley National Laboratories during this time. Dr. Roy’s

current research is focused on the control and design of dynamical networks, and has

application in such diverse fields as sensor networking, electric power network analysis,

and systems biology.

Ali Saberi lives in Pullman, Washington.

Bernard Lesieutre (S’86-M’93) received the B.S., M.S., and Ph.D. degrees in elec-

trical engineering from the University of Illinois at Urbana-Champaign in 1986, 1988,

and 1993, respectively. He is an Associate Professor at University of Wisconsin-Madison.

244 Y. Wan et al.

Prior to this appointment, he was a Staff Scientist at the Ernest Orlando Lawrence

Berkeley National Laboratory, Berkeley, CA. He served on the faculty of the Massachu-

setts Institute of Technology, Cambridge, as Assistant Professor and then Associate

Professor of electrical engineering from 1993 to 2001. He has also held Visiting Associ-

ate Professor appointments at Caltech and Cornell University. His research interests

include the modeling, monitoring, and analysis of electric power systems and electric

energy markets.

References

1. H. Qi, S. S. Iyengar, and K. Chakrabarty, ‘‘Distributed sensor networks – a review of recent

research’’, Journal of the Franklin Institute, vol. 338, pp. 655–668, 2001.

2. R. M. Murray, K. J. Astrom, S. P. Boyd, R. W. Brockett, and G. Stein, ‘‘Future directions in

control in an information-rich world,’’ IEEE Control Systems Magazine, vol. 23, no. 2, Apr. 2003.

3. C. Asavathiratham, S. Roy, B. C. Lesieutre and G. C. Verghese. ‘‘The influence model,’’ IEEE

Control Systems Magazine, Dec. 2001.

4. J. A. Fax and R. M. Murray, ‘‘Information flow and cooperative control of vehicle formations’’,

submitted to IEEE Transactions on Automatic Control, April 2003.

5. S. Roy, A. Saberi, and K. Herlugson, ‘‘Formation and alignment of distributed sensing agents

with double-integrator dynamics’’, IEEE Press Monograph on Sensor Network Operations, 2004

(in press).

6. B. Chamberlain, ‘‘Graph partitioning algorithms for distributed workloads of parallel computa-

tions,’’ Technical Report UW-CSE-98-10-03, University of Washington, Oct. 1998.

7. R. B. Boppana, ‘‘Eigenvalues and graph bisection: and average case analysis,’’ IEEE FOCS, pp.

280–285, 1987.

8. B. Kernighan and S. Lin, ‘‘An efficient heuristic procedure for partitioning graphs,’’ Bell

Systems Technical J., vol. 49, pp 291–307, Feb. 1970.

9. D. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon, ‘‘Optimization by simulated

annealing: an experimental evaluation; part I, graph partitioning,’’ Operations Research, Nov/

Dec 1989; 37, 6.

10. C. Cordiero, H. Gossain, and D. P. Agrawal, ‘‘Multicast over wireless mobile ad hoc networks:

present and future directions,’’ IEEE Networks Magazine, Jan./Feb. 2003.

11. S. Roy, K. Herlugson, and A. Saberi, ‘‘A control-theoretic approach to distributed discrete-

valued decision-making in networks of sensing agents,’’ to appear in the IEEE Transactions on

Mobile Computing.

12. S. Roy, A. Saberi, and K. Herlugson, ‘‘A control-theoretic perspective on the design of

distributed agreement protocols’’ to appear in the International Journal of Robust and

Nonlinear Control, Special Issue on Communicating-Agent Systems. Short version in the

Proceedings of the American Control Conference, Jun. 2005.

13. R. O. Saber and R. M. Murray, ‘‘Consensus problems in networks of agents with switching

topology and time-delays,’’ IEEE Transactions in Automatic Control, vol. 49, pp. 1520–1533,

Sep. 2004.

14. B. Krisnamachari and S. S. Iyengar, ‘‘Distributed Bayesian algorithms for fault-tolerant event

region detection in wireless sensor networks,’’ IEEE Transactions on Computers, vol. 53, no. 3,

Mar. 1, 2004.

15. S. D. Servetto and G. Barrenechia, ‘‘Constrained random walks on random graphs,’’ in

Proceedings of the 1 st ACM International Workshop on Wireless Sensor Networks and

Applications, Atlanta, GA, Sep. 2002.

16. D. Kempe, J. Kleinberg, and A. Demers, ‘‘Spatial gossip and resource location protocols,’’ in

Proceedings of the 33rd ACM Symposium on Theory of Computing, 2001.

17. T. Liggett, Interacting Particle Systems, Springer-Verlag (Mathematical Reviews Series),

New York, 1985.

Flexible Stochastic Automaton-Based Algorithm 245

18. G. Grimmett, Percolation, 2nd ed., New York, 1999.

19. H. You, V. Vittal, and X. Wang, ‘‘Slow Coherency-based Islanding,’’ IEEE Transactions on

Power Systems, vol. 19, no. 1, Feb. 2004.

20. A. Pinar and B. Hendrickson, ‘‘Partitioning for complex objectives,’’ in Proceedings of the

International Parallel and Distributed Processing Symposium (IPDPS), 2001.

21. M. Garey and D. S. Johnson, Computers and intractability: a guide to the theory of NP-

completeness, San Francisco: Freeman, 1979.

22. ‘‘A compendium of NP optimization problems,’’ http://www.nada.kth.se/veiggo/wwwcompendium/

wwwcompendium.html.

23. M. S. Khan, Sequential and distributed algorithms for fast graph partitioning, Master’s thesis,

University of Victoria, Victoria, B.C., Canada, Aug. 1994.

24. M. Stoer and F. Wagner, ‘‘A simple min-cut algorithm,’’ Lecture Notes in Computer Science,

vol. 855, pp. 141–147, 1994.

25. D. Karger and C. Stein, ‘‘A new approach to the minimum cut problem,’’ Journal of the ACM,

vol. 43, no. 4, pp. 601–640, 1996.

26. P. K. Chan, M. D. Schlag, and J. Y. Zien, ‘‘Spectral k-way ratio-cut partitioning and cluster-

ing,’’ 30th ACM/IEEE Design Automation Conference, Dallas Texas, June 1993.

27. C.L. DeMarco and J. Wassner, ‘‘A generalized eigenvalue perturbation approach to coher-

ency,’’ Proc. IEEE Conference on Control Applications, pp. 611–617, Sept. 1995.

28. S. Roy and B. Lesieutre. ‘‘Studies in network partitioning based on topological structure,’’ 32nd

Annual North American Power Symposium, Waterloo, Canada, Oct. 2000.

29. R. D. Williams, ‘‘Performance of dynamic load balancing algorithms for unstructured mesh

calculations,’’ Concurrency: Practice and Experience, vol. 3, pp. 457–481, 1991.

30. F. Cao, J. R. Gilbert, and S. Teng, ‘‘Partitioning meshes with lines and planes,’’ Technical

Report CSL-96-01, Xerox Palo Alto Research Center, Jan. 1996.

31. M. Fiedler, ‘‘A property of eigenvectors of nonnegative symmetric matrices and its application

to graph theory,’’ Czechoslovak Mathematics Journal, vol. 25, no. 100, pp. 619–633, 1975.

32. T. Nguyen Bui and B. R. Moon, ‘‘Genetic algorithm and graph partitioning,’’ IEEE

Transactions on Computers, vol. 45, no. 7, July 1996.

33. D. E. Goldberg, ‘‘Genetic algorithms in search,’’ Optimization and Machine Learning,

Addison-Wesley, New York, 1989.

34. B. Hajek, ‘‘Cooling schedules for optimal annealing,’’ Mathematics of Operations Research,

vol. 13, pp. 311–329, May 1998.

35. H. D. Simon, S-H. Teng, ‘‘How good is recursive bisection,’’ SIAM Journal on Scientific

Computing, vol. 18, no. 5, pp. 1436–1445, 1997.

36. C. K. Cheng and Y. C. Wei, ‘‘An improved two way partitioning algorithm with stable

performance,’’ IEEE Trans. On Computer-Aided Design, 10(12):1502-1511, Dec. 1991.

37. C. H. Lee and C. I. Park, ‘‘An efficient k-way graph partitioning algorithm for task allocation in

parallel computing systems,’’ Proceedings of the 1st International Conference in System

Integration, pp. 748–751, 1990.

38. R. G. Gallager, Discrete stochastic processes, Kluwer Academic Publishers, 1996.

39. D. H. Wolpert and W. G. Macready, ‘‘No free lunch theorems for search,’’ Technical Report,

Santa Fe Institute, no. 95-02-010, 1995.

40. M. Mauve, J. Widmer, and H. Hartenstein, ‘‘A survey of position-based routing in mobile ad

hoc networks,’’ IEEE Networks Magazine, vol. 6, pp. 30–39, Dec. 2001.

41. A. Jadbabaie, ‘‘On geographic routing with location information,’’ submitted to Proceedings of

the IEEE Conference on Decision and Control, The Bahamas, 2004.

42. F. R. K. Chung, Spectral Graph Theory, American Mathematical Society Press: Providence,

RI, 1997.

246 Y. Wan et al.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

