Copyright © Taylor & Francis Group, LLC ISSN: 1550-1329 print / 1550-1477 online DOI: 10.1080/15501320802575260

A Novel Algorithm Applied to Task Scheduling in Grid Computing

WEI WANG¹, DAISHENG LUO¹, WANNENG SHU², and YONG FANG¹

¹School of Electronics and Information Engineering, Sichuan University, Chengdu, China

²College of Computer Science, South-Central University for Nationalities, Wuhan, China

In this paper a novel optimal scheduling model and its algorithm are developed for task scheduling problems. A novel annealing-inspired genetic algorithm is applied to solve the scheduling model. The effectiveness of the algorithm is shown for a number of test problems and performance comparisons with the genetic algorithm, simulated annealing are also discussed.

Keywords Grid computings; Task scheduling

1. Introduction

In this paper, a novel annealing-inspired genetic algorithm (NAGA) is combined with GA and SA to find efficient solution to the grid task scheduling problem [1].

2. The Structure and Description of NAGA

The solution process of NAGA as follows:

Step 1: Generate an initial population P(t), the size of the population popsize, the initial temperature T_0 , k = 0;

Step 2: Select P(k) to generate the parent population F(k)

Step 3: Crossover F(k) to generate C(k);

Step 4: Mutate C(k) to generate M(k);

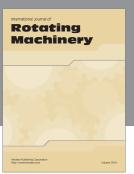
Step 5: Generate the next population $P(k + 1) = F(k) \cup M(k)$;

Step 6: When the termination condition is coincident, outputs the result; otherwise, $T_{k+1} = T_k \times (1 - \frac{k}{popsize}), k = k + 1$, go to step 2.

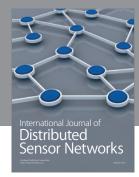
3. Experiments and Conclusion

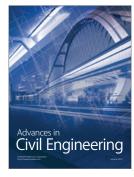
The experiment result shows that the algorithm static performance curve, and the time span of the algorithm in a different evolution algorithm, also effectively reveals that the NAGA

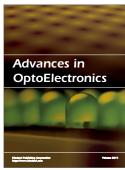
Address correspondence to Wei Wang, Sichuan University, School of Electronics and Information Engineering, Chengdu, 610065, China. E-mail: ww0830@gmail.com


algorithm has good convergence speed and a reasonable choice mechanism ensures its good performance.

Reference


1. K. Taura, "A heuristic algorithm for mapping communicating tasks on heterogeneous resources," 9th Heterogeneous Computing Workshop, May 2000, Cancun, Mexico, pp. 102–118.





Submit your manuscripts at http://www.hindawi.com

