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Most object tracking techniques find the exact locations of an object, while many other
applications are only interested in the object’s path rather than its locations. This
provides an opportunity to reduce the existing tracking methods’ resource usage by
only focusing on the path detection. Taking advantage of this opportunity, this article
presents two new minimalist approaches for accurately detecting unknown available
passages in a sensor field without requiring the exact locations of the objects. In the first
approach, each sensor sends its own location to a base station when it senses an object
of interest. The base station uses b-spline curves to build the object’s path online. Since
each sensor sends its location data just once per new path, the first approach is a
minimalist approach. The second approach is offline and uses non-uniform rational
b-spline (NURBS) curves. Since NURBS needs weighted locations, each sensor sends its
own location in addition to the number of times it has sensed an object based on the
object’s weight. Using the same simulation models, both approaches greatly reduce
power consumption and improve the accuracy of the computed paths. The NURBS
approach has proved to be robust on false alarms and improves the accuracy of path
detection up to 95 percent, which is very close to detecting the object’s actual path.
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1. Introduction

The novelty of smart environments has partly been realized today by using small-scale

wireless sensor networks. As technology grows, each sensor gets smaller in size and price

and stronger in capabilities and battery life, making it more feasible for everyday usage.

With cheaper but more powerful sensors, many new practical applications can be devel-

oped, including habitat monitoring, environmental monitoring, and battlefield surveillance.

Object tracking is a well-known field in wireless sensor networks (WSN) technology.

Object tracking determines the location of an object (or multiple objects) in a physical area.

An extension to object tracking is target tracking, which deals with targeting a moving

object. There are many approaches and algorithms in the field of entity tracking today [1]

that are used to localize an object in the field and monitor its movement in a network using

sensory data, so pursuers can predict where the opponent is going. These approaches differ,

though, in attributes like low energy consumption [2], accuracy, real-time tracking, and

scalability [3].

Another significant problem related to object tracking is robot navigation [4]. Here, the

main concern is not the location of a moving object but the discovery of a path in an
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unknown physical area. Existing approaches use sensory data from sensors to navigate a

robot that avoids obstacles along a path. The pursuer-evader game is another example that

requires a similar type of robot navigation [1]. It uses sensory data to tell a pursuing object

where to chase an evading object. In both problems, neither robots nor pursuers have any

information about their target’s location of their targets. A WSN system deployed in the

field uses sensory data to find the targets and lead objects to them along safe paths (avoiding

physical or opponent obstacles).

In many cases, pursuers are neither interested in the locations of objects nor in finding

new paths along which to lead robots. Instead, they are interested in finding existing paths

in unknown harsh, dangerous fields. There may be safe paths in these fields that the

opponents use but the pursuers are unaware of. WSNs can be deployed in such fields to

detect existing unknown paths by monitoring the movement of the objects using the paths.

This is useful for many applications. For example, in habitat monitoring, we can discover

the routes animals use for migration, or we can find the passageways used by animals in a

jungle. In battlefield surveillance, there are frequently hidden areas with passages that only

the enemy knows about, which they use to prevent others from advancing. By deploying

WSNs, pursuers can find these safe passages when enemy objects cross the field.

In this article, we present two new approaches to detect unknown available passages in

a sensory field. Contrary to existing object tracking methods that try to find the exact

locations of objects, our proposed approaches only focus on finding an object’s paths. Both

approaches use minimal sensory data and spline curves. The first approach is online and

uses b-spline curves; the second approach is offline and uses non-uniform rational b-spline

(NURBS) curves to improve path detection accuracy.

The article is organized as follows: The next section takes a brief look at related work

in the area of object tracking. Sections 3 and 4 discuss the problem of path detection.

Section 5 presents new approaches to path detection. Section 6 reports our simulation

results, and Section 7 concludes the article.

2. Related Work

There is a great deal of literature available on object tracking problems that use filters for

classification. Some other methods, like probabilistically tracking multiple objects in an

efficient manner, have also been studied [1]. We briefly discuss a number of different

approaches to object tracking problems here. Our review is inadvertently longer than usual,

demonstrating the richness of related work on the subject. At the end of this section, we

review the two approaches that are most related to our approach.

Kung et al. [3] use scalable tracking using networked sensors (STUN), a hierarchical

approach, to track objects. STUN looks at a WSN as a graph whose root generates queries

about tracking and uses detection sets made by leafs and their parents. The detection sets are

broadcasted when a change occurs in the positions of the objects. A drain and balance

(DAB) mechanism is used to build an efficient tracking hierarchy. Their proposed approach

focuses on scalability and tracking of large numbers of objects.

Tseng et al. [5] introduce a mobile agent paradigm. Upon the detection of a new object,

a mobile agent is triggered to track the object’s roaming path. The agent remains at sensors

near the tracked object and may use nearby sensors to cooperatively locate the object. When

the object is out of range, the agent migrates to a new region near the object. Tseng et al.

claim that this method reduces the amount of communication in the network.

Zhang et al. [6] focus on the issue of energy-efficient detection and tracking of a

mobile target. They introduce the concept of dynamic convoy tree-based collaboration
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(DCTC). The convoy tree tracks a target as it moves, while the sensor nodes move around

and along the target. The tree is reconfigured to add and remove nodes as the target moves.

DCTC is an optimization technique that uses two steps to find the convey sequence with the

lowest energy consumption in two steps. The first step uses an interception-based reconfi-

guration algorithm that reconfigures the tree for energy efficiency. The second step uses an

optimal method for root migration. The results show that the tree reconfiguration scheme

has the lowest energy consumption.

Fang et al. [7] present a set of protocols: distributed aggregate management (DAM),

energy-based activity monitoring (EBAM), and expectation-maximization like activity

monitoring (EMLAM). DAM protocol is developed for target monitoring in which the

sensors use low-cost amplitude sensing. The purpose of DAM is to elect local cluster

leaders. Sensors are divided into clusters based on their sensing signal strength so that there

is only one peak per cluster. One peak may represent either one target or multiple targets

that are close by, and each sensor node joins a cluster defined by the highest peak that can

reach that sensor through a path. Sensor nodes are required to exchange information to their

one-hop neighbors, while a leader can correspond with one or more targets in a time step.

DAM cannot differentiate when there are multiple targets in one cluster. In order to

address this issue, Fang et al. [7] use EBAM protocol to estimate the number of targets

within each cluster. EBAM provides a solution to counting targets within each sensor DAM

cluster. For this protocol, they assume that each target has an equal amount of power. Since

a single target power is known, the number of targets can be derived from the total signal

power sensed in the cluster.

EMLAM protocol is an approach for intra-cluster target counting using an expectation-

maximization-like technique. This protocol assumes that targets are not clustered together

when they enter the field. As they move together, information between the sensor leaders is

exchanged to track the target. A prediction model is used to estimate the target’s new

position during each time step. The set of estimation equations for determining the target’s

location and signal power can be solved by the minimum mean square estimation (MMSE)

method.

Wang et al. [8] propose a novel entropy-based heuristic for sensor selection for target

localization. The heuristic selects an informative sensor at each tracking step. Sensors are

selected using a greedy sensor selection strategy by repeatedly selecting the currently

unused sensors with maximum expected information gain. The greedy sensor selection

process evaluates the expected information gain attributable to each sensor without actually

retrieving sensory data. The selection of a sensor by this heuristic yields the greatest

entropy reduction of the target location distribution. In the development of this WSN, the

localization uncertainty reduction attributable to a sensor is mainly affected by the entropy

distribution of the sensor’s view of the target location and by the entropy of the sensor’s

sensing model for the actual target location. It is shown that this heuristic leads to a great

reduction in entropy, given prior knowledge about target location distribution, sensor

locations, and sensing models.

Liu et al. [9] exploit the state-space model of physical phenomena, such as tracking

multiple interacting targets. The presence and interaction of multiple targets increases the

dimension of the state spaces. They address the problem of a distributed sensing system to

support the monitoring and inferences in the network. Multiple target tracking is formu-

lated as an estimation problem. The state is used to estimate the position of the target at time

t. Based on sensory data, the true location of the target is estimated. Each target affects a

local region of sensors, and in a multiple target neighborhood, data is shared across the

network.
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Liu et al. [9] also divide the higher dimension tracking problem into simpler problems.

Target states are decoupled into locations and identities. When two targets move close

together, they are estimated jointly as in a centralized tracking approach. As they separate,

the problem scales back to single target tracking. However, sorting out the ambiguity of the

two targets requires identity management. Therefore, location estimation and identity

management are handled separately.

Thain et al. [10] propose a particle filter approach with a nonlinear measurement model

for tracking targets in the presence of spurious measurements. Spurious measurements

provide information about target wakes, multi-paths, and tethered decoys. They derived a

measurement function to solve the problem of intermittent measurements appearing behind

the target. Due to environmental effects or deliberate actions by the target, the measurement

cancroids of at least one of the sensors may be displaced to a point behind the actual target

position, known as the wake effect. The particular filter accommodates this bias and models

the filter with a discrete hidden Markov model. It assumes that only one target is present at

all times. However, intermittent corruptions of the measurement process can still track a

target with particle filtering.

Galstyan et al. [11] propose a distributed online learning algorithm in which sensor

nodes use geometric constraints induced by both radio connectivity and sensing to reduce

the uncertainty of their position. Sensor nodes use online observation of a moving target to

simultaneously improve both the moving target’s position in addition to their own. A small

fraction of the reference nodes with known geographical coordinates are pre-placed in the

network, while the moving target is placed in an unknown position. Sensor nodes are

required to exchange information between the neighboring nodes. The target is tracked

more accurately over time by learning the estimates of the nodes’ and the target’s positions

through sensor observations. With a small fraction of reference nodes, this method

enhances position estimation accuracy.

Related work described up to this point, and much more that is not described here,

differ in their approaches in solving the object tracking problem. They also differ from our

approaches in their pursued goals and in their deployed techniques for object tracking. The

next two approaches are those most related to our proposed approaches.

Aslam et al. [2] present a minimal approach that uses a binary sensor network. Each

sensor sends one bit to a base station to determine if an object is in range of the sensor or not.

When an object comes in the sensor’s range, it sends a bit 1 to the base station, and when the

object moves out of the sensor’s range, it sends a bit 0 to the base station. In this minimal

fashion, the base station uses these 1 and 0 bits to calculate the object’s direction. With an

additional proximity bit, it can pin down the exact location of the object. An additional

proximity bit can be provided by adding a second sensor to each sensor node in the network.

Mechitov et al. [12] present a cooperative tracking approach for tracking moving

objects and extrapolating their paths in a short period. A binary detection sensor network

and a two-level cooperative tracking algorithm are used to track objects. At the first level,

local target position estimation is computed. Initially, the target position is assumed to be

equal to the position of the sensor node. As more information from other sensor nodes

becomes available, the estimated position is recomputed as a weighted average of the

sensor locations. Sensor nodes that are closer to the target’s path receive more weight.

These estimations are then aggregated to compute the path of the object. At the second

level, a piecewise linear approximation of the path is computed using a line-fitting algo-

rithm on the positions obtained in the first level. This approach is simpler and cheaper than

other approaches because the network is tracked with binary detection sensors.
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Our proposed approaches are similar to Aslam et al.’s approach [2] as we also use binary

sensors, but they are different in their assumptions and main objective. Aslam et al. track locations

of objects, while we only try to detect traversable paths. This makes our approach much simpler.

The approach used by Mechitov et al. [12] is also similar to our approaches in many

ways. They both use weighted locations to build the paths of tracked objects, and both use a

binary sensor network, while both methods’ sensors should know their locations. Therefore,

the main idea and goal of these approaches is similar; however, there are some differences:

� We use b-spline and NURBS to build an object’s motion path. This eliminates the

need for estimating weighted locations at the first level. Therefore, sensors do not

need to exchange any information in our approaches. This leads to reduced com-

munication and makes our approaches simpler.

� We do not need to synchronize time for computing the weight of each sensor’s

location. This makes our approaches simpler.

� We use polynomial splines for computing the paths, while Mechitov et al. use linear

approximation in their line-fitting algorithm. This makes our approaches more accurate.

� While our approaches are more minimal in terms of resource usage than the

approach presented by Mechitov et al., the accuracy of NURBS is comparable to

(or even better than) their accuracy.

� Our b-spline approach is an online method.

3. Assumptions

We assume that each sensor node knows its location in the physical field; however, it does

not need to know its absolute or relative location. This is achieved by either placing a GPS

in each node or using a localizing algorithm (as in [13]). For the sake of simplicity, we also

assume that each sensor node communicates its data directly to a base station.

4. Problem Definition

Since each node is assumed to know its location, this location is used as that node’s identifier

at the base station. If there are N nodes in the network, let Li ¼ <x; y> denote the location of

node i, where 1 � i � n and x and y are coordinates of sensor i. Also let ai, where 1 � i � n,

denote the sense bit of node i (initially 0), which becomes 1 if an object is sensed by sensor i.

�i, where 1 � i � n, stands for the threshold of node i, which is used to reduce false alarms.

Given these parameters, we developed the following algorithm for each sensor node to run:

while (wakeOnSenseSignal()) { 

    if (getSensedSignal() > δi) { 

        αi = 1; 

        sendToBaseStation(Li, αi); 

    } 

} 

Algorithm 1: Sensor Node i
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Function wakeOnSenseSignal()puts a sensor in sleep mode until the next sense signal is felt

by the sensor node. If the latter happens and the sensed signal strength is greater than �i (the

threshold), it will assign 1 to ai and send its identifier (location Li) and its sense bit (ai) to the

base station. The base station counts these bits (ai) and considers the count as the weight of

location Li; in other words, ai represents how many times the sensor has sensed an object.

Since the sense signals are continuous in time, we will refine our algorithm so that it does

not send too many bits to the base station.

On the other hand, sending a bit of data plus the sensor’s location to the base station

each time a sensor senses a signal causes too much communication, and the establishment

of each communication interaction is costly in terms of both time and power. Therefore, we

can count these bits at sensor node sides instead of counting them at the base station and

then send the aggregated result to the base station. If we consider ai as an integer variable,

we can improve our algorithm as follows:

The improved algorithm uses a sleep function to change continuous time to discrete

time, where the unit of discrete time is �T. We also added Ti as a time counter. Each time a

sensor senses a new signal, a time counter, Ti, is reset to zero. And each time there is no

signal, �T is added to the time counter. If there is no signal in a timeout period, it means the

while (wakeOnSenseSignal()) {

Ti = 0;

αi = 0;

    while (Ti < Timeouti) {

        sleep( ΔT );

Ti = Ti + ΔT;

 if (getSensedSignal() > δi) { 

αi = αi + 1;

Ti = 0;

        }

    }

    If (αi  > 0) {

    sendToBaseStation(Li, αi);

αi = 0;

    }

}

Algorithm 2: Sensor Node i (improved)
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object is out of range. Then sensor node i sends Li (its location) and ai (its number of sensed

signals) to the base station. Obviously, this improvement greatly reduces the number of

communication interactions and saves more energy in the nodes.

ai is used as the weight of Li at the base station to draw the NURBS curve (i.e., the

estimation of the path that we want to explore) in our second approach. The use of integer

ai, instead of binary ai, shifts the burden of counting operations from the base station to the

sensor nodes. This data aggregation reduces the number of communication interactions in the

network in exchange for only a slight increase in the computational volume in the sensor nodes.

Algorithm 2 sends one data signal per timeout. It waits until the object gets out of its range and

then sends its data to the base station once, while Algorithm 1 sends its data continuously as

long as it is in the range of the object. So Algorithm 2 is much lighter than Algorithm 1 in terms

of communication costs. The simulation results in Section 6 show this fact.

When we draw the b-spline at the base station (in our first step), we do not need the

weight for the location of the sensor that had sensed the object. Every sensor can simply

send its location Li to the base station to inform it that sensor i has sensed the object. We

consider this feature in the algorithm to form a minimal algorithm. Therefore, we devel-

oped Algorithm 3:

while (wakeOnSenseSignal()) {

Ti = 0;

αi = 0;

    while (Ti < Timeouti) {

        sleep( ΔT );

Ti = Ti + ΔT;

         if (getSensedSignal() > δi ) {

αi = 1;

Ti = 0;

        }

    }

    If (αi == 1) {

sendToBaseStation(Li);

αi = 0;

    }

}

Algorithm 3: Sensor Node i (minimal)
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Algorithm 3 replaces integer ai with binary ai. This causes a reduction in the volume of

each network transfer. The number of communication interactions remains the same in both

Algorithm 2 and Algorithm 3.

The parameters Timeouti and �i could be used to tune the sensors; i.e., each sensor node

can be configured through a monitoring algorithm to reduce its false alarm rate using

Timeouti and �i parameters.

In Algorithm 2 and Algorithm 3, ai is reset to zero after the ith sensor sends its data to

the base station. This enables us to track complex paths that have loops. Resetting ai forces

a sensor to consider a new position for a moving object in the final path each time the object

repeatedly passes over previously visited positions rather than growing the weight of old

positions of the moving object.

If the above algorithm is run on each node, the next step is to find the traversed path of

the object, which is achieved by drawing the path’s curve. The next section explains how to

draw the curve using sensory data (Li and ai).

5. Path Detection Using Splines

Path detection using location data and weights corresponds to the problem of drawing a

curve using control points. These curves can be drawn by spline curves. The algorithm for

generating a spline curve can calculate a curve in a simple way online that includes control

points. Unfortunately, traditional spline curves do not consider the weight of control points

and just pass through each point. More complicated algorithms exist for drawing curves

using weighted control points. These curves are called NURBS. NURBS calculate the

curve by considering the effect of all weighted control points at each point of the curve. A

NURBS algorithm is heavy and offline. We use both approaches (b-spline and NURBS) to

create the curve of a detected path as described in the next two subsections.

5.1. Generating a Path Curve with B-Spline

The mathematical definition of spline is beyond the scope of this article. Readers who are

interested in details about spline curves can refer to [14]. Here we present our algorithm for

generating a spline. We use a cubic b-spline to create our curve.

The letter b in b-spline stands for the word basic. Each b-spline uses basic functions

to build a point on the final curve. These basic functions determine the influence of

each control point on the final curve. Algorithm 4 shows the b function for the cubic

b-spline [15].

 float b(int i, float t) {

    // i is degree of b

    // t is growing factor (time)

  switch (i) {

   case -2:

   return (((-t+3)*t-3)*t+1)/6;
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When creating a b-spline curve, we use a growing factor t (time, in our case). As t grows,

we create another point of the b-spline curve by calculating the basic functions of four recent

control points. The next algorithm calculates the b-spline curve using function b.

getXPoint(i) and getYPoint(i) return x and y coordinates of control point i (the location of a

sensor). STEPS is used to divide time into fine grain slots. Note that the algorithm uses the

last four control points to build the curve as time advances.

Each control point in Algorithm 5 is one of the sensor’s locations received by the base

station. After choosing the last four control points (outer loop), in each STEP (middle loop),

Algorithm 5 calculates a new point in the b-spline curve. To do so, it calculates four b

functions (Algorithm 4) for each degree of the polynomial curve, while also calculating the

for (i = 2; i < numOfControlPoints; i++) {

for (j = 1; j <= STEPS; j++) {

float x = 0.0 , y = 0.0;

float t = j / STEPS;

for (k = –2; k < 1; k++) {

x += b(k,t)*getXPoint(i + j);

y += b(k,t)*getYPoint(i + j);

            }

}

}

Algorithm 5: B-Spline Curve Function

case -1:

 return (((3*t-6)*t)*t+4)/6;

case 0:

  return (((-3*t+3)*t+3)*t+1)/6;

case 1:

 return (t*t*t)/6;

}

return 0;

}

Algorithm 4: Basic B-Spline Function
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influence of every control point selected by the outer loop on the current point of the b-

spline (inner loop).

The time and energy orders of Algorithm 4 and Algorithm 5 are not of concern because

these algorithms run at the base station. The order of these algorithms are linear and do not

cause any significant problems when the number of sensed data increases.

The main advantage of the b-spline algorithm presented here is that it can be adapted to

work with Algorithm 3 (the minimal algorithm described in Section 3), thus reducing the

communication load of the network. This means each sensor can only send its location to

the base station when it senses an object. The base station then uses Algorithm 4 and

Algorithm 5 to produce the path curve.

Another benefit of the b-spline algorithm is its ability to work online. It does not need

every control point (received sensor locations) to build the path. As soon as four sensors in

the field have sensed an object and have sent their location data to the base station, the base

station can start drawing the curve. It can then further complete the curve each time it

receives a new sensor’s location data.

The main drawback of using a b-spline curve is that each sensor’s data highly affects

the resulting curve. In other words, the influence of a sensor’s data that is located far from

the actual path is equal to the influence of a sensor’s data that is located near the path. This

can lead to reduced precision. In addition, it makes this approach weak against false alarms

that can temporarily divert the curve towards false alarm locations.

5.2. Generating a Path Curve with NURBS

NURBS is a type of b-spline curve that uses basic functions to determine the influence of

each control point on the curve. Each control point (location of a sensor received by the

base station) influences the curve differently as t (time) advances, so it is called non-

uniform (see knots vector in [14]). In addition, control points in NURBS are weighted so

that heavier points have more influence on the final curve than lighter control points.

Another important parameter in NURBS is k, or the order of NURBS, which determines

how much each control point affects each point in the final curve as t advances. Each

control point has k basic functions. As k grows, more points on the final curve are affected

by each control point. The basic function for control point i and a given k (order) is defined

as follows:

Ni;1 tð Þ ¼
1

0

�
xi � t < xiþ1

otherwise

Ni;k tð Þ ¼ t � xið ÞNi;k�1 tð Þ
xiþk�1 � xi

þ xiþk � tð ÞNiþ1;k�1 tð Þ
xiþk � xiþ1

xi is the knot factor that determines the influence of control point i in time t, and k is the

order of NURBS. Basic functions are produced recursively. The NURBS curve algorithm

determines each point of the final curve using these basic functions and the weight of each

control point. For brevity, we avoid presenting the NURBS curve algorithm here because it

is too long; however, it is a classic algorithm that can be found in every computer graphics

book, such as in [14].

The NURBS curve does not include control points; it just calculates the final curve that

passes between them. Each control point inclines the final curve based on its weight and

knot vector, resulting in a smooth and precise curve. Larger k values cause each point of the
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final curve to be affected by more control points. As k grows, the penalty for computation

grows as well. However, since computation is performed at the base station, it does not

affect the sensors’ workloads.

The major benefit of using NURBS is its precision. Since it uses weighted locations to

draw the path’s curve, it is resistant to false alarms. Because false alarms have low weights,

they have little effect on the curve.

The drawback of this approach is that all control points need to be accounted for before

calculating the path. It cannot draw the path’s curve online because each sensor that has

sensed an object must send its location and the location’s weight to the base station. In turn,

the base station must receive all of this location information before calculating the path,

which makes this step offline. Therefore, the NURBS algorithm should only be used to

calculate the traversed path after an object passes by all of the nodes.

In the next section, we evaluate our proposed approaches via simulation.

6. Evaluation

We simulated both proposed approaches with a Visualsense (Ptolemy II) simulator [16].

We developed acoustic sensors using Algorithm 2 and Algorithm 3 to collect and send

sensed data to the base station. For the base station, we extended a b-spline plotter and a

NURBS plotter from Ptolemy’s Plotter component to plot our collected data. Our

SplinePlotter class implemented the b-spline algorithms (Algorithm 4 and Algorithm 5)

with the postfire() method, which overloads Ptolemy’s Plotter to give us an online

behavior. Since the NURBS algorithm is offline, we implemented it in the stop() method,

which overloads the default plotter’s stop(). So the algorithm ran once just before the

simulation finished. For simulating mobile objects, we derived a Mobility component from

Ptolemy’s TypedAtomicActor, which takes a set of targets and cruises between them. We

also developed a GPS component for each sensor.

We made two different models to simulate each approach. In the first model, we used

150 sensors evenly deployed in an 850 meter by 700 meter field. The mobile object was an

audio source with a 50 meter range that passed through this sensor field. In the second

model, we increased the number of sensors to 513. The field was the same as in the first

model, but the range of the mobile object was reduced to 20 meters.

To calculate the accuracy of the curves, we assumed a neighboring radius about five

meters around the original path. If the detected curve stayed within this neighboring area,

we considered it accurate. To determine if this was the case, we calculated the local slope

(local derivation) at each point of the original curve. Then we intersected a perpendicular

line at that point with the detected curve to find the distance between two curves. If the

resulting distance was less than five meters, then we considered the detected curve to be

accurate at that point.

We executed our simulations on two different platforms. Our Intel-based PC was a

‘‘Lenovo 3000 N100’’ with 1.83 GHz Core Duo, 1 GB of installed RAM, and a Windows

XP operating system. It took about two hours to complete the NURBS calculation with high

orders (k ¼ 12) for each complex path. Using a ‘‘Sun Ultra 20’’ workstation with an AMD

Opteron Dual Core 2.8 GHz and a Solaris 10 operating system, the computation time was

reduced to 35 min for each complex path, thanks to the integrity of Java and Solaris.

We ran each model 100 times to get our results. Our analysis of each simulation result

is presented separately below.
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6.1. Number of Sensors and Object Range

Two parameters that affected the simulation results were

1. the number of sensors in the field and

2. the area of each object’s influence.

When the number of sensors was increased, we got better results using NURBS. This

is because the number of control points around the actual path increased, leading to better

approximation. Figures 1 and 2 show this fact; in both figures, the lighter curve is the

actual path, and the darker curve is the detected path. Figure 1 shows the results of

running the first simulation model using NURBS with order 6 (k ¼ 6). Figure 2 shows the

results of running the second simulation model using NURBS using the same order as in

Fig. 1 (k ¼ 6). The comparative results show nearly a 75 percent improvement in the

second model in which a larger number of sensor nodes was used. In addition, the range of

the mobile object is detrimental. More sensors become involved in wider ranges. This

results in more accurate weights and a better approximation of the actual path when

NURBS is used.

Because the b-spline is not weighted and considers equal effects for all sensors,

growth in both of the aforementioned parameters resulted in a more spiral curve.

Simulation results showed that the best situation for a b-spline occurs with a higher

number of sensors and a reduced range of object influence. Figures 3 and 4 show this fact.

Figure 3 shows the simulation results of our b-spline approach using the first simulation

model. Figure 4 shows the use of our b-spline approach in the second simulation model. In

both simulation models, an increase in the number of sensors and a decrease in the range

of the object’s influence improved our estimation. The simulation results show a more

than 50% improvement using the second model as compared to the first model when we

drew b-spline curves.

Figure 1. Path detection using NURBS in the first model (k ¼ 6).
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This behavior was expected because only sensors in the actual path were triggered. In

addition, a higher number of sensors created more control points in the actual path, leading

to a more accurate curve. Based on this behavior, we claim that our b-spline approach is

quite appropriate for smart dust sensor technology.

Figure 2. Path detection using NURBS in the second model (k ¼ 6).

Figure 3. Path detection using b-spline in the first model.
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6.2. Impact of NURBS Order

As described before, a higher NURBS order resulted in a more accurate path detection.

When we used higher orders for NURBS, we increased the effect of each control point on

the final curve. Simulation results confirmed this fact. Figure 5 shows the path curve when

we used NURBS with order 12 (k ¼ 12) in the first simulation model. Comparing the

Figure 4. Path detection using b-spline in the second model.

Figure 5. Path detection using NURBS in the first model (k ¼ 12).
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results shown in Figs. 1 and 5, we got approximately 60% improvement. Figure 6 shows the

resulting path curve using NURBS with order 12 in the second simulation model. This

simulation also showed significant improvements again.

Although higher-order NURBS resulted in a more precise detected path, its computa-

tional overhead was so high for an ordinary Intel-based PC (Intel Core Duo 1.83 GHz) that

we were forced to switch to high-end Sun workstations (AMD Opteron 2.8 GHz) for our

simulations, particularly for getting the results shown in Figs. 5 and 6.

We should point out that this computational overhead does not affect sensor nodes or

network lifetime. This is because all computational loads are at the base station; we assume

no limitations for necessary resources at the base station.

6.3. NURBS versus B-Spline

It is obvious from the figures we presented before that the NURBS approach is more

accurate in comparison with the b-spline method, which was expected from our discussions

about why NURBS would be more accurate. Our simulation results convey this fact. The

comparison of the results shown in Figs. 3 and 5 indicate that the use of the NURBS curve

instead of the b-spline curve improves the resulting curve more than 90% using the same

model of simulation. Figure 6 (NURBS with order 12) also shows about a 90% improve-

ment compared to the results shown in Fig. 4 (b-spline). The NURBS curve used in Fig. 6 is

95% accurate and is very close to the actual object path. The benefit of using the b-spline

approach is its ability to draw the path curve online.

6.4. Power Consumption

Since our approach is minimal, in the case of using b-spline, power consumption at each

sensor was limited to the power required to send its location to the base station. Each sensor

Figure 6. Path detection using NURBS in the second model (k ¼ 12).
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consumed power for just one communication interaction per new simple path (a path

without a loop).

The use of Algorithm 2 for creating NURBS entails additional power consumption for

sending another integer value besides the node location; this integer (ai) is the weight of the

sensor’s location (i.e., how many times the sensor has sensed an object). The computational

power consumption in the sensor nodes is the power consumed in Algorithm 2 or Algorithm 3,

which is negligible and limited to counting a timer.

To simulate power consumption, we added a battery module to each sensor in

Visualsense with an initial power equal to 360 Joules (10% of an AAA NiMH battery

capacity). This module consumed energy as the sensor communicates to the base station.

We omitted the energy consumed by the sensors for computation, since this energy is

incomparably lower than the energy consumed through communication. Communication

energy consumption differs for sending and receiving [17]. For receiving data, we simply

needed to know how many bits were received in each transfer. We then calculated the

receiving energy consumption for l bits as ERx lð Þ ¼ Eelec � l, where Eelec is the radio

activation coefficient and is equal to 50 nJ/bit. For sending data, we had to consider the

distance to the base station as well. The sending energy consumption for l bits is

ETx lð Þ ¼ Eelec � lþ eamp � l� d2 such that eamp is the radio coverage coefficient and is

equal to 100 pJ/(bit *m2) and d is the distance between the sensor and the base station. For

detecting energy consumption in our simulation, each sensor reported its current power to

the base station every minute, and the base station added up this information to calculate the

network’s remaining power.

Energy consumption depends on the speed of the mobile object, �T, the path itself, the

location of the base station, and so on. But in a constant situation, we could compare the

energy consumption of the different algorithms. On average, the sensors in our approaches

consumed below 0.0005% of the network’s energy for each mobile object using Algorithm 2

or Algorithm 3, while they consumed nearly 0.005% of the network’s energy using

Algorithm 1.

Thus, the simulation results show that power consumption in both approaches is

ultimately low.

6.5. Complex Paths

Our approaches are capable of determining complex paths including loops and extreme

curves. Figures 7 to 10 show the effectiveness of both approaches in following more

complex paths.

Figures 7 and 8 illustrate that the b-spline approach can determine complex paths just

as effectively as simple ones. Also, we can see that increasing the number of sensors in the

second model leads to a better path estimation. The accuracy of the b-spline approach in

complex paths was generally between 50 and 8%. The NURBS approach can also deter-

mine complex paths; Figs. 9 and 10 show this fact.

The accuracy of the NURBS approach depends on the same parameters described

before. Again, the use of the second model improved our accuracy in the NURBS approach.

The average resulting accuracy using NURBS for complex paths ranged from 60 to 90% on

the different paths.

Due to problems in implementation, our simulations could not detect multiple paths

simultaneously. They could only detect one path at a given time even though more than one

mobile object could traverse that path. Using a neighboring detection algorithm and some

clustering [7] could enhance multiple path detection. This issue is left for future research.
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7. Conclusions

This article presented two approaches for finding available paths in unknown areas using a

binary sensor network. In the first approach, each sensor sends its own location to the base

station when it senses an object of interest, and the base station uses b-spline curves to build

the object’s path online. Since each sensor sends its location data just once per new path, it

Figure 7. Complex path using b-spline in the first model.

Figure 8. Complex path using b-spline in the second model.
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is a minimal approach. The path is (re)built by the base station every time it receives a new

location. The second approach uses NURBS instead of b-spline to detect an unknown

existing path. Since NURBS needs weighted locations, each sensor sends the number of

times it has sensed the object based on the object’s weight and its own location. The second

approach is an offline approach.

Figure 9. Path detection using NURBS in the first model (k ¼ 6).

Figure 10. Path detection using NURBS in the second model (k ¼ 12).
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Both approaches were simulated with a Visualsense (Ptolemy II) simulator to evaluate

their accuracy in detecting paths. The simulation results showed that the path detected by

the second approach (NURBS) was 90% more accurate than the one detected by the first

approach (b-spline) using the same model of simulation. The accuracy of the NURBS

approach was further shown to be nearly 95% accurate in the simulated results, which was

very close to real path. Our second approach was also robust on false alarms. We intend to

extend the NURBS approach to detect multiple paths simultaneously and online.
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