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Real-time tracking of moving targets using wireless sensor networks has been a
challenging problem because of the high velocity of the targets and the limited
resources of the sensors. CPA (closest point of approach) algorithms are appropriate
for tracking fast-moving targets since the tracking error is roughly inversely
proportional to the square root of the target velocity. However, this approach requires
a specific node configuration with reference to the target trajectory which may not
always be possible in randomly deployed sensor networks. Moreover, our mathematical
analysis of the original CPA algorithm shows that it suffers from huge localization errors
due to inaccuracies in sensor location and measured CPA times. To address these issues,
we propose an enhanced CPA (ECPA) algorithm which requires only five sensors
around the target to achieve the reliability and efficiency we want for computing the
bearing of the target trajectory, the relative position between the sensors and the
trajectory, and the velocity of the target. To validate the ECPA algorithm, we designed
and implemented this algorithm over an actual data-centric acoustic sensor network as
well as simulating it in an NS-2 simulator. The results of our field experiments and
simulations show that we can achieve our goals of detecting the target and predicting its
location, velocity and direction of travel with reasonable accuracy.

Keywords Real-Time Target Tracking; Closest Point of Approach Algorithm; Colla-
borative Mixed Wireless Sensor Networks; Acoustic Sensor Networks; High-Speed
Target Tracking; Distributed Algorithms

1. Introduction

Wireless sensor networks are composed of relatively inexpensive sensors capable of

collecting, processing, storing, and transmitting information among networks. An interest-

ing application of wireless sensor networks (WSN) is target localization and tracking in a

hostile environment, where physical access is accompanied by some form of danger (e.g.,

the battlefield).

Due to the high velocity of targets and limited resource of sensors, localization and

tracking of moving vehicles is a challenging problem in WSN. First, the localization

algorithm must perform well (localization error must be very low, e.g., 3 m), regardless

of the high speed of the mobile target, i.e., higher velocity must not cause higher
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localization errors. Second, the entire system must be energy efficient. Since network

communication consumes significantly more power than the local computation, the size

and number of messages exchanged among sensors should be minimized. Third, due to the

limited capacity of each sensor, tracking a mobile target requires multiple nodes to

collaboratively share information between each other. Fourth, target tracking has much

higher requirement than target localization since velocity and direction of movement are

also required for tracking purpose. Fifth, the tracking algorithm must meet the real-time

deadlines of the target tracking application. It must be as fast as (or faster than) the velocity

of the vehicle.

To meet these design requirements, the CPA (closest point of approach) algorithm [1, 2]

is one of the best candidates. The CPA algorithm is well suited for tracking targets at high

speeds. In fact, higher speeds result in lower localization error. In addition, the only

information exchanged between sensors is the measured CPA time, so the size of the

exchanged message is very small. Furthermore, the algorithm not only calculates the target

position but also the velocity and moving direction of the target. Therefore, we have adopted

the CPA based algorithm for our target tracking system.

The original CPA algorithm, however, cannot be directly applied to wireless sensor

networks because specific deployment configurations of sensors are required [1, 2]. For

instance, in [1] the target trajectory must intersect the convex hull composed of sensors

without evenly splitting the sensor field, while in [2], the target trajectory must be located

outside the convex hull of sensors. In a realistic system, the target will trigger a set of

sensors that may not satisfy the configuration requirements. Moreover, due to the measure-

ment errors in sensors location and CPA times, there will be huge errors in locating the

target trajectory. In most cases, the original CPA algorithm may completely fail to localize

the target because of the large errors in input parameters. Therefore, neither of the CPA

algorithms [1, 2] may be directly used.

To solve these problems, we developed an enhanced the CPA (ECPA) algorithm.

It first determines the network configuration based on CPA times at the sensors, and then

selects four nodes which satisfy the node deployment requirement of the original CPA

algorithm. By running the original CPA algorithm, four possible trajectory directions can

be obtained, and the one which is closest to the estimated slope of the target trajectory will

be considered the correct one. Finally, the trajectory location is recomputed based on the

newly calculated direction information. Our mathematical analysis of the ECPA algorithm

shows that it results in much smaller errors in localizing the target trajectory than the

original CPA algorithms. Simulations and field experiments verify that the ECPA

algorithm causes very small localization errors.

There are four main contributions in this paper. First, we have developed the

ECPA algorithm that effectively computes the target location, velocity, and direction

in wireless sensor networks composed of low-powered, inexpensive nodes. Second,

we performed a mathematical analysis of both ECPA and CPA algorithms, and have

shown that the ECPA algorithm performs well in WSN and generates much smaller

errors in locating target trajectory. Third, we have implemented the ECPA algorithm

in both simulations and field experiments. The results also confirm that the ECPA

algorithm is more efficient for the real-time target tracking. Fourth, we designed and

implemented a sensor networking system that integrates and interoperates the ECPA

algorithm for accurately computing target location, velocity, and direction with

control software for controlling video sensor nodes that capture image or video of

the target at its predicted location.

620 Q. Yang et al.



2. Related Work

There are many research efforts on target detection and tracking in wireless sensor net-

works that describe several aspects of collaborative signal processing [3–6], target tracking

with camera sensors [7], and real-time application for field biologists to discover the

presence of individuals [8]. Recently, a set of approaches [9–12] were proposed to solve

the target localization and tracking problem with proximity binary sensors which report

only one bit information to indicate if a target appears. Though the information transmitted

in networks was reduced, the localization error was increased. As proven in [10], the

achievable spatial resolution in localizing a target trajectory is of the order of 1/(rR),

where R is the sensing radius and r is the sensor density per unit area. Suppose there are

25 sensors, with a sensing radius of 20 m, deployed in a 100� 100 m2 area, then the lower

bound of the localization error will be 20 m. Therefore, it is only suitable for very dense

sensor networks.

Collaborative signal processing methods, such as the Extended Kalman Filter (EKF),

were first used for target tracking in [6, 13], in which fused tracks are processed to predict

their future trajectories and this is similar to predicting the state and error covariance at the

next time step given the current information using the Kalman filter algorithm. The

predicted future track determines the regions likely to detect the entity in the future.

These algorithms can effectively localize and track moving targets, but involves too

much computation overhead on sensors. Thus, they are inefficient for wireless sensor

networks.

In the area of acoustic sensor networks, there are many solutions for target localization

and tracking which can be divided into three basic categories: differential signal amplitude

(DSA) [14, 15], direction of arrival (DOA) [8, 16] and time difference of arrival (TDOA)

[17, 18]. DSA is used by [14, 15] with the assumption that the acoustic energy decays as the

inverse of the distance square under certain conditions. However, the main problem with

the differential signal amplitude method is that calculating the distance based on the

received signal strength is very error-prone. Because the accuracy of the RSSI (received

signal strength indication) range measurements is highly sensitive to multi-path fading,

non-line-of-sight scenarios, and other sources of interference, this method may result in

large errors. These errors can propagate through all subsequent triangulation computations,

leading to large localization errors. Other methods [8, 16] make use of the DOA (of the

acoustic signal generated by the target) information from different spatially separated

sensors, to estimate the target location. However, there are various factors that affect the

accuracy of the DOA estimates: accuracy of the hardware used to capture the array signals,

sampling frequency, number of microphones used, reverberation and noise present in the

signals. Moreover, DOA estimation requires a microphone sub-array on each sensor, which

will increase not only the cost of deployment but also the signal processing overhead on

sensors. TDOA methods [17, 18] make use of the relative time differences among sensors.

To obtain the relative time difference, each sensor needs to first get the dominant frequency

of the acoustic spectrum, and then broadcast this information [17, 18]. This may involve

collaborative signal processing, such as FFT, which will increase the computational over-

head. On the other hand, the audio data exchanged among sensors requires more network

bandwidth, a very precious resource in wireless sensor networks.

We chose the CPA target tracking algorithm [1] to estimate the target position,

velocity, and moving direction. Intuitively, the CPA time is the instance when the target

was at the closest point to a sensor node. Although it belongs to the TDOA category, the

CPA algorithm only requires the CPA time to be stored and exchanged among sensors
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instead of the audio data used in [17, 18]. Since the CPA time could be stored in four bytes

(two for the integer and the others for the decimal), the message exchange overhead is low.

As previously described, the original CPA algorithm [1, 2] cannot be directly used for

wireless sensor networks because of the specific sensor deployment requirements. The

ECPA algorithm, however, does not have such network configuration requirements and can

also reduce the localization error caused by the uncertainties in the position and the CPA

time determination. Therefore, to the best of our knowledge, we are the first to apply an

enhanced CPA algorithm in a practical wireless sensor network, composed of acoustic

sensors, to localize and track moving targets.

3. Target Localization Algorithm

3.1. Original CPA Algorithm

The CPA (closest point of approach) algorithm was originally designed for localizing low-

flying aircraft by means of acoustic sensors [1]. The problem is first formulated in the three-

dimensional case and then specialized to the case when the target and sensors are all in one

plane. A similar approach was proposed in [2], which requires three non-collinear sensors

deployed on the same side of the target trajectory. The trajectory direction can be calculated

by solving a single linear equation with the sine and cosine of the angle formed by the target

trajectory and a reference axis. Then, the source speed can be computed by a single linear

equation. One assumption of the CPA algorithm is that the target moves with a constant

velocity (i.e., linear path) while passing through the set of nodes (either three [2] or four [1]

sensors). This assumption is necessary because of the limited detection range of low-

powered sensor nodes and the high speed of the target. For example, suppose there are

25 sensors uniformly distributed in a 100� 100 m2 area, the sensing range is 20 m, and the

target speed is 30 miles/hour. Then within 5 sec, the target will trigger on the average six

sensors around the trajectory, which meets the requirement of the CPA algorithm. We argue

that within a short time interval, e.g., 5 sec, the target speed can be considered constant with

very small variation.

To make the original CPA algorithm amenable to programming, we reformulate the

equations as follows. As shown in Fig. 1, v and r denote the target velocity and the distance

of the closest point of approach to the origin of the coordinate system, respectively. Then

the target path is given by:

Figure 1. Illustration of CPA localization and tracking algorithm.
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pðtÞ ¼ rþ vðt � rÞ; tT v ¼ 0 (1)

where T denotes the transpose of a certain vector and t the instance at which the target moves

through r. Let rk denote the position vector of node k and tk the measured CPA time. We

define the CPA time as the time when the target reaches the closest point of approach, and the

measured CPA time as the instance at which the received signal amplitude reaches the highest

at the sensor. Therefore, the difference between those two will be the time of sound

propagation from the closest point of approach to the sensor. Then we can define tk as:

jpðt0Þ � rkj ! min; jpðt0Þ � rkj ¼ cðtk � t0Þ (2)

where |�| is the Euclidian norm and c the velocity of sound. Using Eq. (1) to solve the

minimal t and inserting the result into the Eq. (2) yields:

jr� rk þ ðvT rkÞv=u2j ¼ cðtk � t� vT rk=u2Þ (3)

where u ¼ |v|. The left side of Eq. (3) can be rewritten as:

r� rk � rT � r
rT � r þ ðv

TrkÞv � r � r�1

v2

����
���� (4)

In the two-dimensional case, r and v are orthogonal, so Eq. (4) can be simplified as:

jr� ðrkrTÞr=jrj2j ¼ jrj � j1� rkrT=r2j (5)

Thus, Eq. (3) becomes:

rjrT
k r=r2 � 1j ¼ cðtk � t� vT rk=v2Þ (6)

For convenience, we place the origin of the coordinate system onto one of the sensors, e.g.,

n0 (r0 ¼ 0). So t0 is the measured CPA at node n0. Subtracting r ¼ c(t0 - t) from Eq. (6)

yields:

rðjrT
k r=r2 � 1j � 1Þ þ ðc=v2ÞrT

k v ¼ cðtk � t0Þ ¼ dk (7)

Let rk ¼ (xk, yk)
T and let f and M be defined by:

r ¼ rðcosf; sinfÞT ; ðc
�

v2Þv ¼ M�1ð� sinf; cosfÞT (8)

Then, the Mach number M is positive or negative depending on whether the target crosses

the CPA from right to left or left to right, as observed from the origin point. If the target

trajectory intersects the line r0rk, which also means rT
k r
�

r2 � 1 � 0; then Eq. (7)

becomes:
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xk cosfþ yk sinfþ ð�xk sinfþ yk cosfÞ=M � 2r ¼ dk (9)

Otherwise, if the trajectory does not intersect line r0rk (i.e., rT
k r
�

r2 � 1<0), we have:

� xk cosf� yk sinfþ ð�xk sinfþ yk cosfÞ=M ¼ dk (10)

In both Eqs. (9) and (10), there are three unknown variables f, M and r. As M ¼ v/c, the

three target motion parameters f, v and r can be calculated if we have three equations.

Therefore, except for the origin node, three more sensors are needed, i.e., four sensors

should be enough to solve the problem and compute the target motion parameters.

However, the method in [1] will fail if the trajectory generates an even decomposition of

the sensor field, in which two sensors are on one side of the trajectory and others are on the

other side, because the resulting equation of M will be of fourth degree and must be solved

numerically.

To solve the localization problem, the trajectory must unevenly divide the four sensors

into two groups: three on one side and one on the other side. To ensure that this situation

occurs, we need to collect information from five sensors. The next section will discuss this

process in detail. Now suppose the origin of the coordinate system is at n0 which is the lone

node, then we have the following equation:

xk cosfþ yk sinfþ ð�xk sinfþ yk cosfÞ=M � 2r ¼ dk (11)

where k ¼ 1, 2, 3. By subtracting any two of the above equations, we will obtain two

formulas. For example:

ðx1 � x3Þ cosfþ ðy1 � y3Þ sinfþ ½ðx3 � x1Þ sinfþ ðy1 � y3Þ cosfÞ�=M ¼ d1 � d3 (12)

ðx2 � x3Þ cosfþ ðy2 � y3Þ sinfþ ½ðx3 � x2Þ sinfþ ðy2 � y3Þ cosfÞ�=M ¼ d2 � d3 (13)

Combining these two with Eq. (11) when k ¼ 3, yields:

xk cosfþ �k sinfþ ð�xk sinfþ �k cosfÞ=M ¼ �k (14)

x3 cosfþ y3 sinfþ ð�x3 sinfþ y3 cosfÞ=M � 2r ¼ d3 (15)

where k ¼ 1, 2, xk ¼ (xk - x3), �k ¼ (yk - y3) and �k ¼ (dk - d3). By multiplying Eq. (14),

relative to specific k value (k ¼ 1, 2), with x3-k and subtracting them, we obtain:

�1x2 � �2x1 ¼ ð��1x2 þ �2x1Þ sinfþ ð�1x2 � �2x1Þ cosf=M (16)

Multiplying Eq. (14), relative to specific k value (k¼ 1, 2), with �3-k and subtracting them

again gives:

�1�2 � �2�1 ¼ ð��2x1 þ �1x2Þ cosfþ ð�2x1 � �1x2Þ sinf=M (17)

Adding the square value of Eq. (16) and (17), yields:

1þ 1

M2
¼ ð�1x2 � �2x1Þ2 þ ð�1�2 � �2�1Þ2

ðx1�2 � x2�1Þ2
(18)
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Now since all the variables �1, x1, �1, �2, x2, �2 are known, then two possible M can be

computed. As we mentioned above, the Mach number M is positive or negative depending

on whether the target crosses the origin from right to left, or vice versa. Therefore, by

checking the position of nodes with the earliest and latest measured CPA times, the target

moving direction can be determined easily.

Then Eq. (14) can be rewriten as:

ð�xk þ
�k

M
Þ cosfþ ð��k �

xk

M
Þ sinf� �k ¼ 0 (19)

Given the computed M and cosf ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 f

p
, four possible value of f will be

generated by solving the previous equation. According to the original CPA algorithm, by

inserting M and each f into Eq. (11), r can be obtained. If r < 0 or the computed trajectory

does not match the assumed sensor field decomposition, the value of f will be rejected;

otherwise, it is accepted as correct.

3.2. Impact of Sensors Location Error

As discussed in [1], assuming the measured CPA times are unbiased and normally dis-

tributed, the target localization errors (including three motion parameters, f, v, and r) of the

original CPA algorithm can be calculated through the Fisher information matrix. Although

the errors caused by measuring CPA times are very small, that analysis ignored the impact

of sensors location error which may cause the original CPA algorithm to fail in most cases.

In this section, we will discuss the influence of sensors location error on the computation of

distance r and angle f. Accordingly, we describe the reason why the original CPA

algorithm cannot be directly applied to sensor networks and how to modify it to correct

the problem.

3.2.1. Sensitivity of Distance Computation. In the original CPA algorithm, the error in the

computation of distance r is very large because of the errors in the sensor location and the

measured CPA time.

There are many methods to obtain sensor locations although these are outside the scope

of this paper. Instead, we simply assume sensors know their positions through GPS (Global

Positioning System). However, the localization accuracy of the GPS system could be

affected by many factors (e.g., the ionosphere error, satellite clock error, orbit error,

troposphere error, and multi-path error). The localization error in GPS with a C/A code

receiver and either standard correlator or narrow correlator ranges from 0.1 to 3 meters [19].

For other methods, e.g., triangulation, the error may be even larger.

We now describe how sensitive the original CPA algorithm is to errors in sensor

locations and measured CPA times. Suppose the angle of vector rk is b, then Eq. (11)

becomes:

rk � cos b � cosfþ rk � sin b � sinfþ ðrk � sin b � cosf� rk � cos b � sinfÞ=M � 2r ¼ dk (20)

It can be rewritten as:

rk � cosðb� fÞ þ rk � sinðb� fÞ=M � 2r ¼ dk (21)

Small changes in rk and (tk - t0) yield a small change in r as follows:
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�r ¼ �rk �
cosðb� fÞ þ sinðb� fÞ=M

2
� c � s

2
(22)

where s ¼ �(tk - t0). Assume t0 is accurately measured, then s becomes �tk that denotes

the bias in the CPA estimates at node nk. Suppose �rk¼ 2 m, then the error in computed r is

shown in Fig. 2, where the x-axis is the error in measured CPA times and the y-axis is the

value of (b - f). Since node n0 and nk are on different sides of the trajectory, the angle

between r and rk will range from -90� to 90�.
By investigating Eq. (22) further, we find that the left and the right side of the equation

indicates the error in computed r caused uncertainties of sensor locations and measured

CPA times respectively. If s¼ 0.1 second, then the error in computed r caused by the CPA

times measurement error is 17 meters. If �rk ¼ 2 m and target velocity is v ¼ 10 m/s, then

the error in computed r will range from 0 to 34 meters which depends on the value of b - f.

Due to the limited detection ranges of acoustic sensors, the value of r cannot be too large;

otherwise, the sound of the mobile target is not loud enough to trigger the sensors. In our

field experiments, described in Section 4, we found that the maximal detection range of

sensors is about 50 m. However, as shown in Fig. 2, the error in computed r ranges from 0 m

to 50 m. Thus, we conclude that the original CPA algorithm suffers from large errors when

computing r.

Based on the above analysis, the error in sensors location and measured CPA times can

cause the original CPA algorithm to incur significant errors in the computation of r.

Therefore, it is not suitable for localizing mobile targets in wireless sensor networks.

3.2.2. Sensitivity of Angle Computation. Although the computation of r can result in large

errors, the computation of f is very accurate for some specific network configurations

because the error in computing f is highly dependent on the angle between vector r3 and rk

(k ¼ 1,2).
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Figure 2. Error in the computed r in the original CPA algorithm.
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The following is the error analysis for computing f in the original CPA algorithm.

Assuming the angle of r3k (angle between vector r3 and rk) is a, then Eq. (19) can be

rewritten as:

r3k �
sin a
M
� cos a

� �
� cosf� r3k � sin aþ cos a

M

� �
� sinf� �k ¼ 0 (23)

Small changes in r3k and (tk - t0) yield a small change in f as follows:

�f ¼ �r3k � ða1 � cosf� a2 � sinfÞ � c � s
r3k � ða1 � sinfþ a2 � cosfÞ (24)

where a1 ¼ sin a=M � cos a and a2 ¼ sin aþ cos a=M. We assume M¼ v/c is an unknown

constant that is much smaller than l. Since j cos aj 	 1 andj sin aj 	 1, we have

a1 
 sin a=M and a2 
 sin a=M. Then Eq. (24) can be expressed as:

�f 
 �r3k � sinða� fÞ � u � s
r3k � cosða� fÞ (25)

Since �r3k, r3k and c � s are all constants, then the maximal value of �f occurs when |a - f|

is very close to 90� or 270�, and the minimal value is zero when sinða� fÞ ¼ ðu � s=�r3kÞ.
Suppose �r3k¼ 2 m, r3k¼ 40 m, s¼ 0.1 and target velocity is 10 m/s, then the error in

computing f as a function of a and f is shown in Fig. 3. By drawing the contour graph of

Fig. 3, we obtain Fig. 4. We note that within the white regions the error in computing f is

very small (less than 10�); but for other regions, where |a - f| 
 90� or 270�, the error can

be very large (e.g., 150�). Such huge errors in computing f are mainly caused by the sensor

location error. If there are only errors in measured CPA times, then Eq. (24) becomes:

j�fj ¼ c � s
r3k � jða1 � sinfþ a2: cosfÞj (26)
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Figure 3. Error in computed f of the original CPA algorithm.
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If there are only errors in sensors location, we obtain:

j�fj ¼ �r3k

r3k

����
���� � a1 � cosf� a2: sinf

a1 � sinfþ a2: cosf

����
���� (27)

where �r3k

r3k

��� ��� is the normalized error in the measurement of r3k as a fraction of the length of

r3k. If s¼ 0.1 sec, �r3k¼ 2 m, r3k¼ 40 m and the target velocity is 10 m/s, then the average

error (given angle a and f change from 0� to 360�) in computing f caused by the error in

the measured CPA times is 0.112. The average error caused by the uncertainty of the sensor

location is 0.202. Therefore, sensors location error impacts the result �f more seriously

than the measure CPA times.

From the above analysis, we conclude two facts. First, the computation of f in the original

CPA algorithm is still useful because with certain network configurations (e.g., (a - f) 

arcsin(v � s/�r3k)), the error in computing f is very small. For example, as shown in Fig. 4,

when a ¼ 120� and f ¼ 87�, the error in computing f is 0.068�. In fact, this is one of the

network configurations we used in the field experiments where the results show a small error in

the computing f. Second, we notice that the error in f is inversely proportional to r3k, so the

node that is farthest from n0 should be selected as node nk. On the other hand, the error in f is

also related to the angle a - f. Therefore, to minimize the error in computing f, a trade-off

between the node distance r3k and angle (a - f) must be considered. From Eq. (25), by

neglecting the impact of measured CPA times, we obtain:

�f ¼ �r3k � tanða� fÞ=r3k (28)

By minimizing the right part of this equation, a proper node nk can be found for

calculating f.
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Figure 4. Contour of the computed f error in the original CPA algorithm.
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3.3. Enhanced CPA (ECPA) Algorithm

From the above discussions, we have shown the poor performance of the original CPA

algorithms in calculating target location and trajectory direction using wireless sensor

networks because of two main reasons. First, it must know the network configuration in

advance, i.e., how the trajectory divides the group of sensors. For the CPA algorithm in [1],

four nodes must be unevenly divided by the trajectory (three on one side and one on the

other side), whereas for that in [2], three nodes are to be located at the same side of the target

trajectory. In a realistic system, it is impossible to know the network configuration before

the target traverse the sensor field. On the other hand, the CPA localization algorithm needs

such information to perform correctly. Second, as stated in Section 3.2.1, the uncertainty of

sensor location and measured CPA times can cause huge errors in computing target

location.

To address these issues, we proposed the enhanced CPA (ECPA) algorithm. It first

determines the network configuration by estimating the trajectory slope and location. From

these estimates, we can determine whether the error in computing f will be small or large

(Fig. 3). If the error is small, then four possible values of f are calculated using the original

CPA algorithm and the one that is closest to the estimated value will be chosen as the

correct f. However, if the network configuration causes huge errors (e.g., |a -f|¼ 90�), the

ECPA algorithm adopts the estimated f as the correct angle. Finally, the trajectory is

located based on the received signal strength at node n0 and nk where nk is the closest node

to n0. To check the robustness of the ECPA algorithm, an analysis of the localization error is

stated as well.

3.3.1. Estimating Trajectory Slope and Location. For determining the network configura-

tion, we first estimate the trajectory slope based on the CPA time measurements, and then

the trajectory location from the received signal strength at two sensors which are farthest

from the trajectory.

To estimate the trajectory slope, we select five sensors that are intersected by the

trajectory of the target. This assumption is satisfied if the area traversed by the target is

covered by a sufficient number of sensors [20], so that a set of five sensors triggered by the

target can be selected, e.g., those five on the convex hull of triggered sensors, such that they

are also intersected by the target trajectory. The original CPA algorithm requires at least three

nodes to be on the same side of the target trajectory, so no matter where the trajectory is

located this condition must always hold if there are five nodes. The two nodes of the five with

the earliest and latest measured CPA times are selected and denoted as n1 and n3, respectively.

And n2 is the node that is located farthest from the line n1n3, as shown in Fig. 5. Assume that

the slope of the target trajectory is -1/k. Then the slope of line l (which is orthogonal to the

trajectory) is k. Thus the formula of line l is:

l : k � x� yþ ðyn2
� k � xn2

Þ (29)

The distance from node n1 and n3 to the line l is:

disi ¼
jk � xni

� yni
þ ðyn2

� k � xn2
Þjffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ 1
p ði ¼ 1; 3Þ (30)

Since the target is moving at a constant speed, the ratio between dis1 and dis3 should be

equal to:
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jðt2 � �2Þ � ðt1 � �1Þj=jðt3 � �3Þ � ðt2 � �2Þj (31)

where ti is the measured CPA time at node ni, �i is the time of sound propagation from the

closest point of approach (CPA) of node ni to its position ðxni
; yni
Þ. It can be further

rewritten as:

jðt2 � t1 þ �1 � �2Þj=jðt3 � t2 þ �2 � �3Þj (32)

Compared to the speed of sound c, the target velocity v in our system is very small, i.e. v� c.

Thus, we obtain dis1/dis3
 |(t2 - t1)|/|(t3 - t2)| because �1 - �2� t2 - t1 and �2 - �3� t3 - t2.

Therefore, we have:

k � xn1
� yn1

þ ðyn2
� k � xn2

Þ
k � xn3

� yn3
þ ðyn2

� k � xn2
Þ 

jt2 � t1j
jt3 � t2j

(33)

After solving the above formula, two possible values of k are obtained. Since line l must be

located between line n2n1 and n2n3, we can easily eliminate one and select the correct k.

Therefore, the estimated slope of the target trajectory is -1/k.

To estimate the trajectory location, we select those two sensors, n1 and n2 (different

nodes from the previous example), with the smallest received signal amplitude, i.e., they

are at the farthest position from the trajectory.

Suppose the estimated slope of the trajectory is k0, then we have:

disi ¼
k0 � xni

� yni
þ bj jffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k02 þ 1
p ði ¼ 1; 2Þ (34)

Since the distance disi is roughly inversely proportional to the square root of the

received signal amplitude, we can solve Eqs. (34) to get two possible values of b that

denote two possible locations of the trajectory.

Because n1 and n2 can be either on the same or different sides of trajectory, we have

two possible network configurations as shown in Fig. 6a and Fig. 6b. In this figure, the two

possible trajectories l (the correct one) and l0 (the wrong one) are shown as solid and dashed

lines, respectively. In Fig. 6a where n1 and n2 are on the same side of the trajectory, if l0 is

considered the expected trajectory, it will contradict the assumption that both n1 and n2 are

at the farthest position. In Fig. 6b where n1 and n2 are on different sides, line l0 denotes the

trajectory outside the convex hull of sensors which also contradicts the assumption that the

Figure 5. Estimating the Slope of Target Trajectory.
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trajectory intersects the convex hull. Eliminating the inadmissible solutions, we eventually

derive an approximate formula for target trajectory in the coordinate system.

Although the estimated trajectory location is not accurate enough to meet our target

localization goal (i.e., the localization error is smaller than 3 m), it is sufficient for

determining how sensors are divided by the trajectory. Of these five sensors, there are

always four that meet the configuration requirement and will be chosen to provide inputs to

the original CPA algorithm.

3.3.2. Computing the Exact Trajectory. The ECPA algorithm considers the estimated

direction (slope) of the trajectory obtained from the previous section as a reference to

select the exact f from those four possible values. The trajectory is then recomputed based

on this newly computed slope and the received signal strength at the sensors.

Since there are four sensors meeting the requirement of the original CPA algorithm, the

target velocity and the four possible directions of the trajectory can be readily calculated.

Based on the approximate trajectory, four sensors are divided into two groups: one is on one

side and the other three on the other side. Then, from Eq. (18), the Mach number M can

be computed. Inserting M into Eq. (19), together with cosf ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 f

p
, we obtain

four possible values of f. At this step, node nk used in the computation must meet the

condition min {�r3k � tan(a - f)/r3k}. However, because the uncertainty of the node

positions and measured CPA times can cause r to be incorrectly computed, it is difficult

to verify the correct f by the incorrectly calculated r. As it will be shown in Section 4, the

failure rate of the original CPA algorithm is very high (about 90%) because of the huge

error in computing r. Therefore, in the ECPA algorithm, the approximate f serves as the

reference, and the f that is closest to the estimated one will be considered the correct result.

This comparison process needs to be done only for some specific network configurations,

whereby a and f are located within the white region in Fig. 4. Otherwise, the estimated

f will be used as the final result. Our simulations confirm that this scheme can generate

very small errors of the trajectory direction (less than 6� from the actual value).

To calculate the trajectory location, we make use of the newly computed slope of the

trajectory and the received signal strength at the sensors. Suppose node nk is the closest one

to node n0 and the square root of the received signal amplitude at node n0 and nk are s0 and

sk, respectively. As shown in Fig. 7, we have r/h¼ r1/h1¼ sk/s0, so r1 can be calculated from

the following equation:

(a) (b)

Figure 6. Estimating the location of target trajectory.
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r1 � s0 ¼ ðrk � r1Þ � sk (35)

where rk is the distance between node n0 and nk. After obtaining r1, we can easily locate the

target trajectory and compute r as well. Although the received signal strength at the nodes

may be affected by several environmental factors, it does not influence the result as

significantly as the errors of sensors location and measured CPA times. This result will

be shown in the next section. Furthermore, as it will be shown in our simulations and

experimental results, the target localization errors are very small in the ECPA algorithm

(less than 2 m).

3.3.3. Sensitivity of Distance Computation in the ECPA Algorithm. An important issue

associated with the ECPA algorithm is how sensitive it is to errors in the input parameters.

The robustness of the method requires that small errors in the input will not result in huge

errors in the results. To see under what conditions our method is robust, we study the

sensitivity of the computation of r1. Since r1� r, the error in computed r1 can be considered

as the upper bound of error in r.

In Eq. (35), the input parameters include rk, s0 and sk. Small changes in rk, sk, and s0

yield a small change in r1 as follows:

�r1 ¼
sk ��rk þ rk ��sk þ r1 ��sk � r1 ��s0

s0 þ sk

(36)

Assuming sk 	 s0, then the above formula yields:

�r1 	 0:5 ��rk þ 0:5 � rk � ek (37)

where �rk is the average error in the sensors location, ek ¼ (�sk)/sk is the percentage error in

received signal strength at node nk. If sk > s0, the same formula applies except that ek¼ (�s0)/s0.

Figure 8 shows that the localization error, where the x-axis is the distance between node n0 and

nk and the y-axis is the percentage error in the received signal strength at sensors. The maximal

error in computed r1 is about 6 m, when the distance to node nk is 20 m and RSSI error is 50%.

Compared to the original CPA algorithm, as shown in Fig. 2, the ECPA algorithm generates a

smaller error in locating the target trajectory.

From Eq. (37), we notice that the upper bound of error in the computation of r1 is

roughly proportional to (rk � ek) since 0.5 � �rk is a small constant and can be omitted.

Therefore, to achieve a smaller localization error, the distance between the triggered

Figure 7. The computation of distance r1 in ECPA algorithm.
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sensors should not be too large, which is often the case in most wireless sensor network

deployments since the detection range of sensors is quite limited.

Though it is hard to reduce the error in ek, we can choose the node with a shorter

distance to n0 as nk to decrease the error in computed r1. For instance, given a typical case,

where rk ¼ 20 m, �rk ¼ 2 m and ck ¼ 20%, then the error in computed r1 will be bounded

within 3 m.

In summary, the ECPA algorithm is different from the original CPA algorithm in four

aspects. First, the ECPA algorithm can determine the network configuration by itself,

which is impossible in the original CPA algorithm. Second, in calculating f, the ECPA

algorithm selects the optimal sensors to minimize the computation error, but the original

CPA algorithm arbitrarily chooses one. Third, the ECPA algorithm uses the estimated f as

the reference to choose the correct value of f while CPA fails to do so because of the huge

error in computing r. Fourth, the received signal strength at the sensors is used to calculate

the target trajectory instead of the measured CPA times because a small error in measured

CPA times can result in a huge error in the computation of r, as proven in Section 3.2.1. To

further verify our design, the ECPA algorithm was implemented in both simulations and

field experiments as described in the following sections.

4. Experimental Setup and Issues

In this section, we describe the framework of our target detection, localization, and tracking

system and the details of the architecture, hardware information, internetworking mixed

networks, and target detection method.

4.1. System Architecture

Our target detection and tracking system is composed of six components that are inter-

networked together using either IEEE 802.11 or IEEE 802.3, and directed diffusion [21].

Although we currently use only one cluster to demonstrate that the concept is practical, our

0
5

10
15

20

0
10

20
30

40
50

2

4

6

8

10

12

Distance to node n
k
 (m)Error in RSSI (%)

E
rr

or
 in

 lo
ca

liz
at

io
n 

(m
)

Figure 8. Error in the computed r of the ECPA algorithm.
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goal is to eventually extend it to larger networks by adopting multiple clustering algorithms

for target tracking, such as [22, 23].

Each of the six components represents a role or a function which is performed by one or

multiple computers. Fig. 9 illustrates the architecture of the system. The six components are

as follows:

1. sensor nodes that monitor for targets, detect the measured CPA time, and report

results to the cluster head through the directed diffusion network,

2. cluster head node that receives the CPA time data from sensors over the directed

diffusion sensor network as the input to determine the position, direction, and

velocity of the target by running the ECPA algorithm,

3. the gateway node that internetworks the diffusion network to the IP network,

4. camera control node that receives packets from the gateway, and then predicts the

target position based on the target velocity and the time delay for package transmis-

sion from the sensors to the camera control node,

5. video capture node that is responsible for interfacing with the video output of the

camera,

6. system control node that manages the execution of the remote nodes. For detailed

descriptions of the experiment setup, please refer to [24].

4.2. Hardware

Each of the nodes is an x86-based laptop computer. The sensor nodes including the cluster

head are laptops with 800 MHz CPU and 82801CA/CAM AC’97 Audio Controllers.

The gateway node, camera control, and system control are laptops with 1.2 GHz CPU

and 512 MB memory. The video capture computer is a Pentium IV based laptop (1.2 GHz

CPU) with Windows XP operating system. Each computer is also equipped with an IEEE

802.11b card for wireless connectivity. Video capture is performed using a Pinnacle

Figure 9. System Architecture for Collaborative Mixed Wireless Sensor Networks.
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500 USB video converter which converts the camera’s RCA output to digital video and

interfaces with the computer using USB 2.0. The camera is a Sony EVID30, and the

interface to the controller is RS232C, 9600 bps, serial port.

4.3. Internetworking Mixed Networks

The target tracking system is networked using several different network technologies. The

sensors and cluster head communicate through directed diffusion running over an 802.11

network. The camera control and system control machines are connected with an 802.3

(Ethernet) network running IP. In order to internetwork the two networks we developed an

internetworking software which executes on the gateway node. The gateway is configured

with both an 802.11 interface and an Ethernet interface. The internetworking software

converts diffusion packets into IP packets and vice versa.

4.4. Target Detection and Time Sychronization

A typical recorded sound (5 sec long) of the moving vehicle with a sample rate of 4 kHz is

shown in Fig. 10. The CPA time can be obtained as the instance when the highest amplitude

occurs which is indicated by a vertical line in Fig. 10. Obviously, longer recording times

will cause higher detection delays, so the recording time should be as short as possible.

Time synchronization among sensor nodes was achieved by NTP (Network Time

Protocol), which synchronizes the clocks of sensors over packet-switched, variable-latency

wireless networks. NTP typically provides accuracies of less than a few milliseconds on

wireless networks [25], which is accurate enough for the ECPA algorithm to successfully

localize the target.

5. Experimental Results

To evaluate the performance of our systems, we set up the target detection and tracking

sensor networks at two field locations: a vacant parking lot at Auburn University, as shown

in Fig. 11 and at AU’s National Center for Asphalt Technologies (NCAT) test tracks. We

experimented with several wireless ad-hoc sensor network configurations:

1. a basic sensor network and camera network configuration,

2. a network with 3 additional wireless network hops from the cluster head to the

camera control node and

3. a network that allows more directions (orientations) for the target to move.

Figure 10. A typical audio recording of the moving vehicle.
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5.1. Results of Computing Target Location and Velocity

The ECPA algorithm computes the target location, velocity, and direction of travel based

on the CPA time reported from the five sensors. Table 1 summarizes the results of the eight

runs that we conducted with two target trajectories. The results show that the target location

and velocity can be accurately computed. The average position error is only 1.8 meters, the

average velocity error is only 3 mph, and the average trajectory error is 5 degrees. For

example in the first run, the predicted target location is (3608558, 641360), only 1 m from

the actual location (3608558, 641359). The computed speed is 28 mph whereas the actual

speed is 30 mph, and the direction of travel is 90 degrees compared to the actual direction of

87 degrees.

Figure 11. Experimental setup for target tracking in a vacant parking lot at Auburn University.

Table 1

Tests Results

Target Position (m) Speed (mph) Angle (degree)

Run Computed Error Computed Error Computed Error

1st (3608558, 641360) 1 28 2 90 3

2nd (3608558, 641360) 1 27 3 90 3

3rd (3608559, 641357) 2.236 42 12 84 3

4th (3608552, 641359) 6 27 3 111 24

5th (3608545, 641358) 1 29 1 127 1

6th (3608544, 641359) 1 28 2 130 2

7th (3608544, 641359) 1 29 1 131 3

8th (3608545, 641360) 1 32 2 132 4

Min Error 1 1 1

Max Error 6 12 24

Avg Error 1.78 3.25 5.375
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Figure 12 shows the predicted position and actual path of the vehicle for the eight runs

in our experiments. Note that the computed target trajectories almost exactly match the

actual values. The shorter dashed lines show the results from two runs in the AC direction

and two runs in the CA directions. These trajectories are very close to the actual one shown

by the solid AC path. The longer dashed lines show the results of two runs in the BD

direction and two runs in the DB direction. These trajectories (with one exception) are very

close to the actual trajectory.

Compared to the results published in [5], the ECPA algorithm gives more accurate

results. For example, the average localization error in the ECPA algorithm is 1.78 m; while

the root mean square errors of Extended Kalman Filter (EKF), Lateral Inhibition (LAT),

and EKF & LAT are 8.877 m, 9.362 m, and 11.306 m, respectively.

6. Simulation and Results

To further study the impact of target velocity and location errors on localization and

velocity errors, we use an extended ns-2 simulation tool (ns-2.27), from the Naval research

laboratory [26]. It provides simulation models for various physical phenomena such as

acoustic, seismic, and chemical agents. The presence of physical phenomena in ns-2 is

modeled with broadcast packets which are sent over a designated channel called the

‘‘phenom’’ channel. In the real world, detecting acoustic events is made more difficult

by the environmental noise and sensitivity issues of the microphones. We assume that the

acoustic packets experience a loss profile similar to 802.11 data packets, so the noise and

packet losses are simulated by the extensions provided in [27]. In the simulation, we use the

Figure 12. Plot of target tracking results showing computed target location and velocity match the

actual value.
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same node deployment as was used in the field experiment. As expected, the simulation

results with target velocities of 30mph, match the field-test very well.

6.1. Successful Localization Rate

Due to the error in measured CPA time, the original CPA algorithm always fail to select

the proper f value. In most cases, the CPA algorithm can find r > 0, but after inserting this r

into the CPA algorithm, the resulting trajectory is outside the convex hull of the sensors.

Thus, the localization process failed. As shown in Fig. 13, the successful detection rate of

CPA is at most 10%. Furthermore, when considering the error in a sensor location, the

situation becomes even worse. The ECPA algorithm, however, first chooses the f which is

closest to the estimated one, and then maps the trajectory into the convex hull of the sensors,

thereby achieving a localization success rate of 100%.

6.2. Impact of Velocity

As described in [1], the relative error on the target distance estimate is roughly inversely

proportional to the square root of the Mach number. This means the localization error in the

ECPA algorithm should also decrease as the target velocity increases. This property is

demonstrated in Fig. 14, where the average velocity error decreases from 1.3 m/s to 0.2 m/s,
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average direction error decreases from 5.5� to 0.5� and the average location error decreases

from 1.35 to 0.7 meters. Note that when the target speed is 13 m/s (30mph), the error in

estimated location, velocity and direction are 1 m, 1.7 mph and 3.5�, respectively. Indeed,

these values are very similar to the errors experienced in the field (Table 1).

6.3. Impact of Sensors Location Errors

Errors in sensor location range from less than one meter to a few meters, depending on the

localization technology. To understand the effect of this error, we simulated sensors

location error as a uniform distributed function upon (0, max], where max increases from

0.1 to 5 meters. As shown in Fig. 15, when the location error in sensors increases, the target

localization error also increases. Interestingly, the ECPA algorithm is highly tolerant of the

sensors location error because the estimated target information is quite close to the actual

values even with a larger sensor location error. For example, when maximal sensors

location error is 5 meters, the average error in target location is only about 1.8 meters.

This result matches the mathematical analysis, since �r 
 0.5 � �rk where �rk ¼ 2.5 m.

Moreover, the error in the estimated velocity and direction are still within the acceptable

range (0.8 m/s and 6�).

6.4. Impact of Distance Between Sensors

To evaluate the impact of different distances between sensors on localization errors,

we simulated a set of nodes deployment which covered difference sizes of area in the

networks. The area covered by the sensors is defined as the size of convex hull of the

sensors. As shown in Fig. 16, when the size of the covered area increases, the errors in

calculating the velocity, direction, and position of the mobile target also increase. This

is mainly because the longer distance between the sensors and the target trajectory

causes huge errors in the measurement of the CPA times. These errors significantly

affect the results. As previously stated in our sensitivity analysis of the ECPA algo-

rithm, a larger distance between sensor n0 and nk could generate larger errors in

locating the trajectory. This fact is again verified in the simulation results, as shown

in Fig. 16c. Although larger distances between sensors could cause some problems,

the errors in the computed target velocity, direction, and position are still acceptable

(4 m/s, 10� and 4 m, respectively).
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7. Conclusion

The original CPA algorithm fails because the uncertainty of sensors position causes it to fail

to obtain a positive value of r (distance between a target and the reference node). Our

enhanced CPA scheme first estimates the trajectory and obtains the sensors deployment

information. Then, it selects the optimal four sensors to minimize the computation error in

f with the original CPA algorithm. Finally, the trajectory location is calculated based on

the newly computed angle and received signal strength at sensors. Through our field

experiments, we have shown that the ECPA algorithm is an efficient and practical localiza-

tion and tracking method for moving vehicles using wireless sensor networks.

For rapid deployment in the field, we will design new compact sensor fusion nodes

based on COTS components (such as PC104), which are small, inexpensive, and can

execute collaborative algorithms for reliably detecting and tracking targets. In addition,

we will extend the network to multiple clusters to enable us to track targets moving along

nonlinear paths. Finally, we will experiment with arbitrary deployment of sensors in

random configurations and develop methods for automatically forming clusters in these

topologies.

Our prototype target tracking system demonstrates the feasibility of detection, track-

ing, and image/video capture of moving targets using collaborative, wireless, acoustic

sensor nodes. By using the ECPA localization algorithm, the target position, velocity, and

direction can be accurately computed and transmitted to the video camera.

Nomenclature

Symbol Definition

P(t) Target trajectory function

r Vector from the origin to target position and |r| ¼ r

v Vector of target velocity and |v| ¼ v

rk Vector from the origin to node k and |rk| ¼ rk

rnk Vector from node n to node k and |rnk| ¼ rnk

tk Measured CPA time at node k

t Real CPA time regarding to the origin

c Speed of sound in the air

dk Distance that sound propogates from time t0 to tk
f Angle of vector r

M Mach number that is v/c
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xk Difference between xk and x3

�k Difference between yk and y3

�k Difference between dk and d3

a Angle between vector r3 and rk

b Angle of vector rk

s Small change of time difference tk – t0
disk Distance between node k and the target trajectory

�i Time of sound propagation from the CPA of node i to its position

sk The square root of the received signal amplitude at node k

ek The percentage error in received signal strength at node k
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